1
|
Hashmi MZ, Mughal AF. Microbial and chemically induced reductive dechlorination of polychlorinated biphenyls in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2167-2181. [PMID: 39762530 DOI: 10.1007/s11356-024-35831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment. Under anaerobic conditions, reductive dechlorination of PCBs occurs, and PCBs congeners serve as potential electron acceptors which stimulate the growth of PCBs-dechlorinating microorganisms. In this review, microbial and chemically induced reductive dechlorination was summarized. During anaerobic conditions, highly chlorinated PCBs undergo reductive dechlorination and are converted into less chlorinated PCBs. The mechanisms involved in reductive dechlorination are mainly attacks on meta and/or para chlorines of PCBs mixtures in a contaminated environment and ortho dechlorination of PCBs. Based on methods, PCBs removal efficiency was as chemical > biological. Activated carbon (90%) showed more treatment efficiency than bacterial (84%). The review suggested that microbial remediation is a slow process; however, efficiency could be enhanced after amendments. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. However, PCBs dechlorination rate, extent, and route are influenced by pH, temperature, availability of carbon sources, and the presence or absence of H2 or competing electron acceptors and other electron donors.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Amina F Mughal
- The State University of New York College of Environmental Science and Forestry, Syracuse, USA
| |
Collapse
|
2
|
Xie C, Yang S, Li Y, Zhang M, Xu Q, Wan Z, Song L, Lv Y, Luo D, Li Q, Wang Y, Chen H, Mei S. Associations of exposure to organochlorine pesticides and polychlorinated biphenyls with chronic kidney disease among adults: the modifying effects of lifestyle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45192-45203. [PMID: 38961018 DOI: 10.1007/s11356-024-34201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Exposure to organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) has been reported to be associated with renal impairment and chronic kidney disease (CKD). Nevertheless, the research results thus far have exhibited inconsistency, and the effect of lifestyle on their association is not clear. In this study, we assessed the correlation between serum OCPs/PCBs and CKD and renal function indicators including estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) among 1721 Chinese adults. In order to further investigate the potential impact of lifestyle, we conducted joint associations of lifestyle and OCPs/PCBs on CKD. We found a negative correlation between p,p'-DDE and eGFR, while logistic regression results showed a positive correlation between PCB-153 and CKD (OR, 1.92; 95% CI, 1.21, 3.06). Quantile g-computation regression analyses showed that the association between co-exposure to OCPs/PCBs and CKD was not significant, but p,p'-DDE and PCB-153 were the main contributors to the negative and positive co-exposure effects of eGFR and CKD, respectively, which is consistent with the regression results. Participants with both relatively high PCB-153 exposure and an unhealthy lifestyle had the highest risk of CKD, in the joint association analysis. The observed associations were generally supported by the FAS-eGFR method. Our research findings suggest that exposure to OCPs/PCBs may be associated with decreased eGFR and increased prevalence of CKD in humans, and a healthy lifestyle can to some extent alleviate the adverse association between PCB-153 exposure and CKD.
Collapse
Affiliation(s)
- Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Luo
- Analytical Application Center, Shimadzu (China) Co., LTD., Wuhan Branch, No 96 Linjiang Avenue, Wuhan, 430060, China
| | - Qiang Li
- Analytical Application Center, Shimadzu (China) Co., LTD., Wuhan Branch, No 96 Linjiang Avenue, Wuhan, 430060, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Cirello V, Lugaresi M, Moneta C, Dufour P, Manzo A, Carbone E, Colombo C, Fugazzola L, Charlier C, Pirard C. Thyroid cancer and endocrine disruptive chemicals: a case-control study on per-fluoroalkyl substances and other persistent organic pollutants. Eur Thyroid J 2024; 13:e230192. [PMID: 38657654 PMCID: PMC11227063 DOI: 10.1530/etj-23-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Objective The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid cancer (TC) in an Italian case-control cohort. Methods We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases. Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (4,4'-DDT and 4,4'-DDE) were measured in the serum by liquid or gas chromatography-mass spectrometry. Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were used to estimate the association between TC and pollutants' levels, considered individually or as mixture. BRAFV600E mutation was assessed by standard methods. Results The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10-3.75, P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95% CI: 0.41-0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls (PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association between pollutants' mixture and TC. BRAF V600E mutations were associated with PCB-153, PCB-138, and PCB-180. Conclusion Our study suggests, for the first time in a case-control population, that exposure to some PFAS and PCBs associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with both PFHxS and pollutants' mixture, likely due to a potential reverse causality.
Collapse
Affiliation(s)
- Valentina Cirello
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marina Lugaresi
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Claudia Moneta
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Patrice Dufour
- Department of Clinical, Forensic and Environmental Toxicology, University hospital of Liege (CHU Liège), CHU (B35), Liege, Belgium
- Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
| | - Alessandro Manzo
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Erika Carbone
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Carla Colombo
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Corinne Charlier
- Department of Clinical, Forensic and Environmental Toxicology, University hospital of Liege (CHU Liège), CHU (B35), Liege, Belgium
- Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
| | - Catherine Pirard
- Department of Clinical, Forensic and Environmental Toxicology, University hospital of Liege (CHU Liège), CHU (B35), Liege, Belgium
- Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
| |
Collapse
|
4
|
Khalid A, Abbasi NA, Jamil N, Syed JH, Ahmad SR, Qadir A. Level of polychlorinated biphenyls in tumor and blood serum of breast cancer patients and control subjects from Punjab, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171908. [PMID: 38527533 DOI: 10.1016/j.scitotenv.2024.171908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The current study examined the level of Polychlorinated biphenyls (PCBs) in tumor and blood serum of female breast cancer patients and control individuals recruited from Punjab, Pakistan. Breast tumor and blood serum from 40 patients and only blood serum from ten control subjects were obtained and concentration of 32 PCB congeners was analyzed through Gas chromatography coupled with Mass spectrophotometry. Sociodemographic variables of the patients along with essential clinical and haematological parameters were taken as covariates. Tumor reflects the highest median (min-max) concentration (ng g-1 lw) of ƩPCBs at 115.94 (0.05-17.75) followed by 16.53 (0.09-2.94) and 5.24 (0.01-0.59) in blood serum of cancer patients and control group respectively. Median concentrations (ng g-1 lw) of non-dioxine like ƩPCBs were considerably higher at 83.04, 32.89 and 4.27 compared to 13.03 and 3.50 and 0.97 for dioxin like ƩPCBs in tumor, serum of breast cancer patients and control subjects respectively. PCB-87 was most dominant congeners in tumor followed by PCB-170 and -82 whereas PCB-28 and -52 reflected greatest contribution in serum of breast cancer patients. Blood haemoglobin, potassium and chloride ions showed significant positive whereas body mass index reflect inverse relationship when regressed with ƩPCBs in tumor. This pioneer study depicts elevated concentrations of PCBs in patients compared to control, reflecting potential positive association of PCBs with breast cancer which need further confirmation. We concluded that chronic exposure to PCBs might be associated with an increasing number of breast cancer incidences in developing countries like Pakistan, which should be further elucidated through detail in vitro and in vivo studies.
Collapse
Affiliation(s)
- A Khalid
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - N A Abbasi
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan.
| | - N Jamil
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - J H Syed
- Department of Meteorology, COMSATS University, Islamabad, Pakistan
| | - S R Ahmad
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - A Qadir
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
5
|
Denic-Roberts H, McAdam J, Sjodin A, Davis M, Jones R, Ward MH, Hoang TD, Ma S, Zhang Y, Rusiecki JA. Endocrine disrupting chemical mixture exposure and risk of papillary thyroid cancer in U.S. military personnel: A nested case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171342. [PMID: 38428594 PMCID: PMC11034764 DOI: 10.1016/j.scitotenv.2024.171342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Single-pollutant methods to evaluate associations between endocrine disrupting chemicals (EDCs) and thyroid cancer risk may not reflect realistic human exposures. Therefore, we evaluated associations between exposure to a mixture of 18 EDCs, including polychlorinated biphenyls (PCBs), brominated flame retardants, and organochlorine pesticides, and risk of papillary thyroid cancer (PTC), the most common thyroid cancer histological subtype. We conducted a nested case-control study among U.S. military servicemembers of 652 histologically-confirmed PTC cases diagnosed between 2000 and 2013 and 652 controls, matched on birth year, sex, race/ethnicity, military component (active duty/reserve), and serum sample timing. We estimated mixture odds ratios (OR), 95% confidence intervals (95% CI), and standard errors (SE) for associations between pre-diagnostic serum EDC mixture concentrations, overall PTC risk, and risk of histological subtypes of PTC (classical, follicular), adjusted for body mass index and military branch, using quantile g-computation. Additionally, we identified relative contributions of individual mixture components to PTC risk, represented by positive and negative weights (w). A one-quartile increase in the serum mixture concentration was associated with a non-statistically significant increase in overall PTC risk (OR = 1.19; 95% CI = 0.91, 1.56; SE = 0.14). Stratified by histological subtype and race (White, Black), a one-quartile increase in the mixture was associated with increased classical PTC risk among those of White race (OR = 1.59; 95% CI = 1.06, 2.40; SE = 0.21), but not of Black race (OR = 0.95; 95% CI = 0.34, 2.68; SE = 0.53). PCBs 180, 199, and 118 had the greatest positive weights driving this association among those of White race (w = 0.312, 0.255, and 0.119, respectively). Findings suggest that exposure to an EDC mixture may be associated with increased classical PTC risk. These findings warrant further investigation in other study populations to better understand PTC risk by histological subtype and race.
Collapse
Affiliation(s)
- Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Oak Ridge Institute for Science and Education (ORISE), MD, USA
| | - Jordan McAdam
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Murtha Cancer Center Research Program, 4494 North Palmer Road, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 1401 Rockville Pike, Rockville, MD, USA
| | - Andreas Sjodin
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health (NCEH), Division of Laboratory Sciences (DLS), Organic Analytical Toxicology Branch, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Mark Davis
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health (NCEH), Division of Laboratory Sciences (DLS), Organic Analytical Toxicology Branch, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Richard Jones
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health (NCEH), Division of Laboratory Sciences (DLS), Organic Analytical Toxicology Branch, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Mary H Ward
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Thanh D Hoang
- Division of Endocrinology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
6
|
Rusiecki JA, McAdam J, Denic-Roberts H, Sjodin A, Davis M, Jones R, Hoang TD, Ward MH, Ma S, Zhang Y. Organochlorine pesticides and risk of papillary thyroid cancer in U.S. military personnel: a nested case-control study. Environ Health 2024; 23:28. [PMID: 38504322 PMCID: PMC10949709 DOI: 10.1186/s12940-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The effects of organochlorine pesticide (OCP) exposure on the development of human papillary thyroid cancer (PTC) are not well understood. A nested case-control study was conducted with data from the U.S. Department of Defense Serum Repository (DoDSR) cohort between 2000 and 2013 to assess associations of individual OCPs serum concentrations with PTC risk. METHODS This study included 742 histologically confirmed PTC cases (341 females, 401 males) and 742 individually-matched controls with pre-diagnostic serum samples selected from the DoDSR. Associations between categories of lipid-corrected serum concentrations of seven OCPs and PTC risk were evaluated for classical PTC and follicular PTC using conditional logistic regression, adjusted for body mass index category and military branch to compute odds ratios (OR) and 95% confidence intervals (CIs). Effect modification by sex, birth cohort, and race was examined. RESULTS There was no evidence of associations between most of the OCPs and PTC, overall or stratified by histological subtype. Overall, there was no evidence of an association between hexachlorobenzene (HCB) and PTC, but stratified by histological subtype HCB was associated with significantly increased risk of classical PTC (third tertile above the limit of detection (LOD) vs.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Room E-2009, Bethesda, MD, 20814, USA.
| | - Jordan McAdam
- Murtha Cancer Center Research Program, 4494 North Palmer Road, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 1401 Rockville Pike, Rockville, MD, USA
| | - Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Room E-2009, Bethesda, MD, 20814, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Mark Davis
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Richard Jones
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Thanh D Hoang
- Division of Endocrinology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mary H Ward
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Wang F, Lin Y, Xu J, Wei F, Huang S, Wen S, Zhou H, Jiang Y, Wang H, Ling W, Li X, Yang X. Risk of papillary thyroid carcinoma and nodular goiter associated with exposure to semi-volatile organic compounds: A multi-pollutant assessment based on machine learning algorithms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169962. [PMID: 38219999 DOI: 10.1016/j.scitotenv.2024.169962] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Exposure to semi-volatile organic compounds (SVOCs) may link to thyroid nodule risk, but studies of mixed-SVOCs exposure effects are lacking. Traditional analytical methods are inadequate for dealing with mixed exposures, while machine learning (ML) seems to be a good way to fill the gaps in the field of environmental epidemiology research. OBJECTIVES Different ML algorithms were used to explore the relationship between mixed-SVOCs exposure and thyroid nodule. METHODS A 1:1:1 age- and gender-matched case-control study was conducted in which 96 serum SVOCs were measured in 50 papillary thyroid carcinoma (PTC), 50 nodular goiters (NG), and 50 controls. Different ML techniques such as Random Forest, AdaBoost were selected based on their predictive power, and variables were selected based on their weights in the models. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to assess the mixed effects of the SVOCs exposure on thyroid nodule. RESULTS Forty-three of 96 SVOCs with detection rate >80 % were included in the analysis. ML algorithms showed a consistent selection of SVOCs associated with thyroid nodule. Fluazifop-butyl and fenpropathrin are positively associated with PTC and NG in single compound models (all P < 0.05). WQS model shows that exposure to mixed-SVOCs was associated with an increased risk of PTC and NG, with the mixture dominated by fenpropathrin, followed by fluazifop-butyl and propham. In the BKMR model, mixtures showed a significant positive association with thyroid nodule risk at high exposure levels, and fluazifop-butyl showed positive effects associated with PTC and NG. CONCLUSION This study confirms the feasibility of ML methods for variable selection in high-dimensional complex data and showed that mixed exposure to SVOCs was associated with increased risk of PTC and NG. The observed association was primarily driven by fluazifop-butyl and fenpropathrin. The findings warranted further investigation.
Collapse
Affiliation(s)
- Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yuanxin Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Jianing Xu
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Fugui Wei
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Simei Huang
- School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shifeng Wen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Huijiao Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yuwei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Haoyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Wenlong Ling
- Department of Thyroid Surgery, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiangzhi Li
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
8
|
ZHANG M, CAO Y, LI X, KOU J, XU Q, YANG S, ZHENG Z, LIU J, MEI S. [Exposure characteristics and health risk assessment of 97 typical chemical pollutants in human serum]. Se Pu 2024; 42:217-223. [PMID: 38374603 PMCID: PMC10877476 DOI: 10.3724/sp.j.1123.2023.11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 02/21/2024] Open
Abstract
Rapid industrial and agricultural developments in China have led to the wide use and discharge of chemical products and pesticides, resulting in extensive residues in environmental media. These residues can enter the human body through various pathways, leading to high exposure risks and health hazards. Because the human body is exposed to a variety of chemical pollutants, accurately quantifying the exposure levels of these pollutants in the human body and evaluating their health risks are of great importance. In this study, the serum concentrations of 97 typical chemical pollutants of 60 adults in central China were simultaneously determined using solid-phase extraction coupled with gas chromatography-tandem mass spectrometry (SPE-GC-MS/MS). In this method, 200 μL of a serum sample was mixed with 10 μL of an isotope-labeled internal standard solution. The sample was vortexed and refrigerated overnight at 4 ℃. Each sample was then deproteinized by the addition of 200 μL of 15% formic acid aqueous solution and vortexed. The serum sample was loaded into a preconditioned Oasis® PRiME HLB SPE cartridge and rinsed with 3 mL of methanol-water (6∶1, v/v). The SPE cartridge was subsequently vacuumed. The analytes were eluted with 3 mL of dichloromethane followed by 3 mL of n-hexane. The eluent was concentrated to near dryness under a gentle nitrogen stream and reconstituted with 100 μL of acetone. The samples were determined by GC-MS/MS and separated on a DB-5MS capillary column (30 m×0.25 mm×0.25 μm) with temperature programming. The column temperature was maintained at 70 ℃ for 2 min, increased at a rate of 25 ℃/min to 150 ℃, increased at a rate of 3 ℃/min to 200 ℃, and then held for 2 min. Finally, the column temperature was increased at a rate of 8 ℃/min to 300 ℃ and maintained at this temperature for 8 min. The samples were detected in multiple-reaction monitoring (MRM) mode and quantitatively analyzed using the internal standard method. Multiple linear regression models were used to analyze the effects of demographic characteristics, lifestyle habits, and diet on the concentrations of the chemical pollutants in the serum samples, and known biomonitoring equivalents (BEs) and human biomonitoring (HBM) values were combined to compute hazard quotients (HQs) and hazard indices (HIs) and evaluate the health risks of single and cumulative exposures to the chemical pollutants. The results showed that the main pollutants detected in human serum were organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The detection rates of eight pollutants, including hexachlorobenzene (HCB) (100%), pentachlorophenol (PCP) (100%), p,p'-dichlorodiphenylene (p,p'-DDE) (100%), PCB-138 (100%), PCB-153 (98.3%), β-hexachlorocyclohexane (β-HCH) (91.7%), fluorene (Flu) (85.0%), and anthracene (Ant) (75.0%), were greater than 70%. The serum levels of β-HCH were higher in females than in males, and age was positively correlated with exposure to p,p'-DDE, PCB-138, PCB-153, and β-HCH. Increased exposure levels to p,p'-DDE and β-HCH may be associated with a high frequency of meat intake, whereas increased exposure level to PCP may be associated with a high frequency of vegetable intake. The serum HQ of PCP was greater than 1 in 6.7% of the samples, and no risk was observed for HCB and p,p'-DDE exposure in the study population. Approximately 28.3% of the study subjects had HI values greater than 1. Overall, the general adult population in this region is widely exposed to a wide range of chemical pollutants, and gender, age, and diet are likely to be the main factors influencing the concentration of chemical pollutants. The health risk of single and compound exposures to chemical pollutants should not be ignored.
Collapse
|
9
|
Liu Q, Fan G, Bi J, Qin X, Fang Q, Wu M, Mei S, Wan Z, Lv Y, Song L, Wang Y. Associations of polychlorinated biphenyls and organochlorine pesticides with metabolic dysfunction-associated fatty liver disease among Chinese adults: Effect modification by lifestyle. ENVIRONMENTAL RESEARCH 2024; 240:117507. [PMID: 37918764 DOI: 10.1016/j.envres.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Exposure to environmental pollutants and unhealthy lifestyles are key risk factors for metabolic dysfunction-associated fatty liver disease (MAFLD). While previous studies have suggested links between exposure to organochlorine pesticides (PCBs) and organochlorine pesticides (OCPs) and MAFLD, the results have been inconsistent. Furthermore, the combined effects of PCBs and OCPs on MAFLD and whether lifestyle factors can modify the associations remain unknown. Therefore, this study aimed to investigate the individual and joint effects of PCBs and OCPs on MAFLD and explore the potential modifying role of lifestyle. The study included 1923 participants from Wuhan, China. MAFLD was diagnosed based on ultrasonically diagnosed hepatic steatosis and the presence of overweight/obese, diabetes mellitus, or metabolic dysregulation. Healthy lifestyle score was determined by smoking, alcohol consumption, physical activity, and diet. Logistic regression and weighted quantile sum (WQS) were used to assess associations of individual and mixture of PCBs/OCPs with MAFLD. To explore the potential lifestyle modification, joint associations of PCBs/OCPs and lifestyle on MAFLD were conducted. Single-pollutant analysis showed positive associations of p,p'-DDE, β-HCH, PCB-153, and PCB-180 with MAFLD, with ORs (95% CIs) of 1.18 (1.05, 1.33), 1.57 (1.20, 2.05), 1.45 (1.14, 1.83), and 1.42 (1.12, 1.80), respectively. WQS regression demonstrated a harmful effect of PCBs/OCPs mixture on MAFLD (OR = 1.73, 95% CI = 1.24, 2.43), with β-HCH, p,p'-DDE, and PCB-180 being the major contributors. In the joint association analysis, participants with both high PCBs/OCPs exposure and unhealthy lifestyle have the highest odds of MAFLD. In conclusion, exposure to the mixture of PCBs and OCPs was positively correlated with MAFLD, and adopting a healthy lifestyle can mitigate the adverse impact.
Collapse
Affiliation(s)
- Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Yang Y, Bai X, Lu J, Zou R, Ding R, Hua X. Assessment of five typical environmental endocrine disruptors and thyroid cancer risk: a meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1283087. [PMID: 38027118 PMCID: PMC10643203 DOI: 10.3389/fendo.2023.1283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction There are conflicting reports on the association between environmental endocrine disruptors (EEDs) and thyroid cancer. This meta-analysis aimed to elucidate the relationship between EEDs and thyroid cancer. Methods We searched for epidemiological studies on EEDs and thyroid cancer published in PubMed and Web of Science up to December 2022. We then screened the articles that could extract data on EEDs concentration levels in both thyroid cancer patients and healthy controls. We excluded articles that could not calculate effect sizes, focused on other thyroid diseases, or lacked controls. Standardized mean difference (SMD) was calculated to analyze the association between EEDs and thyroid cancer. We measured the heterogeneity among the included studies using I2, assessed publication bias by Egger's and Begg's test, and evaluated article quality using the Newcastle-Ottawa Quality Score (NOS). In the end, fifteen eligible case-control studies were included. Results Our comprehensive analysis revealed that polychlorinated biphenyls (PCBs) were negatively associated with thyroid cancer{ SMD = -0.03, 95% confidence interval (CI) = (-0.05, -0.00), P = 0.03}, while polybrominated diphenyl ethers (PBDEs), phthalates (PAEs), and heavy metals were positively associated with thyroid cancer{PBDEs: SMD = 0.14, 95%CI = (0.04, 0.23), P = 0.007; PAEs: SMD = 0.30, 95%CI = (0.02, 0.58), P = 0.04; heavy metals: SMD = 0.21, 95%CI = (0.11, 0.32), P < 0.001}. We did not find a statistically significant relationship between bisphenol A (BPA) and thyroid cancer. Most of the included studies did not show publication bias, except for those on PCBs. Discussion Our results indicate that exposure to certain EEDs, such as PBDEs, PAEs, and heavy metals, increases the risk of thyroid cancer. However, further large-scale epidemiological studies and mechanism studies are needed to verify these potential relationships and understand the underlying biological mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Lan T, Liu B, Bao W, Thorne PS. Identification of PCB congeners and their thresholds associated with diabetes using decision tree analysis. Sci Rep 2023; 13:18322. [PMID: 37884570 PMCID: PMC10603165 DOI: 10.1038/s41598-023-45301-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Few studies have investigated the potential combined effects of multiple PCB congeners on diabetes. To address this gap, we used data from 1244 adults in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. We used (1) classification trees to identify serum PCB congeners and their thresholds associated with diabetes; and (2) logistic regression to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of diabetes with combined PCB congeners. Of the 40 PCB congeners examined, PCB 126 has the strongest association with diabetes. The adjusted OR of diabetes comparing PCB 126 > 0.025 to ≤ 0.025 ng/g was 2.14 (95% CI 1.30-3.53). In the subpopulation with PCB 126 > 0.025 ng/g, a lower PCB 101 concentration was associated with an increased risk of diabetes (comparing PCB 101 < 0.72 to ≥ 0.72 ng/g, OR 3.3, 95% CI 1.27-8.55). In the subpopulation with PCB 126 > 0.025 & PCB 101 < 0.72 ng/g, a higher PCB 49 concentration was associated with an increased risk of diabetes (comparing PCB 49 > 0.65 to ≤ 0.65 ng/g, OR 2.79, 95% CI 1.06-7.35). This nationally representative study provided new insights into the combined associations of PCBs with diabetes.
Collapse
Affiliation(s)
- Tuo Lan
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Buyun Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter S Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA.
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Mangion J, Gruppetta M. The environmental burden on endocrine neoplasia: a review on the documented impact of endocrine disrupting chemicals. Expert Rev Endocrinol Metab 2023; 18:513-524. [PMID: 37840278 DOI: 10.1080/17446651.2023.2268215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Endocrine-disrupting chemicals (EDCs) have gained more importance in the past decade, mostly due to their role in the pathogenesis of disease, especially in carcinogenesis. However, there is limited literature on the environmental burden on some of the less common endocrine neoplasia. AREAS COVERED This review focuses on both observational and experimental studies linking exposure to EDCs and endocrine neoplasia specifically pituitary, thyroid, adrenal and neuroendocrine tumors. Following PRISMA guidelines, a search of English peer-reviewed literature was performed using Medline and Google Scholar, giving preference to recent publications. EXPERT OPINION Exposure to EDC occurs not only in the household but also at work, whether it is in the office, factory, or farm and during transport from one location to another. Many studies have evaluated the effect of single environmental agents; however, humans are rarely exposed to only one EDC. Different EDCs and different levels of exposure may interact together to provide either a synergistic and/or an antagonistic disruption on human health, and hence a complex mechanism to elucidate. The ultimate adverse effect is difficult to predict, as it is not only influenced by the degree of exposure, but also by genetics, lifestyle, comorbidities, and other stressors.
Collapse
Affiliation(s)
- Jessica Mangion
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
13
|
Zhang M, Wang L, Li X, Song L, Luo D, Li Q, Wang Y, Wan Z, Mei S. Individual and mixtures of polychlorinated biphenyls and organochlorine pesticides exposure in relation to metabolic syndrome among Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162935. [PMID: 36934926 DOI: 10.1016/j.scitotenv.2023.162935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are commonly detected in humans due to their persistence and bioaccumulation, and are suspected risk factors for metabolic syndrome (MetS). However, most studies have focused on individual rather than combined exposure. We explored the associations between individual and combined PCBs/OCPs exposure and MetS to better assess the health effects of PCBs and OCPs. This cross-sectional study included 1996 adults from Wuhan, China. A total of 338 participants fulfilled criteria for MetS. Eight PCBs and OCPs were detected in >50 % of the samples. Most of the hexachlorocyclohexanes (HCHs) in the serum were derived from the recent environmental input of lindane, while the high levels of dichlorodiphenyltrichloroethane (DDTs) were mainly due to historical use. Multivariate linear regression analyses revealed that β-HCH, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), PCB-52, PCB-153, and PCB-180 were positively correlated with increased odds of MetS. The profiles of the PCBs and OCPs associated with the different components of MetS were distinct. Furthermore, quantile-based g computation (qgcomp) analyses showed that PCB and OCP mixtures were positively associated with the risk of MetS, and p,p'-DDE was the largest contributor to our model. These findings suggest that PCB and OCP concentrations, both individually and as mixtures, are associated with MetS risk. Prospective studies are needed to confirm these results.
Collapse
Affiliation(s)
- Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Luo
- Shimadzu (China) Co., LTD., Wuhan Wanda Center, No 96 Linjiang Avenue, Wuhan 430060, China
| | - Qiang Li
- Shimadzu (China) Co., LTD., Wuhan Wanda Center, No 96 Linjiang Avenue, Wuhan 430060, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Norouzi F, Alizadeh I, Faraji M. Human exposure to pesticides and thyroid cancer: a worldwide systematic review of the literatures. Thyroid Res 2023; 16:13. [PMID: 37183250 PMCID: PMC10184385 DOI: 10.1186/s13044-023-00153-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/04/2023] [Indexed: 05/16/2023] Open
Abstract
Thyroid cancer is considered as one of the most prevalent cancers in the world. Some pesticides can play a role as a potentially important risk factor in thyroid cancer by affecting thyroid morphology and thyroid hormone homeostasis. The aim of present study was to systematically review the available epidemiological evidence for human exposure to pesticides and thyroid cancer. Articles were searched in PubMed, Scopus and Web of Science by suitable keywords from January 2000 to May 2021. Standard techniques for systematic reviews were followed in the current study and results reported according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Based on the inclusion and exclusion criteria, finally seven studies including four cohort studies and three case-control studies were reviewed. Organochlorines (OCPs) in more cases, Organophosphates (OPs) and Carbamates insecticides, herbicides and fungicides were the studied pesticides. Inconsistent results were reported in the surveyed articles on the OCPs. Two articles on the Carbamates (Carbaryl and Mancozeb) showed consistently an inverse association between exposure and thyroid cancer. Increased risk of thyroid cancer due to the exposure to the Malathion was reported in one article on the OPs. Due to the limited current knowledge about the effect of pesticides on thyroid cancer in humans, human health policies must be implemented to control individual's exposure to chemicals through using of botanical pesticides in agricultural. Also, more studies must be done to fill this gap of knowledge.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ismaeil Alizadeh
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Faraji
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Lan T, Liu B, Bao W, Thorne PS. Identification of PCB Congeners and their Thresholds associated with Diabetes using Decision Tree Analysis. RESEARCH SQUARE 2023:rs.3.rs-2845995. [PMID: 37205460 PMCID: PMC10187404 DOI: 10.21203/rs.3.rs-2845995/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Few studies have investigated the potential combined effects of multiple PCB congeners on diabetes. To address this gap, we used data from 1244 adults in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. We used 1) classification trees to identify serum PCB congeners and their thresholds associated with diabetes; and 2) logistic regression to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of diabetes with combined PCB congeners. Of the 40 PCB congeners examined, PCB 126 has the strongest association with diabetes. The adjusted OR of diabetes comparing PCB 126 > 0.025 to ≤ 0.025 ng/g was 2.14 (95% CI 1.30-3.53). In the subpopulation with PCB 126 > 0.025 ng/g, a lower PCB 101 concentration was associated with an increased risk of diabetes (comparing PCB 101 < 0.72 to ≥ 0.72 ng/g, OR = 3.3, 95% CI: 1.27-8.55). In the subpopulation with PCB 126 > 0.025&PCB 101 < 0.72 ng/g, a higher PCB 49 concentration was associated with an increased risk of diabetes (comparing PCB 49 > 0.65 to ≤ 0.65 ng/g, OR = 2.79, 95% CI: 1.06-7.35). This nationally representative study provided new insights into the combined associations of PCBs with diabetes.
Collapse
Affiliation(s)
- Tuo Lan
- University of Iowa College of Public Health
| | - Buyun Liu
- University of Science and Technology of China
| | - Wei Bao
- University of Science and Technology of China
| | | |
Collapse
|
16
|
Kyriacou A, Tziaferi V, Toumba M. Stress, Thyroid Dysregulation, and Thyroid Cancer in Children and Adolescents: Proposed Impending Mechanisms. Horm Res Paediatr 2023; 96:44-53. [PMID: 35385843 DOI: 10.1159/000524477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/26/2022] [Indexed: 11/19/2022] Open
Abstract
Stress is a potential catalyst for thyroid dysregulation through cross-communication of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid (HPT) axes. Stress and stressors exposure motivates molecular mechanisms affecting compound feedback loops of the HPT axis. While there is evidence of connection between stress and thyroid dysregulation, the question whether this connection is implicated in the development of thyroid cancer (TC) remains unanswered. In view of the rising incidence of TC in both adults and children alongside the increasing stress in our modern society, there is a need to understand possible interrelations between stress, thyroid dysregulation, and TC. Prolonged glucocorticoid secretion due to stress interferes with immune system response by altering the cytokines, inducing low-grade chronic inflammation, and suppressing function of immune-protective cells. Chronic inflammation is a risk factor linked to TC. The role of autoimmunity has been a matter of controversy. However, there is epidemiological connection between autoimmune thyroid disease (AITD) and TC; patients with AITD show increased incidence in papillary thyroid carcinoma (PTC), and those with TC show a high prevalence of intrathyroidal lymphocyte infiltration and thyroid autoantibodies. Timing and duration-dependent exposure to specific endocrine disrupting chemicals (EDCs) has an impact on thyroid development, function, and proliferation, leading to thyroid disease and potentially cancer. Thyroid hormone imbalance, chronic inflammation, and EDCs are potential risk factors for oxidative stress. Oxygen free radicals are capable of causing DNA damage via stimulation of the mitogen-activating protein kinase or phosphatidylinositol-3-kinase and/or nuclear factor kB pathways, resulting in TC-associated gene mutations such as RET/PTC, AKAP9-BRAF, NTRK1, RAASF, PIK3CA, and PTEN. Stressful events during the critical periods of prenatal and early life can influence neuroendocrine regulation and induce epigenetic changes. Aberrant methylation of tumor suppressor genes such as P16INK4A, RASSF, and PTEN is associated with PTC; histone H3 acetylation is shown to be higher in TC, and thyroid-specific noncoding RNAs are downregulated in PTC. This review focuses on the above proposed mechanisms that potentially lead to thyroid tumorigenesis with the aim to help in the development of novel prognostic and therapeutic strategies for TC.
Collapse
Affiliation(s)
- Angelos Kyriacou
- CEDM, Centre of Endocrinology, Diabetes & Metabolism, Limassol, Cyprus.,Division of Endocrinology & Diabetes, Salford NHS Foundation Trust, Salford, UK.,Medical School, European University of Cyprus, Nicosia, Cyprus
| | | | - Meropi Toumba
- Pediatric Endocrinology Clinic, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus.,Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
17
|
Cavalier H, Trasande L, Porta M. Exposures to pesticides and risk of cancer: Evaluation of recent epidemiological evidence in humans and paths forward. Int J Cancer 2023; 152:879-912. [PMID: 36134639 PMCID: PMC9880902 DOI: 10.1002/ijc.34300] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023]
Abstract
Knowledge of the role in cancer etiology of environmental exposures as pesticides is a prerequisite for primary prevention. We review 63 epidemiological studies on exposure to pesticides and cancer risk in humans published from 2017 to 2021, with emphasis on new findings, methodological approaches, and gaps in the existing literature. While much of the recent evidence suggests causal relationships between pesticide exposure and cancer, the strongest evidence exists for acute myeloid leukemia (AML) and colorectal cancer (CRC), diseases in which the observed associations were consistent across several studies, including high-quality prospective studies and those using biomarkers for exposure assessment, with some observing dose-response relationships. Though high-quality studies have been published since the IARC monograph on organophosphate insecticides in 2017, there are still gaps in the literature on carcinogenic evidence in humans for a large number of pesticides. To further knowledge, we suggest leveraging new techniques and methods to increase sensitivity and precision of exposure assessment, incorporate multi-omics data, and investigate more thoroughly exposure to chemical mixtures. There is also a strong need for better and larger population-based cohort studies that include younger and nonoccupationally exposed individuals, particularly during developmental periods of susceptibility. Though the existing evidence has limitations, as always in science, there is sufficient evidence to implement policies and regulatory action that limit pesticide exposure in humans and, hence, further prevent a significant burden of cancers.
Collapse
Affiliation(s)
- Haleigh Cavalier
- Department of PediatricsNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Environmental MedicineNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Population HealthNew York University (NYU) School of MedicineNew YorkNew YorkUSA
| | - Leonardo Trasande
- Department of PediatricsNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Environmental MedicineNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Population HealthNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- NYU School of Global Public HealthNew YorkNew YorkUSA
| | - Miquel Porta
- Department of PediatricsNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- School of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM PSMar PRBB)BarcelonaCataloniaSpain
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
18
|
Kiyani R, Dehdashti B, Heidari Z, Sharafi SM, Mahmoodzadeh M, Amin MM. Biomonitoring of organochlorine pesticides and cancer survival: a population-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37357-37369. [PMID: 36572771 DOI: 10.1007/s11356-022-24855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) are endocrine-disrupting chemicals (EDCs) that even at very low levels can cause cancer by increasing the activity of tumor cells and suppressing the immune system. There is also little information on OCPs and survival after diagnosis. The aim of this study was to monitor the concentration of OCPs in the blood serum of cancer patients and its relationship with their socio-demographic characteristics and ultimately that impact on survival time and hazard ratio (HR). This cross-sectional study included 89 diagnosed patients with cancer in Isfahan, Iran. 12 types of OCPs were measured in serum by gas chromatography (7GC) with an electron capture detector and equipped with mass spectrometer (MS). Also, participants' questionnaire was completed to collect information. T-test, ANOVA, and Chi-square tests were used to evaluate the association between serum levels of OCPs and quantitative and qualitative information of patients. Survival analysis was also examined based on Kaplan-Meier method, log-rank test, and Cox model. The mean of total OCPs in patients' serum was calculated to be 1.82 ± 1.36 μg/L. Concentration of 2,4' DDE had a significant relationship with body mass index (BMI) (kg/m2) (P < 0.05). In addition, gender revealed a significant correlation in estimating survival time (P < 0.05). Non-exposure to OCPs showed a positive effect on increasing the life expectancy of patients. Lindane and endosulfan increased the risk of death by 16% and 37%, respectively, with insignificant P value (P > 0.05). The findings of the present study showed adverse effects of OCPs on patients' survival time and increased mortality of HR. Moreover, as the first research conducted in the study area, it is suggested management of environmental, individual and social factors that could be influenced the biological accumulation of OCPs in humans and cause health promotion.
Collapse
Affiliation(s)
- Raziyeh Kiyani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Sharafi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahmoodzadeh
- Department of Adult Oncology Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Vasan V, Alsen M, Vujovic D, Genden E, Sinclair C, van Gerwen M. Endosulfan use and the risk of thyroid cancer: an ecological study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:51-57. [PMID: 36688310 DOI: 10.1080/03601234.2023.2169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Endosulfan, an organochlorine pesticide, has been understudied in the literature on thyroid cancer. The aim of this ecological study was to assess the correlation between endosulfan exposure and thyroid cancer incidence rates (IRs) in the United States (US). Age-adjusted thyroid cancer IRs per 100,000 people per state for the years 1999 to 2019 were obtained from the Center for Disease Control and Prevention (CDC). To assess the state-level use of endosulfan, data were obtained from the US Geological Survey (USGS). Endosulfan usage estimates (kilograms/acres cropland; quintiles) and thyroid cancer IRs were mapped together. The correlation between age-adjusted thyroid cancer IRs and statewide endosulfan use was calculated using the Spearman correlation. Overall endosulfan usage in the US trended downwards between 1992 and 2007 (T = -0.77; P < 0.001), while thyroid cancer IR trended upwards between 1999 and 2019 (T = 0.69; P < 0.001). There was a statistically significant correlation between 1992 endosulfan use and 2012 (r = 0.32; P = 0.03) and 2014 (r = 0.32; P = 0.03) thyroid cancer IRs. Although restrictions on endosulfan use seem effective, the potential impact of endosulfan exposure remains due to the persistent, semi-volatile, bioaccumulative, and biomagnifying properties of endosulfan metabolites in particular, indicating the need for future thyroid research of highly exposed populations.
Collapse
Affiliation(s)
- Vikram Vasan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dragan Vujovic
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine Sinclair
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Kruger E, Toraih EA, Hussein MH, Shehata SA, Waheed A, Fawzy MS, Kandil E. Thyroid Carcinoma: A Review for 25 Years of Environmental Risk Factors Studies. Cancers (Basel) 2022; 14:6172. [PMID: 36551665 PMCID: PMC9777404 DOI: 10.3390/cancers14246172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors are established contributors to thyroid carcinomas. Due to their known ability to cause cancer, exposure to several organic and inorganic chemical toxicants and radiation from nuclear weapons, fallout, or medical radiation poses a threat to global public health. Halogenated substances like organochlorines and pesticides can interfere with thyroid function. Like phthalates and bisphenolates, polychlorinated biphenyls and their metabolites, along with polybrominated diethyl ethers, impact thyroid hormones biosynthesis, transport, binding to target organs, and impair thyroid function. A deeper understanding of environmental exposure is crucial for managing and preventing thyroid cancer. This review aims to investigate the relationship between environmental factors and the development of thyroid cancer.
Collapse
Affiliation(s)
- Eva Kruger
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amani Waheed
- Department of Community Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Alsen M, Vasan V, Genden EM, Sinclair C, van Gerwen M. Correlation between Lindane Use and the Incidence of Thyroid Cancer in the United States: An Ecological Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13158. [PMID: 36293736 PMCID: PMC9602460 DOI: 10.3390/ijerph192013158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The increasing rate of thyroid cancer may be attributable to endocrine disruptive chemicals. Lindane is a persistent organochlorine pesticide with endocrine disruptive properties that has been classified as carcinogenic to humans. The aim of this ecological study was to evaluate potential correlation between lindane exposure and thyroid cancer incidence in the United States (US). Data on statewide age-adjusted thyroid cancer incidence rate (per 100,000 people) was obtained from the Centers for Disease Control and Prevention for all US states for 2019. Lindane use estimates per cropland (kg/acres cropland) were then overlaid on the map of age-adjusted thyroid cancer incidence rate using ArcGIS. The trend of lindane use in the US between 1992 and 2007 was calculated using the Mann Kendall correlation test. The correlation between statewide lindane use and age-adjusted thyroid cancer incidence rates was calculated using Spearman correlation. Lindane use in the US decreased significantly between 1992 and 2007 (T = -0.617; p < 0.001). There was no statistically significant correlation between lindane use in 1992 and thyroid cancer incidence rate for any of the years between 1999 and 2019. Our results suggest that restrictions clearly seem to be effective in reducing lindane use, however, more research is needed for individual pesticides and thyroid cancer.
Collapse
Affiliation(s)
- Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vikram Vasan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M. Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Sinclair
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Network Toxicology Guided Mechanism Study on the Association between Thyroid Function and Exposures to Polychlorinated Biphenyls Mixture. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2394398. [PMID: 36203481 PMCID: PMC9532094 DOI: 10.1155/2022/2394398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent and highly toxic pollutants, which can accumulate in organisms and produce toxic effects, especially damaging the function of thyroid hormones. So far, the molecular mechanism of PCBs mixture and their metabolites interfering with thyroid hormones has not been studied thoroughly except for individual compounds. In this study, PubMed, Web of Science, and STITCH databases were used to search PCBs and their corresponding target proteins. The intersection of PCBs and thyroid hormone dysfunction target proteins was obtained from GeneCards. The “compounds-targets-pathways” network was constructed by Cytoscape software. And KEGG and Go analyses were performed for key targets. Finally, molecular docking was used to verify the binding effect. Four major active components, five key targets, and 10 kernel pathways were successfully screened by constructing the network. Functional enrichment analysis showed that the interference was mediated by cancer, proteoglycans, PI3K-Akt, thyroid hormone, and FoxO signaling pathways. The molecular docking results showed that the binding energies were less than -5 kcal·mol-1. PCBs and their metabolites may act on the key targets of MAPK3, MAPK1, RXRA, PIK3R1, and TP53. The toxic effect of sulfated and methyl sulfone PCBs is greater. The method of screening targets based on the simultaneous action of multiple PCBs can provide a reference for other research. The targets were not found in previous metabolite toxicity studies. It also provides a bridge for the toxic effects and experimental research of PCBs and their metabolites in the future.
Collapse
|
23
|
Zhuo H, Huang H, Sjodin A, Jin L, Ma S, Denic-Roberts H, Warren JL, Jones R, Davis M, Sun P, Yu H, Ward MH, Udelsman R, Zhang Y, Rusiecki JA. A nested case-control study of serum polychlorinated biphenyls and papillary thyroid cancer risk among U.S. military service members. ENVIRONMENTAL RESEARCH 2022; 212:113367. [PMID: 35504340 PMCID: PMC9238631 DOI: 10.1016/j.envres.2022.113367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Although polychlorinated biphenyls (PCBs) were banned decades ago, populations are continuously exposed to PCBs due to their persistence and bioaccumulation/biomagnification in the environment. Results from limited epidemiologic studies linking PCBs to thyroid cancer have been inconclusive. This study aimed to investigate the association between individual PCBs and PCB mixture and papillary thyroid cancer (PTC), the most common thyroid cancer histologic subtype. METHODS We carried out a nested case-control study including 742 histologically confirmed PTC cases diagnosed in 2000-2013 and 742 individually matched controls among U.S. military service members. Pre-diagnostic serum samples that were collected on average nine years before PTC diagnosis were used to measure PCB congeners by gas chromatography isotope dilution high resolution mass spectrometry (GC/ID-HRMS). Conditional logistic regression, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression were employed to estimate the association between single PCB congeners as well as their mixture and PTC. RESULTS Four PCB congeners (PCB-74, PCB-99, PCB-105, PCB-118) had significant associations and dose-response relationships with increased risk of PTC in single congener models. When considering the effects from all measured PCBs and their potential interactions in the BKMR model, PCB-118 showed positive trends of association with PTC. Increased exposure to the PCB congeners as a mixturewas also associated with an increased risk of PTC in the WQS model, with the mixture dominated by PCB-118, followed by PCB-74 and PCB-99. One PCB congener, PCB-187, showed an inverse trend of association with PTC in the mixture analysis. DISCUSSION This study suggests that exposure to certain PCBs as well as a mixture of PCBs were associated with an increased risk of PTC. The observed association was mainly driven by PCB-118, and to a lesser extent by PCB-74 and PCB-99. The findings warrant further investigation.
Collapse
Affiliation(s)
- Haoran Zhuo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Huang Huang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Andreas Sjodin
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lan Jin
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hristina Denic-Roberts
- Oak Ridge Institute for Science and Education (ORISE), MD, USA; Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Richard Jones
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark Davis
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Peiyuan Sun
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Robert Udelsman
- Endocrine Neoplasia Institute, Miami Cancer Institute, Miami, FL, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer A Rusiecki
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD, USA.
| |
Collapse
|
24
|
Wang S, Wang Q, Yuan Z, Wu X. Organochlorine pesticides in riparian soils and sediments of the middle reach of the Huaihe River: A traditional agricultural area in China. CHEMOSPHERE 2022; 296:134020. [PMID: 35216981 DOI: 10.1016/j.chemosphere.2022.134020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Distributions, souces, ecological risks as well as environmental behaviors of 20 organochlorine pesticides (OCPs) in riparian soils and sediments of the middle reach of the Huaihe River, a traditional agricultural area of China, were investigated. ∑OCPs in riparian soils and sediments were 1.8-63 ng g-1 (mean = 19 ± 12 ng g-1) and 1.2-9.9 ng g-1 (mean = 3.0 ± 1.8 ng g-1), respectively. HCHs were the dominant OCPs in both soils and sediments, while high concentrations of ∑HEPTs and ∑DDTs were also detected in some soils and sediments. No correlations were found between concentrations of OCPs and organic matter contents in both soils and sediments. Based on the source analysis, most OCPs in the riparian soils were mainly from historical residues, such as historical usage of technical HCH, DDT, chlordane and endosulfan. OCPs in sediments were influenced not only by surface runoff by also by other factors, e.g. in-situ contamination (DDT-containing antifouling paints in ships) and/or hydraulic transport from some tributaries. Some never-used OCPs, such as heptachlor and aldrin, were widely detected in soils and sediments. This might be attributed to some unknown usages or long-range atmospheric transport of them from other source regions. Ecological risk analysis suggested that DDTs and HCHs in soils would not lead to an adverse effect on soil ecological environment as well as agricultural production, and OCP residues in sediments also would not pose a threat to the sediment-dwelling organisms.
Collapse
Affiliation(s)
- Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, PR China
| | - Qing Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, PR China.
| |
Collapse
|
25
|
Joseph N, Propper CR, Goebel M, Henry S, Roy I, Kolok AS. Investigation of Relationships Between the Geospatial Distribution of Cancer Incidence and Estimated Pesticide Use in the U.S. West. GEOHEALTH 2022; 6:e2021GH000544. [PMID: 35599961 PMCID: PMC9121053 DOI: 10.1029/2021gh000544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 05/24/2023]
Abstract
The objective of the study was to evaluate the potential geospatial relationship between agricultural pesticide use and two cancer metrics (pediatric cancer incidence and total cancer incidence) across each of the 11 contiguous states in the Western United States at state and county resolution. The pesticide usage data were collected from the U.S. Geological Survey Pesticide National Synthesis Project database, while cancer data for each state were compiled from the National Cancer Institute State Cancer Profiles. At the state spatial scale, this study identified a significant positive association between the total mass of fumigants and pediatric cancer incidence, and also between the mass of one fumigant in particular, metam, and total cancer incidence (P-value < 0.05). At the county scale, the relationship of all cancer incidence to pesticide usage was evaluated using a multilevel model including pesticide mass and pesticide mass tertiles. Low pediatric cancer rates in many counties precluded this type of evaluation in association with pesticide usage. At the county scale, the multilevel model using fumigant mass, fumigant mass tertiles, county, and state predicted the total cancer incidence (R-squared = 0.95, NSE = 0.91, and Sum of square of residuals [SSR] = 8.22). Moreover, this study identified significant associations between total fumigant mass, high and medium tertiles of fumigant mass, total pesticide mass, and high tertiles of pesticide mass relative to total cancer incidence across counties. Fumigant application rate was shown to be important relative to the incidence of total cancer and pediatric cancer, at both state and county scales.
Collapse
Affiliation(s)
- Naveen Joseph
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | | | - Madeline Goebel
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | - Shantel Henry
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | - Indrakshi Roy
- Center for Health Equity ResearchNorthern Arizona UniversityFlagstaffAZUSA
| | - Alan S. Kolok
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| |
Collapse
|
26
|
The Importance of Addressing Early-Life Environmental Exposures in Cancer Epidemiology. CURR EPIDEMIOL REP 2022; 9:49-65. [DOI: 10.1007/s40471-022-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Zhang YX, Liu YP, Miao SS, Liu XD, Ma SM, Qu ZY. Exposure to persistent organic pollutants and thyroid cancer risk: a study protocol of systematic review and meta-analysis. BMJ Open 2021; 11:e048451. [PMID: 34408050 PMCID: PMC8375755 DOI: 10.1136/bmjopen-2020-048451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The thyroid cancer incidence has been increasing all over the world. However, the aetiology of thyroid cancer remains unclear. A growing body of evidence suggested exposure to persistent organic pollutants (POPs) may play a role in the initiation of thyroid cancer, but the results are generally inconsistent across studies. This review aims to synthesise the evidence for the health effects of POPs on the risk of thyroid cancer. METHODS AND ANALYSIS This protocol was reported in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA) statements. A comprehensive search, including electronic database search (eg, PubMed, Embase, ProQuest and CNKI), website search and manual search, will be performed to identify all eligible studies. The Population, Exposure, Comparator and Outcome framework was used to clarify the inclusion and exclusion criteria. The Newcastle-Ottawa Scale will be used to assess the quality of included studies. Maximally adjusted effect estimates from individual studies will be summarised with random-effect models in a conservative manner. I2 statistics and Q-tests will be used to test the heterogeneity across studies. We will perform extensive sensitivity analyses, such as confounding risk ratio (confounding), E-value, fixed-effect models, excluding the most relatively weighted study, including only the high-quality studies and many predesigned subgroup analyses, etc. The findings will be reported in accordance to the PRISMA guidelines. ETHICS AND DISSEMINATION Ethical approval is not required in this systematic review of published literatures. The results will be published in a peer-reviewed journal and presented at relevant conferences. PROSPERO REGISTRATION NUMBER CRD42020181343.
Collapse
Affiliation(s)
- Yu Xue Zhang
- Department of Preventive Medicine, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Peng Liu
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Su Sheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiao Dong Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shu Mei Ma
- Department of Occupational and Environmental Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhang Yi Qu
- Department of Hygiene Microbiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Li M, Pei J, Xu M, Shu T, Qin C, Hu M, Zhang Y, Jiang M, Zhu C. Changing incidence and projections of thyroid cancer in mainland China, 1983-2032: evidence from Cancer Incidence in Five Continents. Cancer Causes Control 2021; 32:1095-1105. [PMID: 34152517 DOI: 10.1007/s10552-021-01458-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE An increasing incidence of thyroid cancer has been seen in China during the past several decades. The aim of this study was to analyze potential age, period, and cohort effects on the incidence of thyroid cancer in mainland China and to predict new cases up to 2032. METHODS We calculated age-adjusted and age-specific incidence rates of thyroid cancer, conducted an age-period-cohort analysis of 35,037 thyroid cancer incidence cases reported to Cancer Incidence in Five Continents from 1983 to 2012 in mainland China, and predicted incidence up to 2032 using the Bayesian age-period-cohort method. RESULTS The age-adjusted overall incidence rate of thyroid cancer increased from 1.93/100,000 in 1983-1987 to 12.18/100,000 in 2008-2012 among females and from 0.77/100,000 in 1983-1987 to 3.89/100,000 in 2008-2012 among males, with a female-to-male ratio of approximately 3.0 during the three decades. Strong birth cohort and period effects on the incidence of thyroid cancer were observed for both sexes, and such an increasing trend is predicted to continue for at least the next 20 years. More than 3.7 million new cases are projected in the 2028-2032 period. CONCLUSION The increasing trend of thyroid cancer in mainland China will cause a great burden in the future. In addition to the potential impact of improvement in medical diagnostics, potential exposure to risk factors have played a role in the observed rising trend. Further population-based epidemiologic studies are required to identify risk factors to aid in thyroid cancer prevention and control.
Collapse
Affiliation(s)
- Mandi Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiao Pei
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Minghan Xu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ting Shu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chengjie Qin
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Meijing Hu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Cairong Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
30
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
31
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
32
|
Alsen M, Sinclair C, Cooke P, Ziadkhanpour K, Genden E, van Gerwen M. Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview. TOXICS 2021; 9:toxics9010014. [PMID: 33477829 PMCID: PMC7832870 DOI: 10.3390/toxics9010014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Endocrine disruptive chemicals (EDC) are known to alter thyroid function and have been associated with increased risk of certain cancers. The present study aims to provide a comprehensive overview of available studies on the association between EDC exposure and thyroid cancer. Relevant studies were identified via a literature search in the National Library of Medicine and National Institutes of Health PubMed as well as a review of reference lists of all retrieved articles and of previously published relevant reviews. Overall, the current literature suggests that exposure to certain congeners of flame retardants, polychlorinated biphenyls (PCBs), and phthalates as well as certain pesticides may potentially be associated with an increased risk of thyroid cancer. However, future research is urgently needed to evaluate the different EDCs and their potential carcinogenic effect on the thyroid gland in humans as most EDCs have been studied sporadically and results are not consistent.
Collapse
Affiliation(s)
- Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
| | - Catherine Sinclair
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
| | - Peter Cooke
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.C.); (K.Z.)
| | - Kimia Ziadkhanpour
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.C.); (K.Z.)
| | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|