1
|
Wang S, Zhang J, Sun J, Zhou F, Wang P, Qin Z, Zhao Y, Wang S, Han Z, Jiao W. Spatial Distribution and Quantitative Source Identification of Heavy Metals in Soil of a Typical Industrial Park, East of China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:48. [PMID: 40094985 DOI: 10.1007/s00128-025-04013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/30/2025] [Indexed: 03/19/2025]
Abstract
In order to illustrate the contamination, spatial distribution and sources identification of heavy metals in Bohai New Urban District (BHNUD), a total of 333 surface soil (< 0.5 m) and 159 core soil samples (0.5-2 m) were collected. Results showed that, the mean concentrations of Cu, Ni, Pb, Cd, As and Hg in soil were 8.00-45.00 mg/kg, 10-58.00 mg/kg, 7.40-92.10 mg/kg, 0.02-0.35 mg/kg, 3.02-18.00 mg/kg and 0.002-0.21 mg/kg, respectively. The concentrations of the six heavy metals were higher than their background values to different extent, indicating the accumulation of heavy metals in this area. Cu, Cd and Ni were mainly distributed in the agricultural region; As and Hg were mainly distributed in the northeast part of the industrial area; Pb had a randomized distribution across the study area. The source identification was quantitatively carried out with the positive matrix factorization (PMF) receptor model. It showed that Pb in this area was most influenced by traffic, followed by agricultural and industrial activities. Cu and Ni in this area were mainly associated with agricultural and industrial activities; Hg was predominantly due to atmospheric deposition; As was mainly affected by industrial activities; and Cd was mainly a consequence of agricultural activities. The results will underpin the development of appropriate methods for the soil pollution control and remediation in the future.
Collapse
Affiliation(s)
- Shiyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China.
| | - Junnan Zhang
- China Nuclear Power Engineering Co., Ltd., Beijing, 100840, People's Republic of China
| | - Jingyuan Sun
- Liaoning Sixth Geological Brigade Co., Ltd., Dalian, 116200, People's Republic of China
| | - Fada Zhou
- Liaoning Sixth Geological Brigade Co., Ltd., Dalian, 116200, People's Republic of China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yue Zhao
- Beijing Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Ziyu Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| |
Collapse
|
2
|
Hui N, Wang P, Su L, Liu X, Zheng B, Setälä H, Kotze DJ, Jumpponen A. What drives metal resistance genes in urban park soils? Park age matters across biomes. ENVIRONMENT INTERNATIONAL 2025; 197:109369. [PMID: 40080960 DOI: 10.1016/j.envint.2025.109369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Although resistance genes are a global concern in ecosystems, the underlying factors responsible for their worldwide dissemination, especially in urban greenspaces, are poorly known. To investigate metal and metal resistance genes (MRGs) accumulation in urban parks, we used ICP-MS to analyze metal concentrations and GeoChip functional gene arrays to analyze MRGs abundances in vegetation types with labile and recalcitrant litter across urban parks and non-urban reference sites in three distinct climatic regions: Boreal (Finland), Temperate (Baltimore, USA), and Tropical (Singapore). Our results indicate that metal concentrations and MRGs abundances in park soils increase with park age across climatic zones, especially so for the dominant metals - Fe and Al - accounting for more than 90% of the total metal content, and others, e.g., Mn, Zn, and Pb. Correspondingly, Fe and Al resistance genes were the most abundant MRGs, representing 23% of all detected MRGs. Vegetation type affected metals and MRGs only in the boreal region, not in temperate or tropical regions, suggesting that vegetation context is not generalizable across climatic zones. Our analyses also indicate that the distribution of resistance genes is only weakly affected by soil properties, but largely associated with accumulation of metals from traffic and industrial sources. Our data further indicate that MRGs and antibiotic resistance genes (ARGs) are co-selected by metal accumulation. The pattern of MRG abundance between old and young parks is similar to that of ARGs, indicating a potential risk for human health in old urban parks. Our findings emphasize the importance of park age and the corresponding cumulative effects of anthropogenic activities as a driver of metal and MRG dynamics in urban soils globally.
Collapse
Affiliation(s)
- Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland; Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peiyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai 200240, China
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland.
| | - Bangxiao Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland; Center for Ecology & Health Innovative Research, Xiamen University of Technology, Xiamen, China
| | - Heikki Setälä
- Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland
| | - D Johan Kotze
- Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland
| | - Ari Jumpponen
- 433 Ackert Hall, Division of Biology, Kansas State University, Manhattan KS66506, USA
| |
Collapse
|
3
|
Jiang F, Wang L, Tang Z, Yang S, Wang M, Feng X, He C, Han Q, Guo F, Yang B. Distribution, assessment, and causality analysis of soil heavy metals pollution in complex contaminated sites: a case study of a chemical plant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:526. [PMID: 39576352 DOI: 10.1007/s10653-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
To effectively prevent and control pollution from heavy metals (HMs) in urban soils, it is essential to thoroughly understand the contamination status of contaminated sites. In this study, the contamination status and sources of six HMs (As, Cu, Cr, Ni, Pb, Cd) in the soil of a decommissioned chemical plant in southern China were comprehensively analyzed. The results indicated that the average concentration of HMs followed the sequence: Cr > Pb > Cu > Ni > As > Cd. Heavy metal accumulation in the upper soil layer was predominantly observed in industrial zones and low-lying areas, with notable variations in concentration along the vertical profile. Certain sections of the site exhibited severe HM contamination, particularly with Cu levels exceeding the background value by 46.77 times. Cd presented significant ecological risks in specific areas, with an average Ecological Index of 96.09. Carcinogenic and non-carcinogenic risks were identified at three and six sampling points, respectively, with sampling point S103 demonstrating both types of risks. The causes of HM contamination were primarily attributed to anthropogenic activities. Horizontal dispersion was mainly influenced by production operations and topographical features, while vertical distribution was predominantly affected by the permeability characteristics of the strata. The causality analysis incorporating production activities and topographical factors provides novel perspectives for understanding sources of contamination at contaminated sites. The study outcomes can offer guidance for the assessment and surveying of urban industrial pollution sites.
Collapse
Affiliation(s)
- Fengcheng Jiang
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Luyao Wang
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Zhi Tang
- Six Geological Team of Hubei Geological Bureau, Xiaogan, 432000, China
| | - Sen Yang
- Shenzhen Guanghuiyuan Environment Water Co., Ltd, Shenzhen, 518011, China
| | - Mingshi Wang
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xixi Feng
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Chang He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiao Han
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Fayang Guo
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Baoguo Yang
- School of Resources and Environment, Yili Normal University, Yili, 835000, China.
| |
Collapse
|
4
|
Shen C, Wang M, Su J, Sun H, Hu W, Lin K, Wu J, Liu F, Chen X, Sha C. Characteristics, Source Apportionment, and Health Risk of Heavy Metals in the Soils of Peri-urban Shanghai Chongming Island. ACS OMEGA 2024; 9:42734-42745. [PMID: 39464434 PMCID: PMC11500163 DOI: 10.1021/acsomega.4c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Heavy metals resulting from human activities pose significant threats to human health and the soil ecosystem. In the current study, 917 soil samples from Chongming Island in Shanghai, China, were examined for eight heavy metals. The sources of contamination were identified by using a Positive Matrix Factorization (PMF) model. Meanwhile, spatial interpolation and Moran's I index were applied to validate the model in terms of spatial linkages. The results revealed that the average concentrations of As, Cd, Hg, Pb, Cr, Cu, Zn, and Ni in the soil were 8.87, 0.19, 0.06, 28.75, 76.01, 37.74, 88.93, and 30.33 mg kg-1, respectively. The PMF analysis proved that heavy metals in the soil of the study area are mainly influenced by traffic sources (Cr and Pb), industrial sources (Zn, Cd, and Cu), station sources (Hg), and natural sources (As and Ni), with contribution rates of 22.23, 26.25, 36.38, and 15.14%, respectively. The combination of Moran's index and the spatial analysis method not only verified the analytical results of the receptor model on the one hand but also served as a supplementary explanation for the sources of heavy metals in the soil. The health risk assessment indicated that noncarcinogenic values were below the threshold values. The total carcinogenic risk (R T) of different heavy metals has a descending order of Cr > As > Ni > Cd. The R T values of multiple heavy metals for children and adults were 5.28 × 10-04 and 4.10 × 10-05, respectively, which were close to the risk threshold. Therefore, attention should be paid to the health risks, especially for children's skin contact, which is the main exposure pathway.
Collapse
Affiliation(s)
- Cheng Shen
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Min Wang
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Jinghua Su
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Huilun Sun
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Wenan Hu
- School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kuangfei Lin
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Jian Wu
- Shanghai
Technology Center for Reduction of Pollution and Carbon Emissions, Shanghai 200235, China
| | - Fuwen Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiurong Chen
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Chenyan Sha
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
5
|
Cui Z, Zhao S, Shi X, Lu J, Liu Y, Liu Y, Zhao Y. Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake. TOXICS 2024; 12:540. [PMID: 39195642 PMCID: PMC11360595 DOI: 10.3390/toxics12080540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Mercury and arsenic are two highly toxic pollutants, and many researchers have explored the effects of the two substances on the environment. However, the research content of toxic substances in frozen periods is relatively small. To explore the spatial and vertical distribution of mercury and arsenic in the ice, water, and sediments of Wuliangsuhai Lake under ice conditions, and to assess the harm degree of the two toxic substances to human beings. We collected the ice, water, and sediments of the lake in December 2020, and tested the contents of Hg and As. The single-factor pollution index method, the local cumulative index method, and the ecological risk coding method were used to assess the pollution status in these three environmental media, and the Monte Carlo simulation combined with the quantitative model recommended by USEPA was used to assess the population health risk. The results showed that (1) The average single-factor pollution values of Hg and As in water were 0.367 and 0.114, both pollutants were at clean levels during the frozen period. (2) The mean Igeo values of Hg and As were 0.657 and -0.948. The bioavailability of Hg in the sediments of Wuliangsuhai Lake during the frozen period was high, and its average value was 7.8%, which belonged to the low-risk grade. The bioavailability of As ranged from 0.2% to 3.7%, with an average value of 1.3%. (3) Monte Carlo simulation results indicate acceptable levels of health risks in both water and ice. This study preliminarily investigated the distribution characteristics of toxic substances and their potential effects on human health in lakes in cold and arid regions during the frozen period. It not only clarified the pollution characteristics of lakes in cold and arid regions during the frozen period, but also provided beneficial supplements for the ecological protection of lake basins. This study lays a foundation for further environmental science research in the region in the future.
Collapse
Affiliation(s)
- Zhimou Cui
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yinghui Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yunxi Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
- Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| |
Collapse
|
6
|
Mahmudiono T, Hoseinvandtabar S, Mehri F, Borzoei M, Heidarinejad Z, Amin Nakoozadeh M, Daraei H, Atamaleki A, Fakhri Y, Mousavi Khaneghah A. Potentially toxic elements (PTEs) in coastal sediments of Bandar Abbas city, North of Persian Gulf: An ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1255-1269. [PMID: 36731517 DOI: 10.1080/09603123.2023.2173154] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The concentration of potentially toxic elements (PTEs; Lead (Pb), Nickel (Ni), and Cadmium (Cd) Pb, Ni, and Cd), using flame atomic absorption spectrometry (FAAS) was measured in fifty surface coastal sediment samples collected from 5 points coastal sediment of Bandar Abbas city, Iran besides the potential ecological risk index (RI) estimated the environmental health risk. The rank order of PTEs was Pb (52.090 ± 4.113 mg/kg dry weight) > Ni (34.940 ± 8.344 mg/kg dry weight) > Cd (2.944 ± 0.013 mg/kg dry weight). RI due to PTEs in sediments for A, B, C, D, and E points were 187.655, 190.542, 191.079, 189.496, and 192.053, respectively. RI for sampling points A to E was at moderate risk (150 ≤ RI < 300). Therefore, it is recommended to carry out control programs to reduce the amount of PTEs in the coastal sediment of the Persian Gulf.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences. Hamadan, Iran
| | - Mohammad Borzoei
- Department of Occupational Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zoha Heidarinejad
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Nakoozadeh
- Department of Occupational Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
7
|
George II, Nawawi MGM, Mohd ZJ, Farah BS. Environmental effects from petroleum product transportation spillage in Nigeria: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1719-1747. [PMID: 38055166 DOI: 10.1007/s11356-023-31117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Nigeria has struggled to meet sustainable development goals (SDGs) on environmental sustainability, transportation, and petroleum product distribution for decades, endangering human and ecological health. Petroleum product spills contaminate soil, water, and air, harming humans, aquatic life, and biodiversity. The oil and gas industry contributes to environmental sustainability and scientific and technological advancement through its supply chain activities in the transport and logistics sectors. This paper reviewed the effects of petroleum product transportation at three accident hotspots on Nigeria highway, where traffic and accident records are alarming due to the road axis connecting the southern and northern regions of the country. The preliminary data was statistically analysed to optimise the review process and reduce risk factors through ongoing data monitoring. Studies on Nigeria's petroleum product transportation spills and environmental impacts between the years 2013 and 2023 were critically analysed to generate updated information. The searches include Scopus, PubMed, and Google Scholar. Five hundred and forty peer-reviewed studies were analysed, and recommendations were established through the conclusions. The findings show that petroleum product transport causes heavy metal deposition in the environment as heavy metals damage aquatic life and build up in the food chain, posing a health risk to humans. The study revealed that petroleum product spills have far-reaching environmental repercussions and, therefore, recommended that petroleum product spills must be mitigated immediately. Furthermore, the study revealed that better spill response and stricter legislation are needed to reduce spills, while remediation is necessary to lessen the effects of spills on environmental and human health.
