1
|
Xu Z, Zhang J, Qi R, Liu Q, Cao H, Wen F, Liao Y, Shih K, Tang Y. Complex release dynamics of microplastic additives: An interplay of additive degradation and microplastic aging. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137711. [PMID: 40024124 DOI: 10.1016/j.jhazmat.2025.137711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the complex dynamics of additive release from microplastics in aquatic environments under natural ultraviolet (UV) radiation, which is critical for assessing ecotoxicological impacts and developing pollution remediation strategies. We focused on release kinetics of additives (Dimethyl phthalate (DMP), Dibutyl phthalate (DBP), Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Decabromodiphenyl ether (BDE-209)) from polyvinyl chloride (PVC), polyethylene (PE), and acrylonitrile-butadiene-styrene (ABS) microplastics exposed to UV light, exploring the interplay between additive release, photodegradation, and microplastic aging. Initial results showed a consistent release pattern, but under UV exposure, the release became more complex due to additive degradation and changes in the microplastics' structure. Factors such as polymer type, microplastic size, additive content, and environmental conditions (UV or darkness) significantly influenced the release quantity and kinetics. UV-induced additive degradation altered the concentration gradient between the microplastic and water, while aging, marked by changes in surface chemistry and internal polymer breakdown, accelerated additive release. By applying Inner Particle Diffusion (IPD) and Aqueous Boundary Layer Diffusion (ABLD) models, we demonstrated how UV-induced degradation and aging affected key parameters like the diffusion and partition coefficients, impacting the overall release process. These insights lay the foundation for understanding the environmental risks posed by microplastic additives and developing strategies to mitigate their impact in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhe Xu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Jianshuai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruimin Qi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Liu
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, China
| | - Hongmei Cao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Wen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixin Liao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Pan B, Lei J, Pan B, Tian H, Huang L. Dialogue between algorithms and soil: Machine learning unravels the mystery of phthalates pollution in soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136604. [PMID: 39579707 DOI: 10.1016/j.jhazmat.2024.136604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Soil is a major environmental sink for the emerging organic pollutants phthalates (PAEs), and the determination of key factors influencing PAEs accumulation in soil is crucial for agricultural sustainability and food security. Aiming at the time-consuming and inefficient characteristics of traditional batch experiments and statistical prediction models in comprehensively capturing PAEs dynamics in soil, an intelligent analysis framework based on machine learning was proposed and developed. In this study, thirty features were incorporated, including soil PAEs-concentrations, pollutant emissions, agricultural inputs, soil physicochemical properties, and climatic parameters. Six data-driven machine learning models were established: Random Forest Regression (RFR), Gradient Boosting Regression Tree (GBRT), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Support Vector Regression (SVR), and k-Nearest Neighbors (KNN). Results showed that the MLP model exhibited optimal performance in predicting soil PAEs concentrations (R²=0.8637), followed by SVR (R²=0.8132) and XGBoost (R²=0.8096). Through feature importance analysis, it was determined that hydrometeorological factors, soil moisture conditions, and nutritional characteristics were the key factors controlling PAEs spatial distribution. Furthermore, non-linear effect analysis elucidated significant synergistic interactions among these environmental covariates. The spatiotemporal prediction model revealed continuous declining trends in PAEs pollution levels in eastern coastal regions over the next 5-10 years, while accumulation tendencies were observed in inland provinces particularly in Guizhou. This study demonstrates the effectiveness and advantages of machine learning in predicting soil PAEs-pollution, providing a new perspective for pollutant risk assessment and management in the era of environmental big data.
Collapse
Affiliation(s)
- Boyou Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jialin Lei
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Hong Tian
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Dang H, Zhang P, Zheng J, Chen S, Wei W, Wang X. Long-term inhalation exposure: A model for phthalate accumulation in the respiratory tract. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117207. [PMID: 39426105 DOI: 10.1016/j.ecoenv.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Inhalation is a major pathway for phthalates (PAEs), an endocrine disruptor, to enter the human body. The actual internal exposure amount that participates in metabolism cannot be estimated by calculating total inhalation intake. OBJECTIVE To estimate the accumulation in each region of the respiratory tract after long-term exposure to PAEs in different populations. METHODS A mass transfer model was developed to simulate the long-term accumulation of PAEs in respiratory tract through inhalation. The model considered (1) mass transfer of PAEs in three phases across seven regions, (2) the effect of temperature differences on the mass transfer process. Based on this model, we simulated adult exposure to PAEs in a laboratory, identified key model parameters, and further simulated various scenarios for children, adults, and elders. RESULTS PAEs are not completely cleared from the respiratory tract after 16 hours, following 8 hours of daily exposure. Under regular laboratory environment, accumulation after 30 days is 3.8 times higher than that after the first day. The distribution of PAEs between the gas and mucus phases has a greater impact on the results than between the gas and particle phases. Children are at the highest risk to Diethyl phthalate (DEP) exposure compared with adults and elders. Nearly 80 % of DEP is exhaled, with 14 % accumulating in the alveolar region after an hour. CONCLUSION This model links indoor air PAEs to human internal exposure, showing that most PAEs are exhaled, while the remainder accumulates in the respiratory tract and may participate in human metabolism.
Collapse
Affiliation(s)
- Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jiachen Zheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shengwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, Marne la Vallée Cedex 2, Champs sur Marne 77447, France.
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
4
|
Zhou X, Fang W, Dong X, Li W, Liu J, Wang X. QSPR modeling for the prediction of partitioning of VOCs and SVOCs to indoor fabrics: Integrating environmental factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133945. [PMID: 38447372 DOI: 10.1016/j.jhazmat.2024.133945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Porous fabrics have a significant impact on indoor air quality by adsorbing and emitting chemical substances, such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). Understanding the partition behavior between organic compound molecules and indoor fabrics is crucial for assessing their environmental fate and associated human exposure. The physicochemical properties of fabrics and compounds are fundamental in determining the free energy of partitioning. Moreover, environmental factors like temperature and humidity critically affect the partition process by modifying the thermal and moisture conditions of the fabric. However, existing methods for determining the fabric-air partition coefficient are limited to specific fabric-chemical combinations and lack a comprehensive consideration of indoor environmental factors. In this study, large amounts of experimental data on fabric-air partition coefficients (Kfa) of (S)VOCs were collected for silk, polyester, and cotton fabrics. Key molecular descriptors were identified, integrating the influences of physicochemical properties, temperature, and humidity. Subsequently, two typical quantitative structure-property relationship (QSPR) models were developed to correlate the Kfa values with the molecular descriptors. The fitting performance, robustness, and predictive ability of the two QSPR models were evaluated through statistical analysis and internal/external validation. This research provides insights for the high-throughput prediction of the environmental behaviors of indoor organic compounds.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Weipeng Fang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuejiao Dong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenlong Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jialu Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
5
|
Gholaminejad A, Mehdizadeh G, Dolatimehr A, Arfaeinia H, Farjadfard S, Dobaradaran S, Bonyadi Z, Ramavandi B. Phthalate esters pollution in the leachate, soil, and water around a landfill near the sea, Iran. ENVIRONMENTAL RESEARCH 2024; 248:118234. [PMID: 38272296 DOI: 10.1016/j.envres.2024.118234] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 μg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 μg/L) and wet (114 μg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.
Collapse
Affiliation(s)
- Ali Gholaminejad
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghazal Mehdizadeh
- Division of Atmospheric Science, University of Nevada, Reno, United States
| | - Armin Dolatimehr
- Civil and Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Hosein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
6
|
Sharma K, Sharma A, Bhatnagar P. Combined effect of polystyrene nanoplastic and di-n-butyl phthalate on testicular health of male Swiss albino mice: analysis of sperm-related parameters and potential toxic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23680-23696. [PMID: 38427170 DOI: 10.1007/s11356-024-32697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Plastics, especially polystyrene nanoplastic particles (PSNPs), are known for their durability and absorption properties, allowing them to interact with environmental pollutants such as di-n-butyl phthalate (DBP). Previous research has highlighted the potential of these particles as carriers for various pollutants, emphasizing the need to understand their environmental impact comprehensively. This study focuses on the subchronic exposure of male Swiss albino mice to PSNP and DBP, aiming to investigate their reproductive toxicity between these pollutants in mammalian models. The primary objective of this study is to examine the reproductive toxicity resulting from simultaneous exposure to PSNP and DBP in male Swiss albino mice. The study aims to analyze sperm parameters, measure antioxidant enzyme activity, and conduct histopathological and morphometric examinations of the testis. By investigating the individual and combined effects of PSNP and DBP, the study seeks to gain insights into their impact on the reproductive profile of male mice, emphasizing potential synergistic interactions between these environmental pollutants. Male Swiss albino mice were subjected to subchronic exposure (60 days) of PSNP (0.2 mg/m, 50 nm size) and DBP (900 mg/kg bw), both individually and in combination. Various parameters, including sperm parameters, antioxidant enzyme activity, histopathological changes, and morphometric characteristics of the testis, were evaluated. The Johnsen scoring system and histomorphometric parameters were employed for a comprehensive assessment of spermatogenesis and testicular structure. The study revealed non-lethal effects within the tested doses of PSNP and DBP alone and in combination, showing reductions in body weight gain and testis weight compared to the control. Individual exposures and the combination group exhibited adverse effects on sperm parameters, with the combination exposure demonstrating more severe outcomes. Structural abnormalities, including vascular congestion, Leydig cell hyperplasia, and the extensive congestion in tunica albuginea along with both ST and Leydig cell damage, were observed in the testis, underscoring the reproductive toxicity potential of PSNP and DBP. The Johnsen scoring system and histomorphometric parameters confirmed these findings, providing interconnected results aligning with observed structural abnormalities. The study concludes that simultaneous exposure to PSNP and DBP induces reproductive toxicity in male Swiss albino mice. The combination of these environmental pollutants leads to more severe disruptions in sperm parameters, testicular structure, and antioxidant defense mechanisms compared to individual exposures. The findings emphasize the importance of understanding the interactive mechanisms between different environmental pollutants and their collective impact on male reproductive health. The use of the Johnsen scoring system and histomorphometric parameters provides a comprehensive evaluation of spermatogenesis and testicular structure, contributing valuable insights to the field of environmental toxicology.
Collapse
Affiliation(s)
- Kirti Sharma
- Department of Zoology, IIS (Deemed to Be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (Deemed to Be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (Deemed to Be University), Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Argamino CRA, Sebben BG, da Costa G, Towers S, Bogush A, Stevanovic S, Godoi RHM, Kourtchev I. Development and validation of a GC Orbitrap-MS method for the analysis of phthalate esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) in atmospheric particles and its application for screening PM 2.5 from Curitiba, Brazil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1579-1592. [PMID: 38407576 DOI: 10.1039/d3ay02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phthalates or phthalic acid esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) are ubiquitous chemicals often used as plasticisers and additives in many industrial products and are classified as both persistent organic pollutants (POPs) and new emerging pollutants (NEPs). Exposure to these chemicals, especially through inhalation, is linked to a wide range of negative health effects, including endocrine disruption. Air particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm can be enriched with PAEs and DEHA and if inhaled can cause multi-system human toxicity. Therefore, proper monitoring of PAEs and DEHA in PM is required to assess human exposure to these pollutants. In this work, we developed and validated a new and sensitive gas-chromatography high-resolution mass spectrometry (GC-HRMS) method for targeted analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl)adipate (DEHA), bis(2-ethylhexyl)phthalate (DEHP), di-n-octyl phthalate (DOP), in PM. Analytical aspects including sample preparation steps and GC-HRMS parameters, e.g., quadrupole isolation window, to enhance method sensitivity have been assessed. The estimated limit of detection (LODs) of target PAEs and DEHA ranged from 5.5 to 17 pg μL-1, allowing their trace-level detection in PM. Extraction efficiencies of 78-101% were obtained for the target compounds. Low DMP and DEP extraction efficiencies from the spiked filter substrates indicated that significant losses of higher volatility PAEs can occur during the sample collection when filter-based techniques are used. This work is the first targeted method based on GC-Orbitrap MS for PAEs and DEHA in environmental samples. The validated method was successfully applied for the targeted analysis of PAEs and DEHA in PM2.5 samples from the eighth most populous city in Brazil, Curitiba. This work is the first to report DBP, DEHA, DEHP, and DOP in urban PM from Brazil. The observed concentrations of PAEs (up to 29 ng m-3) in PM2.5 from Curitiba may not represent the extent of pollution by these toxic compounds since the analysed samples were collected during a COVID-19 restriction when anthropogenic activities were reduced.
Collapse
Affiliation(s)
- Cristian Ryan A Argamino
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Bruna G Sebben
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Gabriela da Costa
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Sam Towers
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Svetlana Stevanovic
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Ivan Kourtchev
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| |
Collapse
|
8
|
Zhou X, Kang L, Wang X, Meng H. A novel method for assessing indoor di 2-ethylhexyl phthalate (DEHP) contamination and exposure based on dust-phase concentration. CHEMOSPHERE 2024; 349:140994. [PMID: 38141675 DOI: 10.1016/j.chemosphere.2023.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Phthalates (PAEs) are a group of typical semivolatile organic compounds that are widely present in indoor environments with multiple phases. Indoor air, airborne particle and settled dust are considered to be typical indicators of PAE contamination as well as media of human exposure, and the interactions between them are complex. Among various phthalate compounds, di 2-ethylhexyl phthalate (DEHP) was identified as the predominant individual phthalate in settled dust. The existing DEHP contamination assessment requires multiphase sampling or solving the dynamic mass transfer models with multiple partial differential equations, which are both complicated and time-consuming. This study investigated the influence of the indoor source loading rate, surface type, particle size and cleaning frequency on the partitioning between the settled dust-phase, airborne particle-phase and gas-phase. The concentration correlations of DEHP between multiphases were consequently derived, which balance accuracy and complexity well. By comparison with field sampling data in the literatures, the rationality and accuracy of the concentration correlations were validated. Based on the concentration correlations, a new method of directly using dust-phase concentration to estimate the non-dietary exposure to DEHP was proposed. The results indicated that ingestion of settled dust contributes the most to non-dietary exposure. Special attention should be given to infants and toddlers, who suffer the highest daily exposure to DEHP among all age groups. This study provides a new and efficient solution for estimating indoor DEHP pollution loads conveniently and rapidly, offering valuable insights for future research in this field.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lingyi Kang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hui Meng
- Higher Engineering Education Museum, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
9
|
Li X, Zheng N, Zhang W, An Q, Ji Y, Chen C, Wang S, Peng L. Comprehensive assessment of phthalates in indoor dust across China between 2007 and 2019: Benefits from regulatory restrictions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123147. [PMID: 38101532 DOI: 10.1016/j.envpol.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
China is the largest producer and consumer of phthalates in the world. However, it remains unclear whether China's phthalate restrictions have alleviated indoor phthalate pollution. We extracted the concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) in indoor dust at 2762 sites throughout China between 2007 and 2019 from the published literature. Based on these data, we investigated the effects of phthalate restrictions and environmental factors on the temporal-spatial distribution and sources of phthalates and estimated human exposure and risk of phthalates. The results revealed that the mean concentrations of phthalates in indoor dust throughout China decreased in the following order: DEHP > DBP > DIBP > DMP > DEP > BBP. The concentrations of six phthalates were generally higher in northern and central-western China than in southern regions. BBP and DEHP concentrations decreased by 73.5% and 17.9%, respectively, from 2007 to 2019. Sunshine was a critical environmental factor in reducing phthalate levels in indoor dust. Polyvinyl chloride materials, personal care products, building materials, and furniture were the primary sources of phthalates in indoor dust. The phthalates in indoor dust posed the most significant threat to children and older adults. This study provides a picture of phthalate pollution, thus supporting timely and effective policies and legislation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
10
|
Lin H, Li X, Qin X, Cao Y, Ruan Y, Leung MKH, Leung KMY, Lam PKS, He Y. Particle size-dependent and route-specific exposure to liquid crystal monomers in indoor air: Implications for human health risk estimations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168328. [PMID: 37926258 DOI: 10.1016/j.scitotenv.2023.168328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
In indoor environments, liquid crystal monomers (LCMs) released from display devices is a significant concern, necessitating a comprehensive investigation into their distribution behaviors and potential health risks. Herein, we examined various LCMs in educational and workplace air and compared their associated health risks through inhalation and dermal absorption routes. 4-propyl-4'-vinylbicyclohexyl (3VbcH) and 4,4'-bis(4-propylcyclohexyl) biphenyl (b3CHB) with median concentrations of 101 and 1460 pg m-3, were the predominant LCMs in gaseous and particulate phases, respectively. Composition and concentration of LCMs differed substantially between sampling locations due to the discrepancy in the quantity, types, and brands of electronic devices in each location. Three models were further employed to estimate the gas-particle partitioning of LCMs and compared with the measured data. The results indicated that the HB model exhibited the best overall performance, while the LMY model provided a good fit for LCMs with higher log Koa (>12.48). Monte Carlo simulation was used to estimate and compared the probabilistic daily exposure dose and potential health risks. Inhalation exposure of LCMs was significantly greater than the dermal absorption by approximately 1-2 orders of magnitude, implying that it was the primary exposure route of human exposure to airborne LCMs. However, certain LCMs exhibited comparable or higher exposure levels via the dermal absorption route due to the significant overall permeability coefficient. Furthermore, the particle size was discovered to impact the daily exposure dose, contingent on the particle mass-transfer coefficients and accumulation of LCMs on diverse particle sizes. Although the probabilistic non-carcinogenic risks of LCMs were relatively low, their chronic effects on human beings merit further investigations. Overall, this study provides insights into the contamination and potential health risks of LCMs in indoor environments, underscoring the importance of considering particle sizes and all possible exposure pathways in estimating human health risks caused by airborne organic contaminants.
Collapse
Affiliation(s)
- Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xinxing Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yaru Cao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Michael K H Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Kenneth M Y Leung
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
11
|
Anake WU, Nnamani EA. Levels and health risk assessments of Phthalate acid esters in indoor dust of some microenvironments within Ikeja and Ota, Nigeria. Sci Rep 2023; 13:11209. [PMID: 37433814 PMCID: PMC10336085 DOI: 10.1038/s41598-023-38062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
The levels, profiles of Phthalate acid esters (PAEs) and their associated health risk in children and adults using indoor dust samples were assessed from nine (9) microenvironments in Nigeria. Six PAEs congeners were determined using Gas Chromatography-Mass Spectrometry and the human health risk assessments of PAEs exposure to children and adults were computed using the United States Environmental Protection Agency (USEPA) exposure model. The mean concentrations of the total PAEs (Σ6PAEs) in indoor dust across the study locations ranged from 1.61 ± 0.12 to 53.3 ± 5.27 μg/g with 72.0% of di-n-octyl phthalate (DnOP) as the most predominant contributor of PAEs in sample locations B, C, D, E, F and G. PAEs estimated daily intake results exceeded the USEPA value of 20 and 50 kg/bw/day for children and adults respectively in some locations. Non-carcinogenic risk exposure indicated no risk (HI < 1), while the carcinogenic risk was within the recommended threshold of 1.00 × 10-4 to 1.00 × 10-6 for benzyl butyl phthalate and bis-2-ethylhexyl phthalate. From our findings, lower levels of PAEs were observed in locations with good ventilation system. Also, the human health risk evaluation indicated indoor dust ingestion as the dominant exposure route of PAEs for both children and adults, while the children were at a higher risk of PAEs exposure. To protect children susceptible to these endocrine-disrupting pollutants, soft vinyl children's toys and teething rings should be avoided. Appropriate policies and procedures on the reduction of PAEs exposure to humans should be enacted by all stakeholders, including government regulatory agencies, industries, school administrators and the entire community.
Collapse
Affiliation(s)
- Winifred U Anake
- Department of Chemistry, College of Science and Technology, Covenant University, P.M. B 1023, Ota, Ogun State, Nigeria.
| | - Esther A Nnamani
- Department of Chemistry, College of Science and Technology, Covenant University, P.M. B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
12
|
Nguyen AV, Van Vu T, Pham CLT, Nguyen VN, Ta NT, Hoang AQ, Minh TB, Tran TM. Widespread distribution of phthalic acid esters in indoor and ambient air samples collected from Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63175-63184. [PMID: 36959402 DOI: 10.1007/s11356-023-26558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
In the present study, distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 90 air samples collected from the urban areas in Hanoi, Vietnam from May to August 2022. The total concentrations of PAEs in indoor and ambient air samples were in the range of 320-4770 ng/m3 and 35.9-133 ng/m3, respectively. Total concentrations of PAEs in indoor air were about one order of magnitude higher than those in ambient air. Among PAEs studied, di-(2-ethyl)hexyl phthalate (DEHP) was measured at the highest levels in all air samples, followed by di-n-octyl phthalate (DnOP) and di-n-butyl phthalate (DnBP). The PAEs concentrations in air samples collected from laboratories at nighttime were significantly higher than those during daytime (p < 0.05). Meanwhile, the distributions of PAEs in various micro-environments in the same house are no statistically significant difference. The median exposure doses of PAEs through inhalation for adults and children were 248 and 725 ng/kg-bw/d, respectively. These exposure levels were still lower than the respective reference doses (RfD) proposed by the US EPA for selected compounds such as diethyl phthalate (DEP), DnBP, and DEHP.
Collapse
Affiliation(s)
- Anh Viet Nguyen
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Tu Van Vu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Chi Linh Thi Pham
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Viet Ngoc Nguyen
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Nguyen Thuy Ta
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tu Binh Minh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tri Manh Tran
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
13
|
Huo CY, Li WL, Liu LY, Sun Y, Guo JQ, Wang L, Hung H, Li YF. Seasonal variations of airborne phthalates and novel non-phthalate plasticizers in a test residence in cold regions: Effects of temperature, humidity, total suspended particulate matter, and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160852. [PMID: 36526181 DOI: 10.1016/j.scitotenv.2022.160852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a class of plasticizers widely used in consumer products, some phthalate esters (PAEs) have been restricted due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative non-phthalates plasticizers (NPPs) to the market. However, few studies focus on the influence of environmental parameters on the presence of these plasticizers and the potential human health risks for people living in poorly ventilated indoor spaces in cold regions. We investigated the trends of PAEs and NPPs in air in a typical indoor residence in northern China for over one year. The air concentrations of PAEs were significantly higher than those of NPPs (p < 0.05), indicating that PAEs are still the dominant plasticizers currently being used in the studied residence. PAEs showed seasonal fluctuation patterns of the highest levels found in summer and autumn. The temperature and relative humidity dependence for most PAEs and NPPs decreased with decreasing vapor pressure. Concentrations of the high molecular weight NPPs and PAEs positively correlated with total suspended particles (TSP). It is worth noting that the peak concentrations of PAEs and NPPs were found when the haze occurred in autumn. Principal component analysis (PCA) suggested the diverse applications of PAEs and NPPs in the indoor environment. The hazard index (HI) values observed in this study were all below international guidelines (<1); however, the average carcinogenic risk (CR) values for some compounds exceeded acceptable levels (One in a million), which raised concerns about the possibility of carcinogenicity for people living indoors for long periods of time in cold regions.
Collapse
Affiliation(s)
- Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China.
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|
14
|
Fan L, Wang L, Wang K, Liu F. Phthalates in glass window films are associated with dormitory characteristics, occupancy activities and habits, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32550-32559. [PMID: 36469278 DOI: 10.1007/s11356-022-24536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Phthalates are environmental endocrine disruptors that enter the human body through a variety of pathways and harm human health. The study aimed to explore the associations between phthalate concentrations in glass window films with dormitory characteristics, occupancy activities and habits, and environmental factors, of university dormitories. We surveyed these associations and measured the indoor environmental parameters of 144 dormitories from 13 universities in Beijing. Based on the results, we further explored the factors affecting phthalate concentrations using multivariate logistic regression. The results showed that phthalate concentrations in glass window films were associated with dormitory type, duration of occupancy, daily ventilation duration, window cleaning frequency, indoor relative humidity, light intensity, temperature, and particulate matter (PM10) concentration. To date, there have only been a few studies on the factors that influence phthalate concentrations in glass window films; therefore, further study is needed. Our findings determined the influence of external factors on the different types of phthalates in window films, which helps understand indoor phthalate pollution and evaluate human exposure based on phthalate concentrations in glass window films.
Collapse
Affiliation(s)
- Liujia Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fang Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
15
|
Dodson R, Manz KE, Burks SR, Gairola R, Lee NF, Liu Y, Pennell KD, Walker ED, Braun JM. Does Using Corsi-Rosenthal Boxes to Mitigate COVID-19 Transmission Also Reduce Indoor Air Concentrations of PFAS and Phthalates? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:415-427. [PMID: 36562547 PMCID: PMC9876422 DOI: 10.1021/acs.est.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic brought new emphasis on indoor air quality. However, few studies have investigated the impact of air filtration, a COVID-mitigation approach, on indoor air concentrations of semivolatile organic compounds (SVOCs). Using a quasi-experimental design, we quantified the impact of a relatively low-cost "do-it-yourself" air filter (Corsi-Rosenthal Box; CR Box) on indoor air concentrations of 42 PFAS and 24 other SVOCs. We sampled air before (October-November 2021) and during (February-March 2022) deployment of CR Boxes in 17 rooms located in an occupied Providence, Rhode Island office building. We measured sound levels in rooms with CR Boxes operating and not operating. While CR Boxes were deployed, concentrations of seven PFAS (N-EtFOSE, N-EtFOSA, FBSA, PFBS, PFHxS, PFOS, PFNA) were 28-61% lower and concentrations of five phthalates (DMP, DEP, DiBP, BBzP, DCHP) were 29-62% lower. Concentrations of five PFAS and one phthalate increased 23-44% during the intervention period, but the 95% CI of most of these estimates included the null. Daytime sound levels increased 5.0 dB when CR Boxes were operating. These results indicate that CR Boxes reduced exposure to several lower-volatility phthalates and sulfonated PFAS previously reported to be found in office building materials and products, with potentially distracting increases in sound levels.
Collapse
Affiliation(s)
- Robin
E. Dodson
- Silent
Spring Institute, Newton, Massachusetts02460, United States
| | - Katherine E. Manz
- School
of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Shaunessey R. Burks
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Richa Gairola
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Nina F. Lee
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Yun Liu
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Erica D. Walker
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Joseph M. Braun
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
16
|
Chang CL, Chen HT, Chen CY, Chen EY, Lin KT, Jung CC. Gas-phase and PM 2.5-bound phthalates in nail salons: characteristics, exposure via inhalation, and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6146-6158. [PMID: 35987852 DOI: 10.1007/s11356-022-22606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the characteristics of, exposure to, and factors influencing gas-phase and PM2.5-bound phthalates (PAEs) in nail salons. Data on both indoor and outdoor gas-phase and PM2.5-bound PAEs, carbon dioxide (CO2), temperature, and relative humidity were collected in nail salons. We also used questionnaires to survey building characteristics and occupants' behaviors. The average total gas-phase and PM2.5-bound PAE concentrations indoors were higher than those outdoors by 6 and 3 times, respectively. Diethyl phthalate, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and di-(2-ethylhexyl) phthalate (DEHP) were the predominant compounds among both the gas-phase and PM2.5-bound PAEs in indoor air. The volume of the salon's space or the difference of indoor and outdoor CO2 concentrations (dCO2) was significantly associated with indoor PAE concentrations. The ratios of PM2.5-bound to gas-phase PAEs, especially high-molecular-weight PAEs, were positively associated with the dCO2 concentrations. Higher ratios of indoor to outdoor PM2.5-bound DiBP, DnBP, and DEHP concentrations were discovered when more clients visited each day. Building characteristics, ventilation conditions, and occupants' activities have influences on the gas-phase and particle-phase PAEs. The study identifies the characteristics of gas-phase and PM2.5-bound PAEs in nail salons and their influencing factors.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Hui-Tzu Chen
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, School of Safety and Health Science, Chang Jung Christian University, Tainan City, Taiwan
- Occupational Environment and Food Safety Research Center, Chang Jung Christian University, Tainan City, Taiwan
| | - En-Yu Chen
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan
| | - Kuan-Ting Lin
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan
| | - Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
17
|
DeLay K, Lin EZ, Koelmel JP, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Personal air pollutant exposure monitoring in South African children in the VHEMBE birth cohort. ENVIRONMENT INTERNATIONAL 2022; 170:107524. [PMID: 36260950 PMCID: PMC9982749 DOI: 10.1016/j.envint.2022.107524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease associated with environmental exposures disproportionately impacts residents of low- and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p,p'-DDD and p,p'-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures.
Collapse
Affiliation(s)
- Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Binder S, Rastak N, Karg E, Huber A, Kuhn E, Dragan GC, Monsé C, Breuer D, Di Bucchianico S, Delaval MN, Oeder S, Sklorz M, Zimmermann R. Construction of an In Vitro Air-Liquid Interface Exposure System to Assess the Toxicological Impact of Gas and Particle Phase of Semi-Volatile Organic Compounds. TOXICS 2022; 10:730. [PMID: 36548563 PMCID: PMC9782028 DOI: 10.3390/toxics10120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.
Collapse
Affiliation(s)
- Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - George C. Dragan
- Berufsgenossenschaft Handel und Warenlogistik (BGHW), 80639 Munich, Germany
| | - Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), 44789 Bochum, Germany
| | - Dietmar Breuer
- Institute of Occupational Safety of the German Social Accident Insurance (IFA), 53757 Sankt Augustin, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Mathilde N. Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
19
|
Liu S, Ke F, Shi M, Wang C, Chen Y, Wang H. Emission characteristics of volatile organic compounds from regenerated PET fibers based on the headspace gas chromatograph. J Appl Polym Sci 2022. [DOI: 10.1002/app.53391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shanshan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai China
| | - Fuyou Ke
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai China
| | - Mingyue Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai China
| | - Chaosheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai China
| | - Ye Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai China
| |
Collapse
|
20
|
Huang J, Wang X, Guo J, Wang X, Ji M, Huang L. Partition of phthalates among air, PM 2 .5 , house dust and skin in residential indoor environments. INDOOR AIR 2022; 32:e13176. [PMID: 36437652 DOI: 10.1111/ina.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
As a group of typical endocrine disrupters, phthalates are simultaneously present in a variety of environmental media and enter human body through multiple exposure pathways. In this study, field monitoring data were used to characterize the skin-air (Klg ), dust-air (Kd ), and PM2.5 -air (Kp ) partition coefficients of DiBP, DnBP, and DEHP. The median values of log(Klg ) in the summer and winter were 7.654 and 7.932, 7.265 and 7.902, 9.419 and 9.015 for DiBP, DnBP, and DEHP, respectively, and Klg was significantly higher in the winter. The median Kd (m3 /mg) in the summer (0.036-0.151 for DiBP, 0.021-0.036 for DnBP and 1.479-4.069 for DEHP) were significantly higher than the counterparts in the winter (0.027-0.065 for DiBP, 0.022-0.245 for DnBP, and 0.140-3.250 for DEHP). In addition, Kd was associated with material of surface and residence time of dust. The Kp values (m3 /μg) of DiBP, DnBP, and DEHP in the summer (0.053, 0.015, and 0.021) were also significantly higher than the counterparts in the winter (0.011, 0.004, and 0.025). The partition of phthalates was influenced by built environment, such as temperature, humidity, ventilation, indoor chemistry, smoking, and building age. Except Klg , there was substantial discrepancy between the estimates of K with empirical equations and the values of K based on field monitoring data in our study.
Collapse
Affiliation(s)
- Jinding Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Xiaoke Wang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Jifeng Guo
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Xiaolu Wang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Mengli Ji
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, China
- Department of Building Science, Institute of Built Environment, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Chen J, Ward TJ, Ho SSH, Ho KF. Occurrence and Risk Assessment of Personal PM 2.5-Bound Phthalates Exposure for Adults in Hong Kong. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13425. [PMID: 36294006 PMCID: PMC9602720 DOI: 10.3390/ijerph192013425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
We performed personal PM2.5 monitoring involving 56 adult residents in Hong Kong. Additionally, paired personal and residential indoor fine particle (PM2.5) samples were collected from 26 homes and from 3 fixed monitoring locations (i.e., outdoor samples). Six PM2.5-bound phthalate esters (PAEs)-including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)-were measured using a thermal desorption-gas chromatography/mass spectrometer method. Average ∑6PAEs (i.e., summation of six PAE congeners) concentrations in personal PM2.5 exposure (699.4 ng/m3) were comparable with those in residential indoors (646.9 ng/m3), and both were slightly lower than the outdoor levels. DEHP was the most abundant PAE congener (80.3%-85.0%) and found at the highest levels in different exposure categories, followed by BBP, DnBP, and DnOP. Strong correlations were observed between DEHP with DnBP (rs: 0.81-0.90; p < 0.01), BBP (rs: 0.81-0.90; p < 0.01), and DnOP (rs: 0.87-0.93; p < 0.01) in each exposure category. However, no apparent intercorrelations were shown for PAE congeners. Higher indoor concentrations and a stronger correlation between DMP and DEP were found compared with outdoor concentrations. Principal component analysis affirmed heterogeneous distribution and notable variations in PAE sources across different exposure categories. The average daily intakes of ∑6PAEs and DEHP via inhalation were 0.14-0.17 and 0.12-0.16 μg/kg-day for adults in Hong Kong. A time-weighted model was used to estimate PAE exposures incorporating residential indoor and outdoor exposure and time activities. The inhalation cancer risks attributable to measured and estimated personal exposure to DEHP exceeded the U.S. EPA's benchmark (1 × 10-6). The results provide critical information for mitigation strategies, suggesting that PAEs from both ambient and indoor sources should be considered when exploring the inhalation health risks of PAEs exposure.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Real Estate and Construction, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| | - Tony J. Ward
- School of Public and Community Health Sciences, University of Montana, Missoula, MT 59801, USA
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Yang L, Ma Y, Chen Y, Hollmann F, Wang Y. A Bienzymatic Cascade for the Complete Hydrolysis of Phthalic Acid Esters. ChemistrySelect 2022. [DOI: 10.1002/slct.202201992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liu Yang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yunjian Ma
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Neher's Biophysics Laboratory for Innovative Drug Discovery State Key Laboratory of Quality Research in Chinese Medicine Macau University of Science and Technology Taipa, Macau China
| | - Yebao Chen
- School of Bioscience and Bioengineering South China University of Technology Guangzhou 510006 China
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629HZ Delft, The Netherlands
| | - Yonghua Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co. Ltd Foshan Guangdong 528200 China
| |
Collapse
|
23
|
Prasad B, Prasad KS, Dave H, Das A, Asodariya G, Talati N, Swain S, Kapse S. Cumulative human exposure and environmental occurrence of phthalate esters: A global perspective. ENVIRONMENTAL RESEARCH 2022; 210:112987. [PMID: 35219627 DOI: 10.1016/j.envres.2022.112987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the current investigation, the distribution and extent of human exposure of phthalate esters (PAEs) have been reported on global extent based on computed indices. The proposed indices were calculated based on environmental concentrations, toxicity, occurrence, environmental fate, and transport of PAEs. The cumulative phthalate exposure index (PEI) based on the phthalate pollution index (PPI) was mapped on a global scale based on the existing data reported in the literature. The results revealed that the PAEs are heterogeneously distributed globally, and about 30% of total environmental PAEs are ultimately exposed to the average human being. The comparative distribution of PAEs in various environmental compartments including urban-rural, indoor-outdoor, home-dormitory-classroom, and their exposure likelihood were studied based on indices. More than 90% of total human exposure of PAEs was observed to be from indoor environmental compartments. Significantly high exposure was observed in the urban population as compared to the rural population. About 70% of the total phthalate pollution sub-index of dust was observed from home followed by a classroom of ∼15% and then a dormitory of ∼10%. In addition, the indices were equated with the current human development index (HDI), gross national income (GNI), and exposure of particulate matter of each country. Based on current findings, the population living in the areas where >20 μg/m3 of particulate matter has been reported are possibly exposed with higher PAEs. The indices were highly diversified at high HDI (0.9) values and between 40,000 and 50,000 $ per capita income due to different usage of phthalate-containing products, disposal, and extensive monitoring work carried out by the developed and developing countries.
Collapse
Affiliation(s)
- Bablu Prasad
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Kumar Suranjit Prasad
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Hemen Dave
- Institute of Research and Development, Gujarat Forensic Sciences University (GFSU) Gandhinagar, Gujarat, India
| | - Aditee Das
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Gargi Asodariya
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Nisha Talati
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Sunita Swain
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Shruti Kapse
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
24
|
Modeling di (2-ethylhexyl) Phthalate (DEHP) and Its Metabolism in a Body's Organs and Tissues through Different Intake Pathways into Human Body. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095742. [PMID: 35565138 PMCID: PMC9101911 DOI: 10.3390/ijerph19095742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Phthalate esters (PAEs) are ubiquitous in indoor environments as plasticizers in indoor products. Residences are often exposed to indoor PAEs in the form of gas, particles, settled dust, and surface phases. To reveal the mechanism behind the accumulation of PAEs in different tissues or organs such as the liver and the lungs when a person exposed to indoor PAEs with different phases, a whole-body physiologically based pharmacokinetic model for PAEs is employed to characterize the dynamic process of phthalates by different intake pathways, including oral digestion, dermal adsorption, and inhalation. Among three different intake pathways, dermal penetration distributed the greatest accumulation of DEHP in most of the organs, while the accumulative concentration through oral ingestion was an order of magnitude lower than the other two doses. Based on the estimated parameters, the variation of di-ethylhexyl phthalate (DEHP) and mono (2-ethylhexyl) phthalate (MEHP) concentration in the venous blood, urine, the liver, the thymus, the pancreas, the spleen, the lungs, the brain, the heart, and the kidney for different intake scenarios was simulated. The simulated results showed a different accumulation profile of DEHP and MEHP in different organs and tissues and demonstrated that the different intake pathways will result in different accumulation distributions of DEHP and MEHP in organs and tissues and may lead to different detrimental health outcomes.
Collapse
|
25
|
Salthammer T, Morrison GC. Temperature and indoor environments. INDOOR AIR 2022; 32:e13022. [PMID: 35622714 DOI: 10.1111/ina.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 06/15/2023]
Abstract
From the thermodynamic perspective, the term temperature is clearly defined for ideal physical systems: A unique temperature can be assigned to each black body via its radiation spectrum, and the temperature of an ideal gas is given by the velocity distribution of the molecules. While the indoor environment is not an ideal system, fundamental physical and chemical processes, such as diffusion, partitioning equilibria, and chemical reactions, are predictably temperature-dependent. For example, the logarithm of reaction rate and equilibria constants are proportional to the reciprocal of the absolute temperature. It is therefore possible to have non-linear, very steep changes in chemical phenomena over a relatively small temperature range. On the contrary, transport processes are more influenced by spatial temperature, momentum, and pressure gradients as well as by the density, porosity, and composition of indoor materials. Consequently, emergent phenomena, such as emission rates or dynamic air concentrations, can be the result of complex temperature-dependent relationships that require a more empirical approach. Indoor environmental conditions are further influenced by the thermal comfort needs of occupants. Not only do occupants have to create thermal conditions that serve to maintain their core body temperature, which is usually accomplished by wearing appropriate clothing, but also the surroundings must be adapted so that they feel comfortable. This includes the interaction of the living space with the ambient environment, which can vary greatly by region and season. Design of houses, apartments, commercial buildings, and schools is generally utility and comfort driven, requiring an appropriate energy balance, sometimes considering ventilation but rarely including the impact of temperature on indoor contaminant levels. In our article, we start with a review of fundamental thermodynamic variables and discuss their influence on typical indoor processes. Then, we describe the heat balance of people in their thermal environment. An extensive literature study is devoted to the thermal conditions in buildings, the temperature-dependent release of indoor pollutants from materials and their distribution in the various interior compartments as well as aspects of indoor chemistry. Finally, we assess the need to consider temperature holistically with regard to the changes to be expected as a result of global emergencies such as climate change.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Glenn C Morrison
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Guo P, Lin EZ, Koelmel JP, Ding E, Gao Y, Deng F, Dong H, Liu Y, Cha Y, Fang J, Shi X, