1
|
Li X, Yu X, Lian X, Kang L, Yang L, Ba F. Maternal urinary levels of PAH metabolites, umbilical cord blood telomere length and anthropometric indices in newborns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117767. [PMID: 39874713 DOI: 10.1016/j.ecoenv.2025.117767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
The existing evidence indicating that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with a range of adverse outcomes, including alterations in anthropometric indices, underscores the need for further investigation into the underlying mechanisms. This study aims to examine the effects of prenatal PAH exposure on anthropometric indices and telomere length (TL), as well as to explore whether changes in TL can serve as a predictor of alterations in anthropometric measures. The study was conducted in Shenyang, China, with 2460 pregnant women participating between 2022 and 2023. Maternal urine samples were analyzed for eleven PAH metabolites, and neonatal outcomes, such as birth weight (BW), birth length (BL), and head circumference (HC), were extracted from medical records as anthropometric indices. We employed multiple linear regression (MLR), generalized quantile g-computation (g-comp), Bayesian Kernel Machine Regression (BKMR), and mediation analysis to comprehensively assess the associations between PAH exposure and umbilical TL and neonatal outcomes. Notably, significant negative associations were found between several PAH metabolites and umbilical telomere length (TL). These metabolites included 2-hydroxy naphthalene (2-OH Nap), 1-hydroxy pyrene (1-OH Pyr), 6-hydroxy chrysene (6-OH Chr), 9-hydroxy benzo(a)pyrene (9-OH Bap), and the sum of hydroxylated PAHs (Σ-OH PAHs). Additionally, negative correlations were identified between specific PAH metabolites and HC, although no significant associations were found for BW. Birth weight showed a significant inverse relationship with metabolites such as 1-hydroxy phenanthrene (1-OH Phe), 9-hydroxy phenanthrene (9-OH Phe), and 1-hydroxy naphthalene(1-OH Nap). Results from g-comp analysis and BKMR indicated significant mixture effects of PAHs on umbilical TL and HC, with more heterogeneous effects on BW and BL. Mediation analysis indicated that alterations in umbilical TL partially mediated the associations between PAH exposure and BW and HC. Notably, metabolites such as 2-OH Nap and the Σ-OH PAHs demonstrated substantial mediation effects. Overall, our findings suggest that changes in umbilical TL partially mediate the associations between prenatal PAH exposure and HC and BW, highlighting the complex pathways through which PAH metabolites may influence neonatal development.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin Lian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Lei Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Fang Ba
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Edzie J, Alcala C, Bloomquist TR, Gutierrez-Avila I, Just AC, Midya V, Téllez Rojo MM, Estrada-Gutierrez G, Wright RJ, Wright RO, Baccarelli AA, Rosa MJ. Prenatal and early life exposure to fine particulate matter and telomere length in early childhood. Int J Hyg Environ Health 2025; 263:114447. [PMID: 39265426 PMCID: PMC11624059 DOI: 10.1016/j.ijheh.2024.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Telomere length is a biomarker of molecular aging that may be impacted by air pollution exposure starting in utero. We aimed to examine the association between prenatal and early life exposure to fine particulate matter (PM2.5) and leukocyte telomere length (LTL) in children and explore sex differences. METHODS Analyses included 384 mother-child pairs enrolled in the Programming Research in Obesity, Growth, and Environmental Stressors (PROGRESS) birth cohort in Mexico City. Exposure to PM2.5 was estimated at the residential level using a satellite based spatio-temporally resolved prediction model. Average relative LTL was measured in DNA isolated from blood collected at age 4-6 years using quantitative real-time polymerase chain reaction. Linear regression models were used to examine the association between average PM2.5 across pregnancy, individual trimesters, first postnatal year, and LTL. Models were adjusted for maternal age and education at enrollment, prenatal environmental tobacco smoke exposure, child sex, age, and body mass index z-score at LTL measurement. Effect modification by sex was investigated with interaction terms and stratification. RESULTS In trimester specific models, we found an association between 2nd trimester PM2.5 and elongated LTL (β: 4.34, 95%CI [0.42, 8.42], per 5 μg/m3 increase). There was suggestive effect modification by sex on average 2nd trimester PM2.5 with stronger associations seen in females compared to males (β: 7.12, [95%CI: 0.98, 13.6] and β: 1.43 [95%CI: -3.46, 6.57]) per 5 μg/m3 increase respectively. CONCLUSION Second trimester PM2.5 levels were associated with changes in LTL in early childhood. Understanding temporal and sex differences in PM2.5 exposure may provide insights into telomere dynamics over early life.
Collapse
Affiliation(s)
- Jesephat Edzie
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Cecilia Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, USA
| | - Ivan Gutierrez-Avila
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Allan C Just
- Department of Epidemiology, Brown University School of Public Health, USA
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico
| | | | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, USA
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA.
| |
Collapse
|
3
|
Tang L, Li D, Wang J, Su B, Tian Y. Ambient air pollution, genetic risk and telomere length in UK biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:845-852. [PMID: 37550565 DOI: 10.1038/s41370-023-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Telomere length (TL) is a biomarker of genomic aging. The evidence on the association between TL and air pollution was inconsistent. Besides, the modification effect of genetic susceptibility on the air pollution-TL association remains unknown. OBJECTIVE We aimed to evaluate the association of ambient air pollution with TL and further assess the modification effect of genetic susceptibility. METHODS 433,535 participants with complete data of TL and air pollutants in UK Biobank were included. Annual average exposure of NO2, NOx, PM10 and PM2.5 was estimated by applying land use regression models. Genetic risk score (GRS) was constructed using reported telomere-related SNPs. Leukocyte TL was measured by quantitative polymerase chain reaction (qPCR). Multivariable linear regression models were employed to conduct associational analyses. RESULTS Categorical exposure models and RCS models both indicated U-shaped (for NO2 and NOx) and L-shaped (for PM10 and PM2.5) correlations between air pollution and TL. In comparison to the lowest quartile, the 2nd and 3rd quartile of NO2 (q2: -1.3% [-2.1%, -0.4%]; q3: -1.2% [-2.0%, -0.3%], NOx (q2: -1.3% [-2.1%, -0.5%]; q3: -1.4% [-2.2%, -0.5%]), PM2.5 (q2: -0.8% [-1.7%, 0.0%]; q3: -1.3% [-2.2%, -0.5%]), and the third quartile of PM10 (q3: -1.1% [-1.9%, -0.2%]) were inversely associated with TL. The highest quartile of NO2 was positively correlated with TL (q4: 1.0% [0.0%, 2.0%]), whereas the negative correlation between the highest quartile of other pollutants and TL was also attenuated and no longer significant. In the genetic analyses, synergistic interactions were observed between the 4th quartile of three air pollutants (NO2, NOx, and PM2.5) and genetic risk. IMPACT STATEMENT Our study for the first time revealed a non-linear trend for the association between air pollution and telomere length. The genetic analyses suggested synergistic interactions between air pollution and genetic risk on the air pollution-TL association. These findings may shed new light on air pollution's health effects, offer suggestions for identifying at-risk individuals, and provide hints regarding further investigation into gene-environment interactions.
Collapse
Affiliation(s)
- Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No.31, Beijige-3, Dongcheng District, 100730, Beijing, China.
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
| |
Collapse
|
4
|
Martínez-Ezquerro JD, Ortiz-Ramírez M, García-de la Torre P, González-Covarrubias V, Sánchez-García S. Physical Performance and Telomere Length in Older Adults. Arch Med Res 2024; 55:103046. [PMID: 39013263 DOI: 10.1016/j.arcmed.2024.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The aging population prompts studying risk factors and markers to predict healthy aging. Telomere length is a promising candidate for assessing various age-related traits. AIM OF THE STUDY To investigate the association between physical performance and telomere length. METHODS We enrolled 323 older Mexican adults from the "Cohort of Obesity, Sarcopenia, and Frailty of Older Mexican Adults" affiliated with the Instituto Mexicano del Seguro Social and assessed their physical performance using the Short Physical Performance Battery, dividing participants into low (≤7) and high (>7) groups. Absolute telomere length was determined by qPCR, and individuals were classified into short (≤4.22 kb) and long (>4.22 kb) groups. We calculated the mean and adjusted mean, considering sex and age, among others, with 95% CI. We estimated the effect size between physical performance and telomere length using Cohen's d for unequal group sizes and calculated the odds ratio for physical performance based on telomere length. RESULTS Participants with low physical performance had significantly shorter telomeres (mean 4.14.44.7 kb, adjusted mean 3.54.04.5 kb, p <0.001), while those with high physical performance exhibited longer telomeres (mean 5.55.75.9 kb, adjusted mean 4.75.35.8 kb, p <0.001), with a medium-to-high telomere length effect size (d = 0.762). The odds of low physical activity increased 2.13.66.1-fold per kb of telomere attrition (adjOR 1.73.36.3, p <0.001). CONCLUSION Decreased physical function is associated with shorter telomere length. Absolute telomere length presents a promising biomarker for distinguishing between healthy and unhealthy aging, warranting further investigation.
Collapse
Affiliation(s)
- José Darío Martínez-Ezquerro
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mauricio Ortiz-Ramírez
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Paola García-de la Torre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
5
|
Pili MP, Cagliero L, Panichi V, Bordoni M, Pansarasa O, Cremaschi G, Tonga EB, Cappelletti F, Provenzi L. Exposure to pollution during the first thousand days and telomere length regulation: A literature review. ENVIRONMENTAL RESEARCH 2024; 249:118323. [PMID: 38336161 DOI: 10.1016/j.envres.2024.118323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.
Collapse
Affiliation(s)
- Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy.
| | - Lucia Cagliero
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Virginia Panichi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| | - Giacomo Cremaschi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Elgin Bilge Tonga
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | | | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy; Developmental Psychobiology Lab, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| |
Collapse
|
6
|
Wei B, Zhou Y, Li Q, Zhen S, Wu Q, Xiao Z, Liao J, Zhu B, Duan J, Yang X, Liang F. Outdoor fine particulate matter exposure and telomere length in humans: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116206. [PMID: 38518608 DOI: 10.1016/j.ecoenv.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 μg/m3 increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (β) of -0.12 (95% CI: -0.20, -0.03, I2= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I2= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.
Collapse
Affiliation(s)
- Bincai Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yawen Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyi Xiao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China..
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Zhang X, Colicino E, Cowell W, Enlow MB, Kloog I, Coull BA, Schwartz JD, Wright RO, Wright RJ. Prenatal exposure to air pollution and BWGA Z-score: Modifying effects of placenta leukocyte telomere length and infant sex. ENVIRONMENTAL RESEARCH 2024; 246:117986. [PMID: 38145728 DOI: 10.1016/j.envres.2023.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Air pollutants, such as fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3), have been associated with adverse birth outcomes, including low birth weight, often exhibiting sex-specific effects. However, the modifying effect of placental telomere length (TL), reflecting cumulative lifetime oxidative stress in mothers, remains unexplored. METHOD Using data from a Northeastern U.S. birth cohort (n = 306), we employed linear regression and weighted quantile sum models to assess trimester-average air pollution exposures and birth weight for gestational age (BWGA) z-scores. Placental TL, categorized by median split, was considered as an effect modifier. Interactions among air pollutants, placental TL, infant sex, and BWGA z-score were evaluated. RESULTS Without placental TL as a modifier, only 1st trimester O3 was significantly associated with BWGA z-scores (coefficient: 0.33, 95% CI: 0.03, 0.63). In models considering TL interactions, a significant modifying effect was observed between 3rd trimester NO2 and BWGA z-scores (interaction p-value = 0.02). Specifically, a one interquartile range (1-IQR) increase in 3rd trimester NO2 was linked to a 0.28 (95% CI: 0.06, 0.52) change in BWGA z-score among shorter placental TL group, with no significant association among longer TL group. Among male infants, there were significant associations between 3rd trimester PM2.5 exposure and BWGA z-scores in the longer TL group (coefficient: -0.34, 95% CI: -0.61, -0.02), and between 1st trimester O3 exposure and BWGA z-scores among males in the shorter TL group (coefficient: 0.59, 95% CI: 0.06, 1.08). For females, only a negative association in 2nd trimester mixture model was observed within the longer TL group (coefficient: -0.10, 95% CI: -0.21, -0.01). CONCLUSION These findings highlight the need to consider the complex interactions among prenatal air pollutant exposures, placental TL, and fetal sex to better elucidate those at greatest risk for adverse birth outcomes.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Whitney Cowell
- Department of Pediatrics, Grossman School of Medicine, New York University, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Agyapong PD, Jack D, Kaali S, Colicino E, Mujtaba MN, Chillrud SN, Osei M, Gennings C, Agyei O, Kinney PL, Kwarteng A, Perzanowski M, Dwommoh Prah RK, Tawiah T, Asante KP, Lee AG. Household Air Pollution and Child Lung Function: The Ghana Randomized Air Pollution and Health Study. Am J Respir Crit Care Med 2024; 209:716-726. [PMID: 38016085 DOI: 10.1164/rccm.202303-0623oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023] Open
Abstract
Rationale: The impact of a household air pollution (HAP) stove intervention on child lung function has been poorly described. Objectives: To assess the effect of a HAP stove intervention for infants prenatally to age 1 on, and exposure-response associations with, lung function at child age 4. Methods: The Ghana Randomized Air Pollution and Health Study randomized pregnant women to liquefied petroleum gas (LPG), improved biomass, or open-fire (control) stove conditions through child age 1. We quantified HAP exposure by repeated maternal and child personal carbon monoxide (CO) exposure measurements. Children performed oscillometry, an effort-independent lung function measurement, at age 4. We examined associations between Ghana Randomized Air Pollution and Health Study stove assignment and prenatal and infant CO measurements and oscillometry using generalized linear regression models. We used reverse distributed lag models to examine time-varying associations between prenatal CO and oscillometry. Measurements and Main Results: The primary oscillometry measure was reactance at 5 Hz, X5, a measure of elastic and inertial lung properties. Secondary measures included total, large airway, and small airway resistance at 5 Hz, 20 Hz, and the difference in resistance at 5 Hz and 20 Hz (R5, R20, and R5-20, respectively); area of reactance (AX); and resonant frequency. Of the 683 children who attended the lung function visit, 567 (83%) performed acceptable oscillometry. A total of 221, 106, and 240 children were from the LPG, improved biomass, and control arms, respectively. Compared with control, the improved biomass stove condition was associated with lower reactance at 5 Hz (X5 z-score: β = -0.25; 95% confidence interval [CI] = -0.39, -0.11), higher large airway resistance (R20 z-score: β = 0.34; 95% CI = 0.23, 0.44), and higher AX (AX z-score: β = 0.16; 95% CI = 0.06, 0.26), which is suggestive of overall worse lung function. The LPG stove condition was associated with higher X5 (X5 score: β = 0.16; 95% CI = 0.01, 0.31) and lower small airway resistance (R5-20 z-score: β = -0.15; 95% CI = -0.30, 0.0), which is suggestive of better small airway function. Higher average prenatal CO exposure was associated with higher R5 and R20, and distributed lag models identified sensitive windows of exposure between CO and X5, R5, R20, and R5-20. Conclusions: These data support the importance of prenatal HAP exposure on child lung function. Clinical trial registered with www.clinicaltrials.gov (NCT01335490).
Collapse
Affiliation(s)
- Prince Darko Agyapong
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | | | - Mohammed Nuhu Mujtaba
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, New York; and
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health
- Institute for Exposomic Research, and
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Adolphine Kwarteng
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Park S, Shim M, Lee G, You YA, Kim SM, Hur YM, Ko H, Park MH, Na SH, Kim YH, Cho GJ, Bae JG, Lee SJ, Lee SH, Lee DK, Kim YJ. Urinary metabolite biomarkers of pregnancy complications associated with maternal exposure to particulate matter. Reprod Toxicol 2024; 124:108550. [PMID: 38280687 DOI: 10.1016/j.reprotox.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Particulate matter 2.5 (PM2.5) is associated with reproductive health and adverse pregnancy outcomes. However, studies evaluating biological markers of PM2.5 are lacking, and identifying biomarkers for estimating prenatal exposure to prevent pregnancy complications is essential. Therefore, we aimed to explore urine metabolites that are easy to measure as biomarkers of exposure. In this matched case-control study based on the PM2.5 exposure, 30 high PM2.5 group (>15 μg/m3) and 30 low PM2.5 group (<15 μg/m3) were selected from air pollution on pregnancy outcome (APPO) cohort study. We used a time-weighted average model to estimate individual PM exposure, which used indoor PM2.5 and outdoor PM2.5 concentrations by atmospheric measurement network based on residential addresses. Clinical characteristics and urine samples were collected from participants during the second trimester of pregnancy. Urine metabolites were quantitatively measured using gas chromatography-mass spectrometry following multistep chemical derivatization. Statistical analyses were conducted using SPSS version 21 and MetaboAnalyst 5.0. Small for gestational age and gestational diabetes (GDM) were significantly increased in the high PM2.5 group, respectively (P = 0.042, and 0.022). Fifteen metabolites showed significant differences between the two groups (P < 0.05). Subsequent pathway enrichment revealed that four pathways, including pentose and glucuronate interconversion with three pentose sugars (ribose, arabinose, and xylose; P < 0.05). The concentration of ribose increased preterm births (PTB) and GDM (P = 0.044 and 0.049, respectively), and the arabinose concentration showed a tendency to increase in PTB (P = 0.044). Therefore, we identified urinary pentose metabolites as biomarkers of PM2.5 and confirmed the possibility of their relationship with pregnancy complications.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Minki Shim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Gain Lee
- Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Hyejin Ko
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University, School of Medicine, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Dongsan Medical Center, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Korea
| | | | - Dong-Kyu Lee
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea; Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
10
|
Mishra S, Stukken CVD, Drury S, Nawrot TS, Martens DS. Prenatal air pollution exposure in relation to the telomere-mitochondrial axis of aging at birth: A systematic review. ENVIRONMENTAL RESEARCH 2024; 244:117990. [PMID: 38141917 PMCID: PMC10922941 DOI: 10.1016/j.envres.2023.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial DNA (mtDNA) are central markers of vital biological mechanisms, including cellular aging. Prenatal air pollution exposure may impact molecular markers of aging leading to adverse health effects. OBJECTIVE To perform a systematic review on human population-based studies investigating the association between prenatal air pollution exposure and TL or mtDNA content at birth. METHODOLOGY Searches were undertaken on PubMed and Web of Science until July 2023. The framework of the review was based on the PRISMA-P guidelines. RESULTS Nineteen studies studied prenatal air pollution and TL or mtDNA content at birth. Studies investigating TL or mtDNA content measured at any other time or did not evaluate prenatal air pollution were excluded. Twelve studies (including 4381 participants with study sample range: 97 to 743 participants) investigated newborn TL and eight studies (including 3081 participants with study sample range: 120 to 743 participants) investigated mtDNA content at birth. Seven studies focused on particulate matter (PM2.5) exposure and newborn TL of which all, except two, showed an inverse association in at least one of the gestational trimesters. Of the eight studies on mtDNA content, four focused on PM2.5 air pollution with two of them reporting an inverse association. For PM2.5 exposure, observations on trimester-specific effects were inconsistent. Current literature showing associations with other prenatal air pollutants (including nitrogen oxides, sulfur dioxide, carbon monoxide and ozone) is inconsistent. CONCLUSION This review provides initial evidence that prenatal PM2.5 exposure impacts the telomere-mitochondrial axis of aging at birth. The current evidence did not reveal harmonious observations for trimester-specific associations nor showed consistent effects of other air pollutants. Future studies should elucidate the specific contribution of prenatal exposure to pollutants other than PM in relation to TL and mtDNA content at birth, and the potential later life health consequences.
Collapse
Affiliation(s)
- Shradha Mishra
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Stacy Drury
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
11
|
Margetaki K, Bempi V, Michalaki E, Roumeliotaki T, Iakovides M, Stephanou E, Kogevinas M, Chatzi L, Vafeiadi M. Prenatal air pollution exposure and childhood obesity: Effect modification by maternal fruits and vegetables intake. Int J Hyg Environ Health 2024; 256:114314. [PMID: 38183793 DOI: 10.1016/j.ijheh.2023.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND & AIMS Prenatal exposure to air pollution is robustly associated with fetal growth restriction but the extent to which it is associated with postnatal growth and the risk of childhood obesity remains unknown. We examined the association of prenatal exposure to air pollution with offspring obesity related measures and evaluated the possible protective effect of maternal fruits and vegetables intake (FV). METHODS We included 633 mother-child pairs from the Rhea pregnancy cohort in Crete, Greece. Fine particles (PM2.5 and PM10) exposure levels during pregnancy were estimated using land-use regression models. We measured weight, height and waist circumference at 4 and 6 years of age, and body composition analysis was performed at 6 years using bioimpedance. Maternal diet was evaluated by means of a semi-quantitative food frequency questionnaire in mid-pregnancy. Adjusted associations were obtained via multivariable regression analyses and multiplicative interaction was used to evaluate the potential modifying role of FV intake. RESULTS Exposure to PMs in utero was not associated with measures of adiposity at 4 or 6 years of age. Associations at 4 years did not differ according to maternal consumption of FV. However, at 6 years, among children whose mothers reported consuming less than 5 servings of FV per day, one SD increase in PM10 during pregnancy was associated with increased BMI (beta 0.41 kg/m2, 95% CI: -0.06, 0.88, p-interaction = 0.037) and increased waist circumference (beta 0.83 cm, 95% CI: -0.38, 2.05, p-interaction = 0.043) and one SD increase in PM2.5 was associated with increased fat mass (beta 0.5 kg, 95% CI: 0.0, 0.99, p-interaction = 0.039) and increased percentage of body fat (beta 1.06%, 95% CI: -0.06, 2.17, p-interaction = 0.035). Similarly, higher prenatal PM2.5 and PM10 exposure was associated with increased risk for obesity and abdominal obesity at 6 years only in the low FV group. CONCLUSIONS Exposure to fine particulate matter during pregnancy was not associated with obesity-related measures at 4 and 6 years. However, only among offspring of mothers who consumed inadequate FV, we observed higher obesity-related measures at 6 years. Our results indicate that mothers' diet during pregnancy may play a role in the relationship between air-pollution and childhood obesity.
Collapse
Affiliation(s)
- Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece.
| | - Vicky Bempi
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| | - Eirini Michalaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| | - Theano Roumeliotaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| | - Minas Iakovides
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Greece
| | - Euripides Stephanou
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Greece
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Non-Communicable Diseases Programme, Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA
| | - Marina Vafeiadi
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| |
Collapse
|
12
|
Daouda M, Kaali S, Spring E, Mujtaba MN, Jack D, Dwommoh Prah RK, Colicino E, Tawiah T, Gennings C, Osei M, Janevic T, Chillrud SN, Agyei O, Gould CF, Lee AG, Asante KP. Prenatal Household Air Pollution Exposure and Childhood Blood Pressure in Rural Ghana. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37006. [PMID: 38506828 PMCID: PMC10953816 DOI: 10.1289/ehp13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The association between prenatal household air pollution (HAP) exposure and childhood blood pressure (BP) is unknown. OBJECTIVE Within the Ghana Randomized Air Pollution and Health Study (GRAPHS) we examined time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure with BP at 4 years of age and, separately, whether a stove intervention delivered prenatally and continued through the first year of life could improve BP at 4 years of age. METHODS GRAPHS was a cluster-randomized cookstove intervention trial wherein n = 1,414 pregnant women were randomized to one of two stove interventions: a) a liquefied petroleum gas (LPG) stove or improved biomass stove, or b) control (open fire cooking). Maternal HAP exposure over pregnancy and child HAP exposure over the first year of life was quantified by repeated carbon monoxide (CO) measurements; a subset of women (n = 368 ) also performed one prenatal and one postnatal personal fine particulate matter (PM 2.5 ) measurement. Systolic and diastolic BP (SBP and DBP) were measured in n = 667 4-y-old children along with their PM 2.5 exposure (n = 692 ). We examined the effect of the intervention on resting BP z -scores. We also employed reverse distributed lag models to examine time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure and resting BP z -scores. Among those with PM 2.5 measures, we examined associations between PM 2.5 and resting BP z -scores. Sex-specific effects were considered. RESULTS Intention-to-treat analyses identified that DBP z -score at 4 years of age was lower among children born in the LPG arm (LPG β = - 0.20 ; 95% CI: - 0.36 , - 0.03 ) as compared with those in the control arm, and females were most susceptible to the intervention. Higher CO exposure in late gestation was associated with higher SBP and DBP z -score at 4 years of age, whereas higher late-first-year-of-life CO exposure was associated with higher DBP z -score. In the subset with PM 2.5 measurements, higher maternal postnatal PM 2.5 exposure was associated with higher SBP z -scores. DISCUSSION These findings suggest that prenatal and first-year-of-life HAP exposure are associated with child BP and support the need for reductions in exposure to HAP, with interventions such as cleaner cooking beginning in pregnancy. https://doi.org/10.1289/EHP13225.
Collapse
Affiliation(s)
- Misbath Daouda
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Emma Spring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed N. Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Teresa Janevic
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, New York, New York, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Carlos F. Gould
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Alison G. Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| |
Collapse
|
13
|
Ahlers NE, Lin J, Weiss SJ. WITHDRAWN: Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.17.23295692. [PMID: 37790308 PMCID: PMC10543047 DOI: 10.1101/2023.09.17.23295692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This manuscript has been withdrawn by the authors as it was submitted and made public without the full consent of all the authors. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The authors have an approved version for citation that is peer reviewed. Ahlers, N.E.; Lin, J.; Weiss, S.J. Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. Air 2024, 2, 24-37. https://doi.org/10.3390/air2010002.
Collapse
|
14
|
Park S, Kwon E, Lee G, You YA, Kim SM, Hur YM, Jung S, Jee Y, Park MH, Na SH, Kim YH, Cho GJ, Bae JG, Lee SJ, Lee SH, Kim YJ. Effect of Particulate Matter 2.5 on Fetal Growth in Male and Preterm Infants through Oxidative Stress. Antioxidants (Basel) 2023; 12:1916. [PMID: 38001768 PMCID: PMC10669397 DOI: 10.3390/antiox12111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Particulate matter 2.5 (PM2.5) levels are associated with adverse pregnancy outcomes. In this retrospective cohort study, we examined whether the concentration of indoor PM2.5 affected pregnancy outcomes. Additionally, we evaluated biomarkers of pregnancy-related complications caused by fine dust. We collected clinical information and data based on residential addresses from the Air Korea database to assess PM2.5 exposure levels. As a multicenter prospective cohort study, we measured the indoor PM2.5 concentration and inflammatory and oxidative stress markers. The PM2.5 concentration of the low-birth-weight (LBW) delivery group was 27.21 μg/m3, which was significantly higher than that of the normal-birth-weight (NBW) group (26.23 μg/m3) (p = 0.02). When the newborns were divided by sex, the PM2.5 concentration of the LBW group was 27.89 μg/m3 in male infants, which was significantly higher than that of the NBW group (26.26 μg/m3) (p = 0.01). In the prospective study, 8-hydroxy-2-deoxyguanosine significantly increased in the high-concentration group (113.55 ng/mL, compared with 92.20 ng/mL in the low-concentration group); in the high-concentration group, the rates of preterm birth (PTB) and small size for gestational age significantly increased (p < 0.01, p = 0.01). This study showed an association between PM2.5, oxidative stress, and fetal growth, with the PTB group being more vulnerable.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Eunjin Kwon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea;
| | - Gain Lee
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07985, Republic of Korea; (G.L.); (S.M.K.)
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Soo Min Kim
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07985, Republic of Korea; (G.L.); (S.M.K.)
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Sooyoung Jung
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Yongho Jee
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon-si 24289, Republic of Korea;
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Dongsan Medical Center, Daegu 42601, Republic of Korea;
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ulsan University, Ulsan 44610, Republic of Korea;
| | - Sun Hwa Lee
- Seegene Medical Foundation, Seoul 04805, Republic of Korea;
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07985, Republic of Korea; (G.L.); (S.M.K.)
| |
Collapse
|
15
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
16
|
Herrera-Moreno JF, Prada D, Baccarelli AA. Early Environment and Telomeres: a Long-Term Toxic Relationship. Curr Environ Health Rep 2023; 10:112-124. [PMID: 36944821 PMCID: PMC10849088 DOI: 10.1007/s40572-023-00395-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Telomere length (TL) shortening is a hallmark of biological aging. While studies have extensively focused on the impact of environmental exposures on TL in older populations, consistent evidence indicates that prenatal environmental exposures to air pollutants, polycyclic aromatic hydrocarbons, metals, and endocrine-disrupting chemicals influence TL shortening. Here, we summarize evidence linking prenatal environmental exposures with children's TL and discuss potential long-term effects. RECENT FINDINGS Current evidence shows that prenatal environmental exposures alter TL and identify pregnancy as a critical window of susceptibility for telomere damage in children. However, results vary across studies, possibly depending on the source, exposure time window, and stage evaluated. Additional research is needed to investigate whether early TL alterations mediate long-term health effects of offspring. Prenatal environmental exposures induce early childhood changes in TL. Based on known links between TL and biological aging, these alterations may have long-term impact on individuals' health throughout life.
Collapse
Affiliation(s)
- José Francisco Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA
- Instituto Nacional de Cancerología - México, 14080, Mexico City, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Zhu X, Li Z, Wang Z, Guo C, Qian Y, Wang Z, Li X, Wei Y. Associations between exposure to ambient air pollution and changes in blood telomeres in young people: A repeated-measure study. CHEMOSPHERE 2023:139053. [PMID: 37245595 DOI: 10.1016/j.chemosphere.2023.139053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Telomere length (TL) is one of the early biomarkers of aging. Air pollutants play an important role in promoting the aging process. However, few studies have explored how they adversely affect human health by altering telomeres. This study aims to investigate the associations between telomere alterations and exposure to ambient air pollutants, thereby shedding light on the intrinsic and profound link between these pollutants and aging. We recruited 26 healthy young people and conducted 7 repeated measure studies from 2019 to 2021, and TL and telomerase (TA) in the blood samples. We analyzed the associations between air pollutants, including ozone (O3), particulate matter in diameter smaller than 2.5 μm (PM2.5) and 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) and telomere variability, and explored the lagged effects by linear mixed-effects model. The result showed that short-term exposure to O3 was negatively associated with TL, and this effect in the lag days went up to around 0. In contrast, the associations between O3 and TA presented positive tendency and gradually decreased to around 0 in the lag days. The association between PM2.5 and TL showed positive tendency and gradually decreased to negative. There was no statistically significant association between PM2.5 and TA. Other pollutants (PM10, NO2, SO2, CO) showed similar patterns of variation to that of PM2.5. Our findings suggest that short-term exposure to O3 shortens TL, which can be gradually recovered through activating TA activity, while exposure to PM2.5, PM10, NO2, SO2 and CO lengthens TL and then becomes shorter over time. This implies that the human body has some ability to self-repair telomere changes after exposure to air pollutants, and predictably, when this exposure exceeds a certain threshold, it cannot be repaired, leading to aging of the body.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
18
|
Chandyo RK, Schwinger C, Kvestad I, Ulak M, Ranjitkar S, Shrestha M, Nguyen LV, Corona-Perez D, DeVivo I, Shrestha L, Strand TA. The association between household biomass fuel use and leukocyte telomere length among toddlers in Bhaktapur, Nepal. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:448-454. [PMID: 36138138 PMCID: PMC10234806 DOI: 10.1038/s41370-022-00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biomass fuels are still in use for cooking by many households in resource poor countries such as Nepal and is a major source of household air pollution (HAP). Chronic exposure to HAP has been shown to be associated with shorter telomere length in adults. OBJECTIVES To measure the association between exposure related to household biomass fuel in infancy and leukocyte telomere length (LTL) at 18-23 months of age among 497 children from Bhaktapur, Nepal. METHODS In a prospective cohort study design, we have collected information on household cooking fuel use and several clinical, anthropometric, demographic, and socioeconomic variables. We estimated the association between biomass fuel use and the relative LTL in multiple linear regression models. RESULTS Most of the families (78%) reported liquified petroleum gas (LPG) as the primary cooking fuel, and 18.7% used biomass. The mean relative (SD) LTL was 1.03 (0.19). Children living in households using biomass fuel had on average 0.09 (95% CI: 0.05 to 0.13) units shorter LTL than children in households with no biomass fuel use. The observed association was unaltered after adjusting for relevant confounders. The association between LTL and biomass use was strongest among children from households with ≤2 rooms and without separate kitchen. SIGNIFICANCE Exposure to biomass fuel use in early life might have consequences for longevity, and risk of chronic illnesses reflected in shortening of the telomeres. Our findings support the ongoing effort to reduce exposure to biomass fuel in low-resource settings. IMPACT STATEMENTS Biomass for cooking is a leading source of household air pollution in low and middle-income countries, contributing to many chronic diseases and premature deaths. Chronic exposure to biomass fuel through oxidative stress and inflammation has been associated with a shortening of the telomeres, a "biological marker" of longevity. This prospective cohort study describes the association between household biomass fuel use and leukocyte telomere length among 497 toddlers. Leukocyte telomere length was significantly shorter among children living in households with biomass fuel than in children from homes where mainly LPG was used for cooking. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov: NCT02272842, registered October 21, 2014, Universal Trial Number: U1111-1161-5187 (September 8, 2014).
Collapse
Affiliation(s)
- Ram K Chandyo
- Department of Community Medicine, Kathmandu Medical College, Kathmandu, Nepal
| | - Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ingrid Kvestad
- Regional Centre for Child and Youth Mental Health and Child Welfare, NORCE Norwegian Research Centre, Bergen, Norway
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| | - Manjeswori Ulak
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Suman Ranjitkar
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Merina Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Linda Vy Nguyen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Diana Corona-Perez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Immaculata DeVivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Laxman Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Tor A Strand
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway.
| |
Collapse
|
19
|
Zong ZQ, Chen SW, Wu Y, Gui SY, Zhang XJ, Hu CY. Ambient air pollution exposure and telomere length: a systematic review and meta-analysis. Public Health 2023; 215:42-55. [PMID: 36642039 DOI: 10.1016/j.puhe.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to provide evidence of the associations between pre- and post-birth and adulthood air pollution exposure with telomere length. STUDY DESIGN The databases of PubMed, Embase, and Web of Science were searched up to June 1st, 2022 in order to include relevant observational studies and perform a systematic review and meta-analysis. METHODS The random-effects meta-analysis was grouped by air pollutant and exposure window (pre- and post-birth and adulthood) to evaluate the summary effect estimate. Cochran's Q and I2 statistics were used to evaluate the heterogeneity among the included studies. The quality of individual studies was evaluated using the national toxicology program/office of health assessment and translation risk of bias rating tool. RESULTS We identified 18 studies, covering 8506 children and 2263 adults from multiple countries. We found moderate evidence that particulate matter less than 2.5 μm (PM2.5) exposure during the entire pregnancy (-0.043, 95% CI: -0.067, -0.018), nitrogen dioxide (NO2) exposure during the first trimester (-0.016, 95% confidence interval [CI]: -0.027, -0.005), long-term adulthood PM2.5 exposure were associated with shortening telomere length. Mild to high between-study heterogeneity was observed for the most tested air pollutant-telomere length combinations in different exposure windows. CONCLUSIONS This systematic review and meta-analysis provides the evidence which strongly supports that prenatal PM2.5 and NO2 exposures were related to reduced telomere length, while prenatal sulfur dioxide (SO2) and carbon monoxide (CO) exposures, childhood PM2.5, particulate matter less than 10 μm (PM10), NO2 exposures and short-term adulthood PM2.5 and PM10 exposures were not associated with telomere length. Further high-quality studies are needed to elaborate our suggestive associations.
Collapse
Affiliation(s)
- Z-Q Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - S-W Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Y Wu
- Oncology Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Integrated Traditional and Western Medicine Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - S-Y Gui
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - X-J Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - C-Y Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
20
|
Li X, Liu H, Wan H, Li Y, Xu S, Xiao H, Xia W. Sex-specific associations between legacy and novel per- and polyfluoroalkyl substances and telomere length in newborns in Wuhan, China: Mixture and single pollutant associations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159676. [PMID: 36283531 DOI: 10.1016/j.scitotenv.2022.159676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Telomere length (TL) at birth predicts later life TL and is related to health. Prenatal exposure to environmental pollutants might affect TL, but the associations between intrauterine per- and polyfluoroalkyl substances (PFASs) exposure and neonatal TL remained inconclusive. This study aimed to explore the single pollutant and mixture associations between legacy and novel PFASs and TL in newborns. In 908 mother-newborn pairs from Wuhan, China, thirteen PFASs were measured in cord serum, and TL was determined in cord leukocytes. Weighted quantile sum (WQS) regression and generalized linear model (GLM) were utilized to analyze the associations between PFASs mixture and single PFASs and TL in newborns. Furthermore, stratified and interaction analyses were performed to evaluate if there were sex-specific associations. The concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) ranked the highest (geometric mean, 4.12, 1.61, and 0.77 ng/mL, respectively) among the 13 measured PFASs. Each unit increase in WQS index of PFASs mixture was associated with -5.19 % change (95% CI, -9.44, -0.73) of neonatal TL, and 8:2 Cl-PFESA contributed most (32.59 %) to the mixture association. In stratified analyses by neonatal sex, PFOS (-4.73 % change, 95% CI, -8.40, -0.93 for per doubling concentration) and 8:2 Cl-PFESA (-4.52 % change, 95% CI, -8.20, -0.70) were negatively associated with neonatal TL in male newborns, but no significant association appeared in females. In summary, intrauterine exposure to PFASs in mixture was associated with shorter neonatal TL, and the negative associations of 8:2 Cl-PFESA and PFOS with neonatal TL were observed only in boys. Future risk assessments are needed to pay more attention to the health effects of novel PFASs.
Collapse
Affiliation(s)
- Xiaojun Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Hongxia Wan
- Ningguo Meilin Hospital, Ningguo, Anhui 242321, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
21
|
Van Der Stukken C, Nawrot TS, Wang C, Lefebvre W, Vanpoucke C, Plusquin M, Roels HA, Janssen BG, Martens DS. The association between ambient particulate matter exposure and the telomere-mitochondrial axis of aging in newborns. ENVIRONMENT INTERNATIONAL 2023; 171:107695. [PMID: 36574746 DOI: 10.1016/j.envint.2022.107695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Particulate matter (PM) is associated with aging markers at birth, including telomeres and mitochondria. It is unclear whether markers of the core-axis of aging, i.e. tumor suppressor p53 (p53) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), are associated with prenatal air pollution and whether there are underlying mechanisms. METHODS 556 mother-newborn pairs from the ENVIRONAGE birth cohort were recruited at the East Limburg Hospital in Genk (Belgium). In placenta and cord blood, telomere length (TL) and mitochondrial DNA content (mtDNAc) were measured using quantitative real-time polymerase chain reaction (qPCR). In cord plasma, p53 and PGC-1α protein levels were measured using ELISA. Daily ambient PM2.5 concentrations during gestation were calculated using a spatial temporal interpolation model. Distributed lag models (DLMs) were applied to assess the association between prenatal PM2.5 exposure and each molecular marker. Mediation analysis was performed to test for underlying mechanisms. RESULTS A 5 µg/m3 increment in PM2.5 exposure was associated with -11.23 % (95 % CI: -17.36 % to -4.65 %, p = 0.0012) and -7.34 % (95 % CI: -11.56 % to -2.92 %, p = 0.0014) lower placental TL during the entire pregnancy and second trimester respectively, and with -12.96 % (95 % CI: -18.84 % to -6.64 %, p < 0.001) lower placental mtDNAc during the third trimester. Furthermore, PM2.5 exposure was associated with a 12.42 % (95 % CI: -1.07 % to 27.74 %, p = 0.059) higher cord plasma p53 protein level and a -3.69 % (95 % CI: -6.97 % to -0.31 %, p = 0.033) lower cord plasma PGC-1α protein level during the third trimester. Placental TL mediated 65 % of the negative and 17 % of the positive association between PM2.5 and placental mtDNAc and cord plasma p53 protein levels, respectively. CONCLUSION Ambient PM2.5 exposure during pregnancy is associated with markers of the core-axis of aging, with TL as a mediating factor. This study strengthens the hypothesis of the air pollution induced core-axis of aging, and may unravel a possible underlying mediating mechanism in an early-life epidemiological context.
Collapse
Affiliation(s)
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
22
|
Hu J, Liu Y, Ma Y, Gao M, Wan N, Li L, Liu B, Wen D. Sweet foods dietary pattern enhances negative associations of perceived indoor air quality during pregnancy with postpartum depression. INDOOR AIR 2022; 32:e13124. [PMID: 36437672 DOI: 10.1111/ina.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/27/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Postpartum depression (PPD) is possibly caused by indoor air pollution and may be modified by maternal diet during pregnancy. Using the data from a prospective cohort study, we examined the interaction between indoor air quality and maternal dietary patterns on PPD development. A perceived indoor air quality (PIAQ) score was used to assess indoor air pollution. A higher PIAQ score indicated a worse indoor air quality. Women with higher PIAQ scores were at increased risk for PPD (tertile 3 vs. tertile 1, odds ratio [OR] = 2.12, 95% confidence interval [CI] = 1.37-3.29). Compared with a lower adherence to a "sweet foods pattern" (OR = 1.20, 95% CI = 0.66-2.18), a higher adherence to a "sweet foods pattern" enhanced the hazardous associations of the PIAQ on PPD (OR = 3.09, 95% CI = 1.81-5.27, adjusted p for interaction = 0.044). Higher adherence to a "whole grain-seafood pattern" and lower adherence to a "traditional pattern" also increased the risk for PPD, although the p values for the interaction were not significant. Our findings provide further evidence of the link between diet during pregnancy, air pollution, and PPD, and it can be used to develop PPD prevention strategies.
Collapse
Affiliation(s)
- Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Yilin Liu
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Yanan Ma
- Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Ming Gao
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Ningyu Wan
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Lin Li
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Borui Liu
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Deliang Wen
- Health Sciences Institute, China Medical University, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose, Lipid Associated Metabolic Diseases, Shenyang, China
| |
Collapse
|
23
|
Assavanopakun P, Sapbamrer R, Kumfu S, Chattipakorn N, Chattipakorn SC. Effects of air pollution on telomere length: Evidence from in vitro to clinical studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120096. [PMID: 36067971 DOI: 10.1016/j.envpol.2022.120096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution remains the major environmental problem globally. There is extensive evidence showing that the variety of air pollutants from environmental and occupational exposures cause adverse effects to our health. The clinical symptoms of those effects may present at a late stage, so surveillance is difficult to manage. Several biomarkers have been used for the early detection of health issues following exposure to air pollution, including the use of telomere length which indicates cellular senescence in response to oxidative stress. Oxidative stress is one of the most plausible mechanisms associated with exposure to air pollutants. Some specific contexts including age groups, gender, ethnicity, occupations, and health conditions, showed significant alterations in telomere length after exposure to air pollutants. Several reports demonstrated both negative and positive associations between telomere length and air pollution, the studies using different concentrations and exposure times to air pollution on the study of telomere lengths. Surprisingly, some studies reported that low levels of exposure to air pollutants (lower than regulated levels) caused the alterations in telomere length. Those findings suggest that telomere length could be one of most practical biomarkers in air pollution surveillance. Therefore, this review aimed to summarize and discuss the relationship between telomere length and exposure to air pollution. The knowledge from this review will be beneficial for the planning of public health to reduce health problems in the general population, particularly in vulnerable people, who still live in areas with high air pollution.
Collapse
Affiliation(s)
- Pheerasak Assavanopakun
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
24
|
Zhu N, Geng X, Ji X, Gao R, Li D, Yue H, Li G, Sang N. Gestational exposure to NO 2 aggravates placental senescence. ENVIRONMENTAL RESEARCH 2022; 212:113263. [PMID: 35430275 DOI: 10.1016/j.envres.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Placental senescence is a normal physiological process of placenta, while premature placental senescence has been confirmed to be associated with some adverse pregnancy complications. Epidemiological studies indicate that NO2 exposure can aggravate placental senescence which is represented by fibrosis and abnormal telomere homeostasis, etc. In this study, pregnant C57BL/6 mice were exposed to NO2 (2.5 ppm, 5 h/day) daily in a dynamic exposure chamber throughout the gestation period, and were sacrificed at embryonic day 13.5 (E13.5), E15.5 and E18.5. Placenta were harvested and conducted for histopathological examination and telomere evaluation. Our results showed that gestational NO2 exposure significantly aggravated placental fibrosis and calcification, and up-regulated the related bio-markers (connective tissue growth factor (Ctgf) and transforming growth factor-β1 (Tgf-β1)) at E18.5. In addition, gestational exposure to NO2 also activated senescence related pathway (p53/p21) at E18.5. Furthermore, gestational NO2 exposure significantly shortened telomere length at E18.5, and the expression of telomere homeostasis regulation genes telomeric repeat binding factor 1 (Trf1), protection of telomeres 1a (Pot1a) and Pot1b were significantly increased while telomerase reverse transcriptase (Tert) was suppressed after NO2 exposure at E13.5 or E18.5, respectively. Importantly, DNA methylation status of the 22nd at E13.5 and 32nd at E18.5 site in sub-telomeric region of chromosome 1 was significantly altered. Based on the above results, our present study indicated that gestational NO2 exposure could lead to premature placental senescence during the late trimester of pregnancy via aggravation of fibrosis and telomere length shortening regulated by telomere regulatory enzyme and DNA methylation.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
25
|
Song L, Wu M, Wang L, Bi J, Cao Z, Xu S, Tian Y, Xiong C, Wang Y. Ambient ozone exposure during pregnancy and telomere length in newborns: a prospective investigation in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62662-62668. [PMID: 35411518 DOI: 10.1007/s11356-022-19977-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Recent studies suggest that environmental exposures, including air pollution, may influence initial (newborn) telomere length (TL), which has important implications for lifetime health. However, the effect of prenatal ozone exposure on newborn TL is unclear. This study aimed to examine the association of ozone exposure during pregnancy with newborn TL. We used data from a birth cohort study of 762 mother-newborn pairs performed in Wuhan, China, during 2013-2015. Land-use regression models were used to assess prenatal ozone exposure. Newborn TL was quantified in cord blood by qPCR assay. We applied multiple informant model to explore the relationship of prenatal ozone exposure with newborn TL. After adjustment for potential confounders, an interquartile range (IQR) increase in ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy were associated with 6.00% (95% confidence interval [CI]: 1.59%, 10.62%), 12.64% (95% CI: 7.52%, 18.00%), and 7.10% (95% CI: 4.09%, 10.20%) longer cord blood TL, respectively. In contrast, an IQR increase in ozone exposure during the 1st trimester was associated with a 8.39% (95% CI: - 12.90%, - 3.65%) shorter cord blood TL. In multipollutant models, consistent associations were observed between ozone exposures during the 2nd trimester and whole pregnancy and cord blood TL, but not significant for the 1st and 3rd trimesters. In conclusion, our findings suggest positive associations of ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy with newborn TL and a negative association during the 1st trimester. This study provides new evidence in humans for a potential "programming" mechanism linking maternal ozone exposure to the initial (newborn) setting of offspring's telomere biology.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Lee AG, Tignor N, Cowell W, Colicino E, Bozack A, Baccarelli A, Wang P, Wright RJ. Associations between antenatal maternal asthma status and placental DNA methylation. Placenta 2022; 126:184-195. [PMID: 35858526 PMCID: PMC9679966 DOI: 10.1016/j.placenta.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Maternal asthma in pregnancy is associated with adverse perinatal and child health outcomes; however, mechanisms are poorly understood. METHODS The PRogramming of Intergenerational Stress Mechanisms (PRISM) prospective pregnancy cohort characterized asthma history during pregnancy via questionnaires and quantified placental DNAm using the Illumina Infinium HumanMethylation450 BeadChip. We performed epigenome-wide association analyses (n = 223) to estimate associations between maternal active or inactive asthma, as compared to never asthma, and placental differentially methylated positions (DMPs) and differentially variable positions (DVPs). Models adjusted for maternal pre-pregnancy body mass index, smoking status, parity, age and education level and child sex. P-values were FDR-adjusted. RESULTS One hundred and fifty-nine (71.3%) pregnant women reported no history of asthma (never asthma), 15 (6.7%) reported inactive, and 49 (22%) reported active antenatal asthma. Women predominantly self-identified as Black/Hispanic Black [88 (39.5%)] and Hispanic/non-Black [42 (18.8%)]. We identified 10 probes at FDR<0.05 and 4 probes at FDR<0.10 characterized by higher variability in maternal active asthma compared to never asthma mapping to GPX3, LHPP, PECAM1, ATAD3C, and ARHGEF4 and 2 probes characterized by lower variation mapping to CHMP4A and C5orf24. Amongst women with inactive asthma, we identified 52 probes, 41 at FDR<0.05 and an additional 11 at FDR <0.10, with higher variability compared to never asthma; BMP4, LHPP, PHYHIPL, and ZSCAN23 were associated with multiple DVPs. No associations were observed with DMPs. DISCUSSION We observed alterations in placental DNAm in women with antenatal asthma, as compared to women without a history of asthma. Further research is needed to understand the impact on fetal development.
Collapse
Affiliation(s)
- Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Bozack
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Andrea Baccarelli
- Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Yi C, Wang Q, Qu Y, Niu J, Oliver BG, Chen H. In-utero exposure to air pollution and early-life neural development and cognition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113589. [PMID: 35525116 DOI: 10.1016/j.ecoenv.2022.113589] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 05/06/2023]
Abstract
Air pollution remains one of the major health threats around the world. Compared to adults, foetuses and infants are more vulnerable to the effects of environmental toxins. Maternal exposure to air pollution causes several adverse birth outcomes and may lead to life-long health consequences. Given that a healthy intrauterine environment is a critical factor for supporting normal foetal brain development, there is a need to understand how prenatal exposure to air pollution affects brain health and results in neurological dysfunction. This review summarised the current knowledge on the adverse effects of prenatal air pollution exposure on early life neurodevelopment and subsequent impairment of cognition and behaviour in childhood, as well as the potential of early-onset neurodegeneration. While inflammation, oxidative stress, and endoplasmic reticulum are closely involved in the physiological response, sex differences also occur. In general, males are more susceptible than females to the adverse effect of in-utero air pollution exposure. Considering the evidence provided in this review and the rising concerns of global air pollution, any efforts to reduce pollutant emission or exposure will be protective for the next generation.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qi Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
28
|
Geron M, Cowell W, Amarasiriwardena C, Andra SS, Carroll K, Kloog I, Wright RO, Wright RJ. Racial/ethnic and neighborhood disparities in metals exposure during pregnancy in the Northeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153249. [PMID: 35065119 PMCID: PMC8930522 DOI: 10.1016/j.scitotenv.2022.153249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/12/2023]
Abstract
Despite the unequal burden of environmental exposures borne by racially minoritized communities, these groups are often underrepresented in public health research. Here, we examined racial/ethnic disparities in exposure to metals among a multi-ethnic sample of pregnant women. The sample included women enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort (N = 382). Urinary metal concentrations (arsenic [As], barium [Ba], cadmium [Cd], cesium [Cs], chromium [Cr], lead [Pb], antimony [Sb]) were measured during mid-pregnancy and information on individual- and neighborhood-level characteristics was ascertained during an in-person interview and from publicly available databases, respectively. Linear regression was used to examine individual and neighborhood characteristics in relation to metal concentrations. Black/Black-Hispanic women had Cd, Cr, Pb, and Sb levels that were 142.0%, 10.9%, 35.0%, and 32.1% higher than White, non-Hispanic women, respectively. Likewise, White-Hispanic women had corresponding levels that were 141.5%, 108.2%, 59.9%, and 38.3% higher. These same metals were also higher among women residing in areas with higher crime, higher diversity, lower educational attainment, lower household income, and higher poverty. Significant disparities in exposure to metals exist and may be driven by neighborhood-level factors. Exposure to metals for pregnant women can be especially harmful. Understanding exposure inequalities and identifying factors that increase risk can help inform targeted public health interventions.
Collapse
Affiliation(s)
- Mariel Geron
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kecia Carroll
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Malecki KMC, Andersen JK, Geller AM, Harry GJ, Jackson CL, James KA, Miller GW, Ottinger MA. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Front Aging Neurosci 2022; 14:824921. [PMID: 35264945 PMCID: PMC8901047 DOI: 10.3389/fnagi.2022.824921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual’s neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
Collapse
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Kristen M. C. Malecki,
| | | | - Andrew M. Geller
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC, United States
| | - G. Jean Harry
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chandra L. Jackson
- Division of Intramural Research, Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
30
|
Chiu YHM, Carroll KN, Coull BA, Kannan S, Wilson A, Wright RJ. Prenatal Fine Particulate Matter, Maternal Micronutrient Antioxidant Intake, and Early Childhood Repeated Wheeze: Effect Modification by Race/Ethnicity and Sex. Antioxidants (Basel) 2022; 11:366. [PMID: 35204249 PMCID: PMC8868511 DOI: 10.3390/antiox11020366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023] Open
Abstract
Fine particulate matter (PM2.5) potentiates in utero oxidative stress influencing fetal development while antioxidants have potential protective effects. We examined associations among prenatal PM2.5, maternal antioxidant intake, and childhood wheeze in an urban pregnancy cohort (n = 530). Daily PM2.5 exposure over gestation was estimated using a satellite-based spatiotemporally resolved model. Mothers completed the modified Block98 food frequency questionnaire. Average energy-adjusted percentile intake of β-carotene, vitamins (A, C, E), and trace minerals (zinc, magnesium, selenium) constituted an antioxidant index (AI). Maternal-reported child wheeze was ascertained up to 4.1 ± 2.8 years. Bayesian distributed lag interaction models (BDLIMs) were used to examine time-varying associations between prenatal PM2.5 and repeated wheeze (≥2 episodes) and effect modification by AI, race/ethnicity, and child sex. Covariates included maternal age, education, asthma, and temperature. Women were 39% Black and 33% Hispanic, 36% with ≤high school education; 21% of children had repeated wheeze. Higher AI was associated with decreased wheeze in Blacks (OR = 0.37 (0.19-0.73), per IQR increase). BDLIMs identified a sensitive window for PM2.5 effects on wheeze among boys born to Black mothers with low AI (at 33-40 weeks gestation; OR = 1.74 (1.19-2.54), per µg/m3 increase in PM2.5). Relationships among prenatal PM2.5, antioxidant intake, and child wheeze were modified by race/ethnicity and sex.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1057, New York, NY 10029, USA; (Y.-H.M.C.); (K.N.C.)
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kecia N. Carroll
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1057, New York, NY 10029, USA; (Y.-H.M.C.); (K.N.C.)
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| | - Srimathi Kannan
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1057, New York, NY 10029, USA; (Y.-H.M.C.); (K.N.C.)
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
31
|
Durham T, Guo J, Cowell W, Riley KW, Wang S, Tang D, Perera F, Herbstman JB. Prenatal PM 2.5 Exposure in Relation to Maternal and Newborn Telomere Length at Delivery. TOXICS 2022; 10:toxics10010013. [PMID: 35051055 PMCID: PMC8780107 DOI: 10.3390/toxics10010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) is a ubiquitous air pollutant that is increasingly threatening the health of adults and children worldwide. One health impact of elevated PM2.5 exposure is alterations in telomere length (TL)-protective caps on chromosome ends that shorten with each cell division. Few analyses involve prenatal PM2.5 exposure, and paired maternal and cord TL measurements. Here, we analyzed the association between average and trimester-specific prenatal PM2.5 exposure, and maternal and newborn relative leukocyte TL measured at birth among 193 mothers and their newborns enrolled in a New-York-City-based birth cohort. Results indicated an overall negative relationship between prenatal PM2.5 and maternal TL at delivery, with a significant association observed in the second trimester (β = -0.039, 95% CI: -0.074, -0.003). PM2.5 exposure in trimester two was also inversely related to cord TL; however, this result did not reach statistical significance (β = -0.037, 95% CI: -0.114, 0.039), and no clear pattern emerged between PM2.5 and cord TL across the different exposure periods. Our analysis contributes to a limited body of research on ambient air pollution and human telomeres, and emphasizes the need for continued investigation into how PM2.5 exposure during pregnancy influences maternal and newborn health.
Collapse
Affiliation(s)
- Teresa Durham
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Correspondence:
| | - Jia Guo
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Whitney Cowell
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA
| | - Kylie W. Riley
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Shuang Wang
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Deliang Tang
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Frederica Perera
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Julie B. Herbstman
- Columbia Center for Children’s Environmental Health, New York, NY 10032, USA; (J.G.); (W.C.); (K.W.R.); (S.W.); (D.T.); (F.P.); (J.B.H.)
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
32
|
Wright RJ, Hsu HHL, Chiu YHM, Coull BA, Simon MC, Hudda N, Schwartz J, Kloog I, Durant JL. Prenatal Ambient Ultrafine Particle Exposure and Childhood Asthma in the Northeastern United States. Am J Respir Crit Care Med 2021; 204:788-796. [PMID: 34018915 PMCID: PMC8528517 DOI: 10.1164/rccm.202010-3743oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Ambient ultrafine particles (UFPs; with an aerodynamic diameter < 0.1 μm) may exert greater toxicity than other pollution components because of their enhanced oxidative capacity and ability to translocate systemically. Studies examining associations between prenatal UFP exposure and childhood asthma remain sparse. Objectives: We used daily UFP exposure estimates to identify windows of susceptibility of prenatal UFP exposure related to asthma in children, accounting for sex-specific effects. Methods: Analyses included 376 mother-child dyads followed since pregnancy. Daily UFP exposure during pregnancy was estimated by using a spatiotemporally resolved particle number concentration prediction model. Bayesian distributed lag interaction models were used to identify windows of susceptibility for UFP exposure and examine whether effect estimates varied by sex. Incident asthma was determined at the first report of asthma (3.6 ± 3.2 yr). Covariates included maternal age, education, race, and obesity; child sex; nitrogen dioxide (NO2) and temperature averaged over gestation; and postnatal UFP exposure. Measurements and Main Results: Women were 37.8% Black and 43.9% Hispanic, with 52.9% reporting having an education at the high school level or lower; 18.4% of children developed asthma. The cumulative odds ratio (95% confidence interval) for incident asthma per doubling of the UFP exposure concentration across pregnancy was 4.28 (1.41-15.7), impacting males and females similarly. Bayesian distributed lag interaction models indicated sex differences in the windows of susceptibility, with the highest risk of asthma seen in females exposed to higher UFP concentrations during late pregnancy. Conclusions: Prenatal UFP exposure was associated with asthma development in children, independent of correlated ambient NO2 and temperature. Findings will benefit future research and policy-makers who are considering appropriate regulations to reduce the adverse effects of UFPs on child respiratory health.
Collapse
Affiliation(s)
- Rosalind J. Wright
- Department of Environmental Medicine and Public Health and
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Matthew C. Simon
- Volpe National Transportation Systems Center, U.S. Department of Transportation, Cambridge, Massachusetts; and
| | - Neelakshi Hudda
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Itai Kloog
- Department of Environmental Medicine and Public Health and
| | - John L. Durant
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
33
|
Peden DB. Prenatal exposure to particulate matter air pollution: a preventable risk for childhood asthma. J Allergy Clin Immunol 2021; 148:716-718. [PMID: 34310929 DOI: 10.1016/j.jaci.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Affiliation(s)
- David B Peden
- Andrews Distinguished Professor of Pediatrics, Division of Pediatric Allergy and Immunology, Senior Associate Dean for Translational Research &, Deputy Director, Center for Environmental Medicine, Asthma and Lung Biology, The School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
34
|
Prenatal Household Air Pollution Exposure, Cord Blood Mononuclear Cell Telomere Length and Age Four Blood Pressure: Evidence from a Ghanaian Pregnancy Cohort. TOXICS 2021; 9:toxics9070169. [PMID: 34357912 PMCID: PMC8309911 DOI: 10.3390/toxics9070169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Associations between prenatal household air pollution exposure (HAP), newborn telomere length and early childhood blood pressure are unknown. Methods: Pregnant women were randomized to liquefied petroleum gas (LPG) stove, improved biomass stove or control (traditional, open fire cook stove). HAP was measured by personal carbon monoxide (CO) (n = 97) and fine particulate matter (PM2.5) (n = 60). At birth, cord blood mononuclear cells (CBMCs) were collected for telomere length (TL) analyses. At child age four years, we measured resting blood pressure (BP) (n = 97). We employed multivariable linear regression to determine associations between prenatal HAP and cookstove arm and assessed CBMC relative to TL separately. We then examined associations between CBMC TL and resting BP. Results: Higher prenatal PM2.5 exposure was associated with reduced TL (β = -4.9% (95% CI -8.6, -0.4), p = 0.03, per 10 ug/m3 increase in PM2.5). Infants born to mothers randomized to the LPG cookstove had longer TL (β = 55.3% (95% CI 16.2, 109.6), p < 0.01)) compared with control. In all children, shorter TL was associated with higher systolic BP (SBP) (β = 0.35 mmHg (95% CI 0.001, 0.71), p = 0.05, per 10% decrease in TL). Increased prenatal HAP exposure is associated with shorter TL at birth. Shorter TL at birth is associated with higher age four BP, suggesting that TL at birth may be a biomarker of HAP-associated disease risk.
Collapse
|
35
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
36
|
Adli A, Hosseini SM, Lari Najafi M, Behmanesh M, Ghezi E, Rasti M, Kazemi AA, Rad A, Falanji F, Mohammadzadeh M, Miri M, Dadvand P. Polycyclic aromatic hydrocarbons exposures and telomere length: A cross-sectional study on preschool children. ENVIRONMENTAL RESEARCH 2021; 195:110757. [PMID: 33493537 DOI: 10.1016/j.envres.2021.110757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with shorter telomere length (TL), a marker of ageing at cellular level. However, the available evidence on this association among children is still scarce. We therefore aimed to assess, the relationship between urinary 1-hydroxipayrene (1-OHP), a marker of exposure to PAHs, and relative leukocyte TL (LTL) in children at preschool age. Our study was based on 200 children enrolled from 27 randomly-selected kindergartens in the city of Sabzevar, Iran (2017). 1-OHP levels in the participants' urine samples were measured using solid phase extraction (SPE) method and high-performance liquid chromatography (HPLC). Moreover, real-time PCR was used to measure the LTL in the participants' blood samples. Linear mixed effects models, controlled for relevant covariates, were applied to investigate the association of 1-OHP concentration and LTL. The median (interquartile range (IQR)) of relative LTL and urinary 1-OHP were 0.83 (0.7) and 257 (375.5) ng/L, respectively. In the fully adjusted model, an IQR increase in urinary 1-OHP was related to -0.05 (95% confidence interval (CI): 0.09, -0.01, P-value = 0.02) decrease in relative LTL. This association was similar among boys and girls; however, we observed indications for a stronger association for those children whose parents had university education. Our study suggested an inverse relationship between urinary 1-OHP and LTL in children at preschool age. However, further longitudinal research with repeated measures of PAHs and LTL are needed to confirm these findings.
Collapse
Affiliation(s)
- Abolfazl Adli
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Behmanesh
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; University of Applied Sciences & Technology (UAST), Tehran, Iran
| | - Elahe Ghezi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Morteza Rasti
- Non-communicable diseases Research Center, Heshmatiyeh Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Asghar Kazemi
- Non-communicable diseases Research Center, Heshmatiyeh Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Miri
- Non-communicable diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
37
|
Isaevska E, Moccia C, Asta F, Cibella F, Gagliardi L, Ronfani L, Rusconi F, Stazi MA, Richiardi L. Exposure to ambient air pollution in the first 1000 days of life and alterations in the DNA methylome and telomere length in children: A systematic review. ENVIRONMENTAL RESEARCH 2021; 193:110504. [PMID: 33221306 DOI: 10.1016/j.envres.2020.110504] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to air pollution during the first 1000 days of life (from conception to the 2nd year of life) might be of particular relevance for long-term child health. Changes in molecular markers such as DNA methylation and telomere length could underlie the association between air pollution exposure and pollution-related diseases as well as serve as biomarkers for past exposure. The objective of this systematic review was to assess the association between air pollution exposure during pregnancy and the first two years of life and changes in DNA methylation or telomere length in children. METHODS PubMed was searched in October 2020 by using terms relative to ambient air pollution exposure, DNA methylation, telomere length and the population of interest: mother/child dyads and children. Screening and selection of the articles was completed independently by two reviewers. Thirty-two articles matched our criteria. The majority of the articles focused on gestational air pollution exposure and measured DNA methylation/telomere length in newborn cord blood or placental tissue, to study global, candidate-gene or epigenome-wide methylation patterns and/or telomere length. The number of studies in children was limited. RESULTS Ambient air pollution exposure during pregnancy was associated with global loss of methylation in newborn cord blood and placenta, indicating the beginning of the pregnancy as a potential period of susceptibility. Candidate gene and epigenome-wide association studies provided evidence that gestational exposure to air pollutants can lead to locus-specific changes in methylation, in newborn cord blood and placenta, particularly in genes involved in cellular responses to oxidative stress, mitochondrial function, inflammation, growth and early life development. Telomere length shortening in newborns and children was seen in relation to gestational pollutant exposure. CONCLUSIONS Ambient air pollution during pregnancy is associated with changes in both global and locus-specific DNA methylation and with telomere length shortening. Future studies need to test the robustness of the association across different populations, to explore potential windows of vulnerability and assess the role of the methylation and telomere length as mediators in the association between early exposure to ambient air pollutants and specific childhood health outcomes.
Collapse
Affiliation(s)
- Elena Isaevska
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy.
| | - Chiara Moccia
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy.
| | - Federica Asta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| | - Luigi Gagliardi
- Division of Neonatology and Pediatrics, Ospedale Versilia, Viareggio, AUSL Toscana Nord Ovest, Pisa, Italy.
| | - Luca Ronfani
- Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Franca Rusconi
- Unit of Epidemiology, Meyer Children's University Hospital, Florence, Italy.
| | - Maria Antonietta Stazi
- Center "Behavioral Sciences and Mental Health", Istituto Superiore di Sanità, Rome, Italy.
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy.
| |
Collapse
|
38
|
Hehua Z, Yang X, Qing C, Shanyan G, Yuhong Z. Dietary patterns and associations between air pollution and gestational diabetes mellitus. ENVIRONMENT INTERNATIONAL 2021; 147:106347. [PMID: 33385926 DOI: 10.1016/j.envint.2020.106347] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of gestational diabetes mellitus (GDM) has been increasing worldwide. Dietary patterns and air pollution are closely related to the occurrence of GDM. No previous study has explored the interaction effect of air pollution exposure and dietary patterns on GDM. We explored the interaction effect between main dietary patterns and pre-pregnancy exposure to air pollution on the development of GDM based on a prospective birth cohort in Northeast China. A total of 2244 participants were included in this study. Factor analysis was used to identify dietary patterns. We found that long-term exposure to nitrogen dioxide (NO2) and carbon monoxide (CO) before pregnancy was significantly associated with an increased risk of GDM; the animal foods pattern significantly modified these associations. The sub-group analysis showed that compared with a lower intake in the animal foods pattern (NO2, odds ratio [OR] = 1.07, 95% confidence interval [CI]: 0.84, 1.35; CO, OR = 1.05, 95% CI: 0.81, 1.34), higher intake in the animal foods pattern (NO2, OR = 1.41, 95% CI: 1.09, 1.83; CO, OR = 1.36, 95% CI: 1.05, 1.76) before pregnancy increased the hazardous effects of NO2 and CO on GDM development. The intake of animal blood, animal organs, preserved eggs, and processed meat products in animal food pattern could all aggravate the effect of exposure to air pollution due to NO2 and CO on GDM. Our study demonstrated that there was a significant interaction effect between animal foods pattern and exposure to air pollution on GDM. These results provide further scientific evidence of the associations among air pollution, dietary intake, and GDM, and may help as well as the prevention of GDM.
Collapse
Affiliation(s)
- Zhang Hehua
- Clinical Research Center, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang City, Liaoning Province 110004, China
| | - Xia Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang, Liaoning Province 110004, China
| | - Chang Qing
- Clinical Research Center, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang City, Liaoning Province 110004, China
| | - Gao Shanyan
- Clinical Research Center, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang City, Liaoning Province 110004, China
| | - Zhao Yuhong
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
39
|
Harnung Scholten R, Møller P, Jovanovic Andersen Z, Dehlendorff C, Khan J, Brandt J, Ketzel M, Knudsen LE, Mathiesen L. Telomere length in newborns is associated with exposure to low levels of air pollution during pregnancy. ENVIRONMENT INTERNATIONAL 2021; 146:106202. [PMID: 33120230 DOI: 10.1016/j.envint.2020.106202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Telomere length (TL) is a biomarker of biological aging that may be affected by prenatal exposure to air pollution. The aim of this study was to assess the association between prenatal exposure to air pollution and TL in maternal blood cells (leukocytes), placenta and umbilical cord blood cells, sampled immediately after birth in 296 Danish mother-child pairs from a birth cohort. Exposure data was obtained using the high-resolution and spatial-temporal air pollution modeling system DEHM-UBM-AirGIS for PM2.5, PM10, SO2, NH4+, black carbon (BC), organic carbon (OC), CO, O3, NO2, and NOx at residential and occupational addresses of the participating women for the full duration of the pregnancy. The association between prenatal exposure to air pollutants and TL was investigated using distributed lag models. There were significant and positive associations between TL in umbilical cord blood cells and prenatal exposure to BC, OC, NO2, NOx, CO, and O3 during the second trimester. TL in umbilical cord blood was significantly and inversely associated with prenatal exposure to PM2.5, BC, OC, SO2, NH4+, CO and NO2 during the third trimester. There were similar inverse associations between TL from umbilical cord blood cells and air pollution exposure at the residential and occupational addresses. There were weaker or no associations between air pollution exposure and TL in placenta tissue and maternal blood cells. In conclusion, both the second and third trimesters of pregnancy are shown to be sensitive windows of exposure to air pollution affecting fetal TL.
Collapse
Affiliation(s)
- Rebecca Harnung Scholten
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark; Nykøbing Falster Hospital, Center for Epidemiological Research, Ejegodvej 63, DK-4800 Nykøbing, Denmark
| | - Christian Dehlendorff
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, POB 358, DK-4000 Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA) at University of Aarhus, DK-4000 Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, POB 358, DK-4000 Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, POB 358, DK-4000 Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisbeth E Knudsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| |
Collapse
|