Collapse
Affiliation(s)
- Ikenna Ignatius George
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia.
- Transport Technology Center, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria.
| | - Mohd Ghazali Mohd Nawawi
- Department of Chemical Engineering, (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Zaidi Jafaar Mohd
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Bayero Salih Farah
- Office of the Director General Chief Executive, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria
| |
Collapse
|
8
|
Li Q, Zeng Y, Fan Y, Fu S, Guan Y, Sun Y, Chen S. PM-bound polycyclic aromatic compounds (PACs) in two large-scale petrochemical bases in South China: Spatial variations, sources, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60994-61004. [PMID: 37042915 DOI: 10.1007/s11356-023-26477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/12/2023] [Indexed: 05/10/2023]
Abstract
Polycyclic aromatic compounds (PACs) are potential pollutants emitted from the petrochemical industry, whereas their occurrence and sources in petrochemical regions are still poorly known. The present study revealed the spatial variations, compositional profiles, sources and contributions, and health risks of PM-bound PACs in two large-scale petrochemical bases (GDPB and HNPB) in South China. The concentrations of parent polycyclic aromatic hydrocarbons (PAHs) were 7.14 ± 3.16 ng/m3 for ∑18PAHs and 0.608 ± 0.294 ng/m3 for the PAHs with molecular weight of 302 amu (MW302 PAHs) in the GDPB base and 2.55 ± 1.26 ng/m3 and 0.189 ± 0.088 ng/m3 in the HNPB base. Oxygenated PAHs (OPAHs) showed comparable concentrations to the parent PAHs in both the bases and nitrated PAHs (NPAHs) had the lowest mean levels (260 pg/m3 and 59.4 pg/m3 in the two regions). Coronene, 2,8-dinitrodibenzothiophene, and dibenzo[a,e]fluoranthene showed remarkably higher contributions to the PAC and can be PAC markers of the petrochemical industry source. Five sources of PACs were identified respectively in both petrochemical bases by the positive matrix factorization (PMF) model. The vehicle (and ship) traffic exhaust was the primary source of PACs (contributed 33% to the ∑PACs), and the sources related to the coking of coal and heavy petroleum and refinery exhaust were identified in both bases, with contributions of 10-20%. PACs in GDPB also contributed from secondary atmospheric reactions (17.3%) and the usage of sulfur-containing fuels (20.9%), while the aromatics industry made a significant contribution (20.1%) to the PACs in the HNPB region. The cumulative incremental lifetime cancer risks (ILCRs) induced by inhalation of PM-bound PACs in both petrochemical bases were low (10-8-10-6). For the sources related to the petrochemical industry, coking activities and the aromatic industry were the significant contributors to the ∑ILCRs in GDPB and HNPB, respectively. This research has implications for further source-targeted control and health risk reduction of PACs in petrochemical regions.
Collapse
Affiliation(s)
- Qiqi Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| | - Yun Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Siqi Fu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yufeng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuxin Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Sun Y, Kan Z, Zhang ZF, Song L, Jiang C, Wang J, Ma WL, Li YF, Wang L, Liu LY. Association of occupational exposure to polycyclic aromatic hydrocarbons in workers with hypertension from a northeastern Chinese petrochemical industrial area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121266. [PMID: 36780976 DOI: 10.1016/j.envpol.2023.121266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Elevated urinary polycyclic aromatic hydrocarbon metabolites have been linked to an increased risk of cardiovascular diseases (CVDs). However, for petrochemical workers with potentially high PAH exposure, it remains largely unknown whether the link will be amplified. Thus, this work aimed to investigate 14 urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 746 petrochemical workers working in a Chinese petrochemical industrial area and their association with the risk of hypertension using the binary logistic regression. Metabolites of naphthalene, fluorene, phenanthrene, and pyrene were frequently detected in the 746 urine samples analyzed (>98%), with Σ10OH-PAH concentration in the range of 0.906-358 ng/mL. 2-hydroxynaphthalene accounted for the largest proportion of ten detected OH-PAHs (60.8% of Σ10OH-PAHs). There were significant correlations between these metabolites and other factors, including gender, age, and body mass index. Diastolic blood pressure, not systolic blood pressure, was significant positively associated with the urinary Σ10OH-PAH concentrations of the petrochemical workers. Elevated urinary 2/3-OH-Flu was significantly associated with an increased risk of hypertension (adjusted odds ratio: 1.96, 95% confidence interval: 1.20-3.18, p = 0.007), suggesting that PAH exposure in petrochemical workers was a driving factor of hypertension. In the stratified analysis, the association was more pronounced in those who were overweight with older age. Although the PAH exposure risk in petrochemical workers based on the estimated daily intakes was relatively low. Given the long-term impact, we call attention to CVDs of petrochemical workers.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ze Kan
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Song
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Ji Wang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Li Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Hernández-Fernández J, Ortega-Toro R, López-Martinez J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023; 28:molecules28052003. [PMID: 36903250 PMCID: PMC10004459 DOI: 10.3390/molecules28052003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The various chemicals in industrial wastewater can be beneficial for improving its circularity. If extraction methods are used to capture valuable components from the wastewater and then recirculate them throughout the process, the potential of the wastewater can be fully exploited. In this study, wastewater produced after the polypropylene deodorization process was evaluated. These waters remove the remains of the additives used to create the resin. With this recovery, contamination of the water bodies is avoided, and the polymer production process becomes more circular. The phenolic component was recovered by solid-phase extraction and HPLC, with a recovery rate of over 95%. FTIR and DSC were used to evaluate the purity of the extracted compound. After the phenolic compound was applied to the resin and its thermal stability was analyzed via TGA, the compound's efficacy was finally determined. The results showed that the recovered additive improves the thermal qualities of the material.
Collapse
Affiliation(s)
- Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 30300, Colombia
- Correspondence:
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias 130015, Colombia
| | - Juan López-Martinez
- Institute of Materials Technology (ITM), Universitat Politecnica de Valencia (UPV), Plaza Ferrandiz and Carbonell s/n, 03801 Alcoy, Spain
| |
Collapse
|
11
|
Yi M, Zhang S, Li M, Xiang J, Tang B, Yan X, Zheng J, Li G, An T. Spatial Distribution Profiles and Human-Health Risks of Heavy Metals in Surrounding Area Surface Soils of a Petrochemical Complex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16930. [PMID: 36554812 PMCID: PMC9778647 DOI: 10.3390/ijerph192416930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Despite the growing concern raised by organic pollutants from the petrochemical industry to the surrounding soils, the heavy metal (HM) pollution in these soils remains understudied. This study investigated the levels, potential sources, and human-health risks of 12 HMs in soils inside and in surrounding areas of a petrochemical complex. Generally, the levels of 12 HMs in all soil samples were lower than the national standard of China, except for the Cd in one surrounding soil sample. Approximately 40.9% and 98.1% of soils around and inside the petrochemical complex, respectively, were at slightly contaminated levels. The HM pollution in 94.4% of soils inside and 32% of soils in surrounding areas were mainly affected by petrochemical production. Human-health risk showed that although As posed an acceptable cancer risk for adults both in and around the complex, high cancer risk for surrounding children from As was observed. Moreover, around the complex, Cr, Cd, and Pb posed acceptable cancer risks for children, while Cd posed an acceptable cancer risk for adults. The spatial distribution of the health risks decreased with increasing distance from the complex. Overall, our results demonstrate that it is essential to minimize human exposure to HMs originating from the petrochemical industry, especially As, Cr, Cd, and Pb.
Collapse
Affiliation(s)
- Miao Yi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Shiyi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Jun Xiang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Li FJ, Yang HW, Ayyamperumal R, Liu Y. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. CHEMOSPHERE 2022; 308:136396. [PMID: 36113648 DOI: 10.1016/j.chemosphere.2022.136396] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/31/2022] [Accepted: 09/06/2022] [Indexed: 05/15/2023]
Abstract
Heavy metal pollution in urban soils and dust is mostly caused by extensive anthropogenic activity during urbanization and industrialization. In this research study, the pollution characteristics, sources, ecological and human health risks of heavy metals in urban soil, and dust have been thoroughly evaluated. The research findings demonstrate that dust has a higher level of contamination than urban soil, such as Pb, Cu, and Zn metals are more contaminated in both urban soil and dust throughout the city, and Hg and As are also found in locations with a high concentration of heavy industrial companies. This implies that traffic emissions are still a significant source of metals in urban areas, though industrial companies also contribute. The health risk assessment model used to calculate human exposure revealed that the non-carcinogenic and carcinogenic risks of selected metals in soil and dust were generally in the low range, except for the carcinogenic risk from Cr in children. Statistical analysis revealed that Cr and Ni concentrations were mainly of natural origin, Cu and Zn have been sourced from traffic, whereas Pb, Hg, and As have been sourced from industrial activities. The overall recommendation is that the road traffic environment and municipal construction facilities need to be improved to ensure the sustainable development of the city's environment, while pollution from industrial waste is strongly controlled.
Collapse
Affiliation(s)
- Feng-Jie Li
- School of History and Culture, Lanzhou University, Lanzhou, 730000, China.
| | - Hong-Wei Yang
- School of History and Culture, Lanzhou University, Lanzhou, 730000, China.
| | - Ramamoorthy Ayyamperumal
- MOE Key Laboratory of Mineral Resources in Western China, College of Earth Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China; MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Yang Liu
- Gansu Institute of Architectural Design and Research, Lanzhou, 730000, China
| |
Collapse
|
13
|
Wang CQ, Liu K, Huang DM, Huang QC, Wang PX, Mei XD, Li SC. Characteristic pollutants risk assessment of modified manganese residue utilization in sintered product. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88369-88382. [PMID: 36334196 DOI: 10.1007/s11356-022-23860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The resource disposal of electrolytic manganese residue can effectively solve the problem of environmental pollution caused by it, among which the problem of heavy metal pollution is the most prominent. In this study, a new type of eco-friendly brick mixed with electrolytic manganese residue was designed. The influence of the content of electrolytic manganese residue on its macroscopic properties, microscopic properties, and leaching characteristics was analyzed by test methods such as compressive strength test, radioactivity test, XRF, XRD, FTIR, and ICP test of bricks. The results showed that the manganese content in the EMR leachate was 8120 mg/L, which exceeded the Chinese standard. The leaching experiment of ordinary aqueous solution of sintered bricks mixed with 20% EMR showed that the content of heavy metals was far lower than the Chinese national standard. There was no non-carcinogenic risk of heavy metals in the strong acid leaching solution of sintered bricks mixed with 20% EMR. Only the carcinogenic risk values of Cr for adults and children were 4.21 × 10-4 and 9.82 × 10-4 respectively, both exceeding the USEPA limit, but the application scene of sintered bricks was difficult to achieve strong acidity, so it was judged that it had no carcinogenic risk to the human body. Characteristic heavy metals such as Mn, Cr, and As existed stably in sintered bricks through substitution and encapsulation. In addition, the compressive strength and radioactivity of EMR sintered bricks met the requirements of the Chinese national standard "Fired Ordinary Bricks." This product can be used as national standard MU20 grade brick. This study provided an efficient method for the safe and environmentally friendly disposal of EMR in a sustainable control system.
Collapse
Affiliation(s)
- Chao-Qiang Wang
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Haopan Energy Saving Technology Co. Ltd, Chongqing, 401329, China
- Chongqing Institute of Modern Construction Industry Development, Chongqing, 400039, China
| | - Ke Liu
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - De-Ming Huang
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qi-Cong Huang
- Chongqing Institute of Modern Construction Industry Development, Chongqing, 400039, China
| | - Pei-Xin Wang
- CSCEC Strait Construction and Development Co., Ltd, Fuzhou, 350015, China
| | - Xu-Dong Mei
- Chongqing Environmental Protection Engineering Technology Center for Shale Gas Development, Fuling, Chongqing, 408000, China
| | - Shu-Chun Li
- Chongqing Shang Jia Electronics Limited Liability Company, Fuling, Chongqing, 408121, China
| |
Collapse
|
14
|
Wang S, Ma Z, Yue G, Wu H, Wang P, Zhu L, Liang C, Xie C, Wang S, Jiao W, Zou B, Liu B. Spatial Distribution and Assessment of the Human Health Risks of Heavy Metals in a Retired Pharmaceutical Industrial Area, Southwest China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:808-816. [PMID: 36056950 DOI: 10.1007/s00128-022-03503-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals pollution in pharmaceutical industries received increasing attention. A total of 94 soil samples were collected in this study. Results showed the mean contents of Hg, Cd, As, Pb, Ni and Cu were 0.21, 0.26, 9.59, 55.06, 51.52 and 50.81 mg·kg-1, respectively. The spatial distribution of metals in topsoil largely attributed to the pharmaceutical production process. The distribution of Hg and As were related to the production of medical absorbent cotton. While Ni was related to the fuel supply of Ni-rich coal. Cr, Cu and Pb mainly distributed in the process which they were used as catalysts. The vertical migration of metals was complex in soil. To a great extent, it was related to the texture of the soil and the properties of metals in this filed. The total non-cancer and cancer human health risk were within the limits of USEPA (10-6 a-1). This demonstrated the health risks of individual's exposure to heavy metals in this factory was acceptable.
Collapse
Affiliation(s)
- Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Zhaohui Ma
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China
| | - Guoren Yue
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, 734000, Gansu, People's Republic of China
| | - Haolan Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Pingping Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ling Zhu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Cunzhen Liang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Chengcheng Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Bendong Zou
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China
| | - Baoxian Liu
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China
| |
Collapse
|
15
|
Ma T, Luo H, Huang K, Tao X, Sun J, Lu G. Hierarchical health risk assessment and influence factors of an ecological post-restoration oil shale mining area based on metal bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153480. [PMID: 35093346 DOI: 10.1016/j.scitotenv.2022.153480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The environmental problems caused by mining are continuous and multifaceted, in order to help manage and plan restored mining areas, the bioavailability of metals is an effective tool for measuring the potential risks to human health. This study analyzes the geochemical fractions of eight metals (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) to compare their bioavailability and establishes a Hierarchical health risk (HHR) model to assess the human health risks of the mine area after restoration. The results indicated that children have the highest non-carcinogenic risks exposed through ingestion (HI-ingestion) due to their special behaviors; HI-dermal may be enriched in the body; and HI-inhalation is lowest, as it is related to soil particle size. Affected by local economic development, environmental climate, soil type, and mining, the carcinogenic risk of exposure through the skin (CR-dermal) for adults significantly exceeds the acceptable safety level (ASL). The spatial distribution shows that the harm of mining to human health is a continuous process. There was still a significant CR for adults after remediation, and the HI of tailings exposure was more serious. The Classification and Regression Tree (CART) model of metal bioavailability was developed by integrating the extrinsic and intrinsic factors of metals to explore the effects of different factors on metal bioavailability and predict. The results showed that the bioavailability of metals was a dynamic process that combined land use, the distance to traffic roads, physicochemical properties of soil, and geochemical fractions of metal, and that it affects human health both directly and indirectly. Due to the fragility and sensitivity of the ecosystem after the mining area is restored, it may face greater environmental health risks.
Collapse
Affiliation(s)
- Tengfei Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kaibo Huang
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Wan X, Zeng W, Gu G, Wang L, Lei M. Discharge Patterns of Potentially Harmful Elements (PHEs) from Coking Plants and Its Relationship with Soil PHE Contents in the Beijing–Tianjin–Hebei Region, China. TOXICS 2022; 10:toxics10050240. [PMID: 35622653 PMCID: PMC9144211 DOI: 10.3390/toxics10050240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
The Beijing–Tianjin–Hebei (BTH) region in China is a rapid development area with a dense population and high-pollution, high-energy-consumption industries. Despite the general idea that the coking industry contributes greatly to the total emission of potentially harmful elements (PHEs) in BTH, quantitative analysis on the PHE pollution caused by coking is rare. This study collected the pollutant discharge data of coking enterprises and assessed the risks of coking plants in BTH using the soil accumulation model and ecological risk index. The average contribution rate of coking emissions to the total emissions of PHEs in BTH was ~7.73%. Cross table analysis indicated that there was a close relationship between PHEs discharged by coking plants and PHEs in soil. The accumulation of PHEs in soil and their associated risks were calculated, indicating that nearly 70% of the coking plants posed a significant ecological risk. Mercury, arsenic, and cadmium were the main PHEs leading to ecological risks. Scenario analysis indicated that the percentage of coking plants with high ecological risk might rise from 8.50% to 20.00% as time progresses. Therefore, the control of PHEs discharged from coking plants in BTH should be strengthened. Furthermore, regionalized strategies should be applied to different areas due to the spatial heterogeneity of risk levels.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-1064888087
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang M, Li X, Lei M, Duan L, Chen H. Human health risk identification of petrochemical sites based on extreme gradient boosting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113332. [PMID: 35219256 DOI: 10.1016/j.ecoenv.2022.113332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Petrochemical industry is a key industry of soil pollution, which presents great effects on human health and the ecological environment. It is of great significance to achieve rapid, economic and efficient health risk identification for petrochemical industry in China. In this work, an efficient method was developed based on extreme gradient boosting (XGBoost) algorithm for human health risk identification, which is different from the traditional health risk assessment with complicated procedures. In this methodology, an index system of 13 indicators was established from the perspective of "sources - pathways - receptors" for risk identification. The 10-fold cross validation was used to assess the generalization performance, and the accuracy, precision and recall were employed to evaluate the performance of the algorithms. Wilcoxon signed-rank test was conducted to analyze the differences between XGBoost and other models for statistical support. The results showed that XGBoost significantly presented a better performance for health risk identification over multilayer perceptron neural network with error backpropagation training (BPNN), support vector machine (SVM), gradient boosting decision tree (GBDT) and light gradient boosting machine (LightGBM), with an accuracy of 0.783. The most important features contributing to the risk identification were determined with the sequence of site location (in the industrial zone or not), site planning and production period. Great attention should be given to the petrochemical sites that are not located in the industrial zone with long production period and sensitive receptors in the health risk identification. This method has important reference significance for relevant departments to carry out soil contamination screening and health risk assessment of petrochemical sites.
Collapse
Affiliation(s)
- Meng Wang
- School of Energy and Environment, Southeast University, Nanjing 2100018, China
| | - Xue Li
- School of Energy and Environment, Southeast University, Nanjing 2100018, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China
| | - Lunbo Duan
- School of Energy and Environment, Southeast University, Nanjing 2100018, China
| | - Huichao Chen
- School of Energy and Environment, Southeast University, Nanjing 2100018, China.
| |
Collapse
|
18
|
Zhang X, Zhang X, Li L, Fu G, Liu X, Xing S, Feng H, Chen B. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time. ENVIRONMENTAL RESEARCH 2022; 204:111941. [PMID: 34474034 DOI: 10.1016/j.envres.2021.111941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution has attracted much attention due to its biological toxicity. However, little is known regarding Cr toxicity to soil microorganisms. The present study assesses the toxicity of Cr(VI) on two microbial processes, potential nitrification rate (PNR) and substrate-induced respiration (SIR), in a wide range of agricultural soils and detected the abundance of soil bacteria, fungi, ammonia-oxidizing bacteria and archaea. The toxicity thresholds of 10% and 50% effective concentrations (EC10 and EC50) for PNR varied by 32.18- and 38.66-fold among different soils, while for SIR they varied by 391.21- and 16.31-fold, respectively. Regression model analysis indicated that for PNR, CEC as a single factor explained 27% of the variation in EC10, with soil clay being the key factor explaining 47.3% of the variation in EC50. For SIR, organic matter and pH were found to be the most vital predictors for EC10 and EC50, explaining 34% and 61.1% of variation, respectively. In addition, extended aging time was found to significantly attenuate the toxicity of Cr on PNR. SIR was mainly driven by total bacteria rather than fungi, while PNR was driven by both AOA and AOB. These results were helpful in deriving soil Cr toxicity threshold based on microbial processes, and provided a theoretical foundation for ecological risk assessments and establishing a soil environmental quality criteria for Cr.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linfeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Gengxue Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Xiaoying Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Feng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Assessment of Contents and Health Impacts of Four Metals in Chongming Asparagus-Geographical and Seasonal Aspects. Foods 2022; 11:foods11050624. [PMID: 35267257 PMCID: PMC8908973 DOI: 10.3390/foods11050624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, the contents of four typical metals (Pb, Cd, Hg, and As) in asparagus, water, and soil from Chongming Island were quantitatively determined by inductively coupled plasma mass spectrometry (ICP-MS). The contents of these metals in asparagus showed a common rule of Pb > As > Cd > Hg in different harvest seasons and regions. Significant seasonal differences were found in the contents by difference analysis, but no obvious regional differences were observed. Furthermore, the asparagus did not accumulate these four metals from the soil in Chongming Island by the assessment of bio-concentration factor. The asparagus was proved safe by the analysis of single-factor pollution index and Nemerow pollution index. Through combining the analysis of the above indexes and the geological accumulation index, we found that 51.62% of soil samples were mildly polluted by cadmium. The results of health risk analysis showed that the risk value of children was higher than that of adults under oral exposure, but the four metals in asparagus possessed no obvious risk to health. The above assessments illustrate that the daily consumption of asparagus in Chongming Island will not cause potential health impacts. It is of benefit to ensure the quality and economic interests of asparagus planting in Chongming Island through the investigation of this study.
Collapse
|
20
|
Xu Y, Wang X, Cui G, Li K, Liu Y, Li B, Yao Z. Source apportionment and ecological and health risk mapping of soil heavy metals based on PMF, SOM, and GIS methods in Hulan River Watershed, Northeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:181. [PMID: 35157146 DOI: 10.1007/s10661-022-09826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals in agricultural soils not only affect the food security and soil security, but also endanger the human health through the food chain. Based on the incorporation of index analysis, positive matrix factorization (PMF), self-organizing map (SOM), and geostatistical methods, this research performed the assessment of source apportionment and ecological and health risks of soil heavy metals in Hulan River Watershed, Northeastern China. According to the Pollution Load Index (PLI), 83.08% of the soil samples were slightly or mildly polluted, and 1.54% of the soil samples were severely polluted. The ecological risk index (EI) showed that about 80.77% and 60.77% of the soil samples were beyond the low risk level for Hg and Cd, respectively. In this research, the non-carcinogenic and carcinogenic risk indices for children were higher than adult males and adult females. Four potential sources were revealed based on the PMF and SOM analysis including atmospheric deposition and industrial emission; transportation source; agricultural source; and a combination of agricultural, industrial, and natural sources. Considerable and high ecological risk from Hg existed in the area close to the coal steam-electric plant, and considerable and high ecological risk from Cd existed in the Hulan River estuary area. The eastern part of the study area experienced higher non-carcinogenic and carcinogenic risks for adults and children than the western part of the study area. The source apportionment and ecological and health risk mapping provide important role in reducing pollution sources. Zonal pollution control and soil restoration measures should be performed in the areas with high ecological and health risks.
Collapse
Affiliation(s)
- Yiming Xu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianxia Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Guannan Cui
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ke Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yanfeng Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Bin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
21
|
Ma T, Luo H, Huang K, Pan Y, Tang T, Tao X, Lu G. Integrated ecological risk assessment of heavy metals in an oil shale mining area after restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113797. [PMID: 34649315 DOI: 10.1016/j.jenvman.2021.113797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Although the mining area has been restored, the environmental problems caused by years of large-scale oil shale mining are still continuing, coupled with the intensive distribution of the surrounding petrochemical industry, posing a serious threat to the local ecological environment. In this study, we investigated eight heavy metals (Cu, Ni, Pb, Cd, As, Cr, Mn and Zn) contamination and distribution around mining area, evaluated the potential risks of environment, identified the main sources of metal pollution and performed source apportionment. The results showed that the original north and south dumps were seriously polluted, and the CF values were significantly higher than other sampling sites. Ni, Zn and Mn have high coefficients of variation, which may be greatly affected by human factors and especially the waste slag piled up. The concentration of heavy metals in the water was lower than in the soil; soil particles, pH, Eh and acid mine drainage influence the variation of heavy metal concentrations. As and Cd have very high RAC values, and accordingly they were mainly present in the exchangeable and reduced fractions. Mn was exposed to higher ecological risks, followed by Pb, although there were high loads on carbonate bound and oxidizable fractions. APCS-MLL receptor model was used to identify and apportionment three main sources of contamination. The mean contribution rates of industrial activity, atmospheric deposition and mixed sources accounted for 39.77%, 22.24% and 37.99%, respectively. Cluster analysis further classified the metal pollution sources according to the spatial distance of sampling points.
Collapse
Affiliation(s)
- Tengfei Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Kaibo Huang
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yan Pan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Wang Q, Huang D, Niu D, Deng J, Ma F, Liu C. Overexpression of auxin response gene MdIAA24 enhanced cadmium tolerance in apple (Malus domestica). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112734. [PMID: 34482065 DOI: 10.1016/j.ecoenv.2021.112734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a phytotoxic heavy metal accumulated in plants and fruits, has significant adverse effects on plant growth and development as well as human health. In particular, Cd pollution has become a serious agricultural issue in recent years. Apple is one of the most popular fruits consumed at the global scale. Improving apple Cd resistance via reductions in Cd absorption can benefit apple tree growth and ensure fruit safety. In this study, we determined that, under the 200 μM Cd treatment, 35S::MdIAA24 apple plants exhibited more biomass and less Cd accumulation in the tested tissues compared to wild type (WT). Furthermore, the 35S::MdIAA24 apple plants demonstrated more favorable photosynthesis characteristics, less reactive oxygen species (ROS) and a greater amount of active antioxidant enzymes under the Cd condition than WT. The expression levels of the Cd uptake genes were observed to be lower in the 35S::MdIAA24 apple plants compared with those of the WT under the Cd treatment. The results highlight the ability of the overexpression of MdIAA24 to enhance apple Cd resistance by improving antioxidant capacity and reducing Cd absorption.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Dongshan Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
23
|
Wang X, Zhang C, Wang C, Zhu Y, Cui Y. Probabilistic-fuzzy risk assessment and source analysis of heavy metals in soil considering uncertainty: A case study of Jinling Reservoir in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112537. [PMID: 34293583 DOI: 10.1016/j.ecoenv.2021.112537] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Considering the uncertainty caused by the random error of the sample measurement, the heterogeneity of spatial and temporal distribution of pollutants, and the traditional method of selecting a single parameter for evaluation, based on fuzzy theory, Hakanson potential ecological risk index (considering heavy metal enrichment, ecotoxicity and bioavailability) and United States Environmental Protection Agency health risk assessment system, the fuzzy ecological risk and health risk assessment methods for of heavy metals in soil were established. In the soil of the Jinling Reservoir area, Cd, which has high bioavailability, had the highest average contribution rate to RI, and thus was, regarded as a priority metal for ecological risk. Sites JL9 and JL11 were the priority areas. The heavy metals did not pose a clear hazard to human health, but children had a higher health risk. Pb and As were regarded as the priority metals for health risk. Fuzzy evaluation provided the risk interval and membership degree, contained more parameter information, quantified and reduced the uncertainty of parameters, provided more comprehensive results, and compensated for the deficiency of deterministic evaluation. As the main source of heavy metals, the intensity of agricultural activities in the study area must be controlled to avoid excessive input and accumulation of heavy metals, which may damage the ecological environment and endanger human health.
Collapse
Affiliation(s)
- Xuedong Wang
- College of Mining, Liaoning Technical University, Fuxin 123000, China.
| | - Chaobiao Zhang
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| | - Cui Wang
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| | - Yongdong Zhu
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| | - Yunhao Cui
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
24
|
González N, Esplugas R, Marquès M, Domingo JL. Concentrations of arsenic and vanadium in environmental and biological samples collected in the neighborhood of petrochemical industries: A review of the scientific literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145149. [PMID: 33540162 DOI: 10.1016/j.scitotenv.2021.145149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 05/27/2023]
Abstract
Petrochemical facilities, including oil refineries, are emission sources of a wide range of environmental pollutants such as trace elements, volatile organic compounds, and polycyclic aromatic hydrocarbons, among others. Populations living near this kind of facilities may be potentially exposed to contaminants, which are, in turn, associated with a wide range of adverse effects. In our laboratory, we have shown that the environmental concentrations of trace elements near the petrochemical complex of Tarragona County (Spain), which is among the largest complexes in the European Union, should not be a relevant pollution source for these elements, with the exception of arsenic (As) and vanadium (V). Moreover, the International Agency for Research on Cancer (IARC) classified As and V as Group 1 and Group 2B, respectively. Based on it, the present paper was aimed at reviewing the available scientific information on the occurrence of As and V in the vicinity of petrochemical complexes worldwide, considering environmental matrices (air, dust, sediments, soil, and water), as well as biological samples (blood, hair, and urine). In general, levels of As and V in environmental matrices showed higher fluctuation throughout the world and was highly dependent on the samples zone while levels of both elements in urinary samples from subjects living near a petrochemical area were higher than those of population living further.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Roser Esplugas
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| |
Collapse
|
25
|
Jahromi FA, Keshavarzi B, Moore F, Abbasi S, Busquets R, Hooda PS, Jaafarzadeh N. Source and risk assessment of heavy metals and microplastics in bivalves and coastal sediments of the Northern Persian Gulf, Hormogzan Province. ENVIRONMENTAL RESEARCH 2021; 196:110963. [PMID: 33675802 DOI: 10.1016/j.envres.2021.110963] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The objectives of the current study are to investigate the concentration, biological risks, chemical speciation, and mobility of of heavy metals and also the determination of their distribution, physicochemical characteristics, and abundance of microplastics in coastal sediments and edible bivalves in the Persian Gulf, the coastal area of Hormozgan Province. Sampling points were selected considering the location of industrial, urban and Hara forest protected areas. In November 2017, a total of 18 sediment samples from coastal sediments (top 0-10 cm) and the most consumed bivalve species in the region were collected from two stations, Lengeh and Bandar Abbas Ports. The average concentration of heavy metals (except for Ni and Cd) in the sediments were lower than their average shale and the upper continental crust. Enrichment factors revealed significant enrichment of Ni, Mn, Cr, Cd and As. The fractionation of heavy metals using the Community Bureau of Reference (BCR) sequential extraction scheme indicated the high bioavailability of Zn, As, Mn, and Co. In general, the highest concentration of Mo, Cd, Pb, Zn, Cr, Cu, Mn, Hg, and Sb was detected in areas with frequent human activities including Shahid Rajaee Port, Shahid Bahonar Port, and Tavanir station. Shahid Rajaee and Shahid Bahonar Ports are the most important ports on the coast of Hormozgan province. The Risk Assessment Code calculated for the study elements indicates that As, Co, Zn, and Cu pose a moderate environmental risk a threat to the aquatic biota. Health risks of most heavy metals arising from bivalves consumption were safe, except for As which is associated with the high target cancer risk values. With reference to the type of microplastics found, they were mainly fibeours with lengths ranging between 100 and 250 μm in sediments and bivalves. Most of the microfibers found in the sediments were made of polyethylene terephthalate (PET) and polypropylene (PP), and the fibers found in the bivalves were made of PP.
Collapse
Affiliation(s)
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, UK
| | - Peter S Hooda
- School of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, KT12EE, UK
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Kong F, Chen Y, Huang L, Yang Z, Zhu K. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111922. [PMID: 33472110 DOI: 10.1016/j.ecoenv.2021.111922] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Human health is adversely affected by potentially toxic elements (PTEs) in the topsoil, entering the bodies via inhalation, ingestion, and dermal contact. To visualize human health risks, we investigated five PTEs (Cd, As, Pb, Hg, and Cr) in 72 farmland topsoil samples from a town in Chongqing City, southwest China. Based on the human health risk assessment model, sequential indicator simulation (SIS) and the positive matrix factorization model (PMF) were used to construct the spatial health risks and to analyze the sources of PTEs; finally, health risks were combined with the source by ArcGIS. Based on our results, the use of SIS is feasible for the prediction of the spatial distribution of PTEs. Among the risks, the non-cancer risk of As for children most likely exceeded the accepted level in some areas, making As a priority pollutant. Although the health risks of soil Cd were acceptable in the region, the spatial probability distribution of Cd> 0.3 mg/kg represents a threat as Cd enters the human food chain. Even if the industrial discharge was the lowest individual contributor (29.33%), due to the impact of industrial discharge, the total non-cancer risk with a high probability (>0.85) for children still exceeded the accepted level in the northwestern area, which should be regarded as the priority pollution source. The combined method was useful to reduce efforts in environmental management, thus providing a basis for soil remediation and pollution source control.
Collapse
Affiliation(s)
- Fanjing Kong
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production/Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing 400716, China
| | - Yucheng Chen
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production/Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing 400716, China.
| | - Lei Huang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production/Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing 400716, China
| | - Zhimin Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production/Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing 400716, China
| | - Kangwen Zhu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production/Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing 400716, China
| |
Collapse
|
27
|
Moody HA, Grady SC. Lead Emissions and Population Vulnerability in the Detroit Metropolitan Area, 2006-2013: Impact of Pollution, Housing Age and Neighborhood Racial Isolation and Poverty on Blood Lead in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052747. [PMID: 33800525 PMCID: PMC7967271 DOI: 10.3390/ijerph18052747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 01/27/2023]
Abstract
This research investigates the relationships between airborne and depositional industrial lead emission concentrations modeled using Environmental Protection Agency’s (EPA’s) American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and childhood blood lead levels (BLL) in the Detroit Metropolitan Area (DMA) 2006–2013. Linear and mediation interaction regression models estimated the effects of older housing and airborne and depositional lead emission concentrations on black and white childhood BLLs, controlling for neighborhood levels of racial isolation and poverty—important social structures in the DMA. The results showed a direct relationship between airborne and depositional lead emissions and higher childhood BLL, after controlling for median housing age. Lead emissions also exacerbated the effect of older housing on black and white children’s BLLs (indirect relationship), after controlling for social structures. Findings from this research indicate that black and white children exposed to lead-based paint/pipes in older housing are further impacted by industrial lead pollution that may lead to permanent neurological damage.
Collapse
Affiliation(s)
- Heather A. Moody
- Department of Environmental Science and Environmental Engineering, Siena Heights University, 1247 East Siena Heights Drive, Adrian, MI 49221, USA
- Correspondence: ; Tel.: +1-517-264-7679
| | - Sue C. Grady
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, 673 Auditorium Road, Room 207, East Lansing, MI 48824, USA;
| |
Collapse
|
28
|
Karimian S, Shekoohiyan S, Moussavi G. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC Adv 2021; 11:8080-8095. [PMID: 35423317 PMCID: PMC8695097 DOI: 10.1039/d0ra08833a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 12/07/2022] Open
Abstract
The toxic effects of heavy metals in landfill soils have become a significant concern for human health. The present study aimed to estimate the health and ecological risk associated with soil heavy metal in Tehran landfill. A total of 48 soil samples were taken from the landfill and residential area and were analyzed using inductively coupled plasma-optical emission spectroscopy. The results showed the following order for heavy metal levels in landfill soil: Al > Fe > Mn > Zn > Cr > Cu > Pb > Ni > Co > As > Cd. The investigated ecological indices showed moderate to high heavy metal pollution. The principal component analysis revealed that the concentration of Pb, Cu, Zn, Cr, and Ni in the investigated soil was mainly affected by anthropogenic activities. Although the hazard index (HI) value in children was 6.5 times greater than that of adults, this value for both landfill workers and residents of the target area was at a safe level (HI ≤ 1). In the residential area, the Incremental Lifetime Cancer Risk (ILCR) value of adults (1.4 × 10-4) was greater than children ILCR value (1.2 × 10-4). Monte Carlo simulation and sensitivity analysis showed input variables such as exposure duration, exposure frequency, Ni concentration, soil ingestion rate, and As concentration have a positive effect on ILCR of 41.3, 24.3, 9.4, 9.0, and 2.9% in children, respectively. These results indicate that the landfill soil and the adjacent residential area are affected by heavy metal contamination and that the current solid waste management policies need to be revised.
Collapse
Affiliation(s)
- Shahla Karimian
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran +98-21-82884580 +98-21-82884865
| | - Sakine Shekoohiyan
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran +98-21-82884580 +98-21-82884865
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran +98-21-82884580 +98-21-82884865
| |
Collapse
|
29
|
Yao X, Chen P, Cheng T, Sun K, Megharaj M, He W. Inoculation of Bacillus megaterium strain A14 alleviates cadmium accumulation in peanut: effects and underlying mechanisms. J Appl Microbiol 2021; 131:819-832. [PMID: 33386698 DOI: 10.1111/jam.14983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
AIMS A cadmium (Cd)-tolerant Bacillus megaterium strain A14 was used to investigate the effects and mechanisms of bacterial inoculation on peanut growth, Cd accumulation in grains and Cd fixation in Cd-contaminated soil. METHODS AND RESULTS Spectroscopic analysis showed that A14 has many functional groups (-OH, -NH2 and -COO et al.) distributed on its surface. The pot experiment indicated that compared to the Cd-contaminated soil alone treatment, inoculation with strain A14 increased shoot and root biomass by 59·93 and 58·31% respectively. The accumulation of Cd in grains decreased by 48·14%, while the proportion of exchangeable Cd in soil decreased from 40 to 26% in A14 inoculated soil. CONCLUSIONS Inoculation with B. megaterium A14 improved peanut plant growth via (i) adsorbing Cd2+ through functional groups on cell surface, (ii) immobilization of Cd in soil through extracellular secretions, (iii) scavenging the reactive oxygen species through production of antioxidant enzymes, and (iv) by reducing the phytoavailable Cd through regulation of Cd transport gene expression. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided a new sight on microbial approach for the chemical composition transformation of soil Cd and associated food safety production, which pointed out an efficient way to improve peanut cultivation.
Collapse
Affiliation(s)
- X Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - P Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - T Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - K Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - M Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle (UoN), Callaghan, NSW, Australia
| | - W He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|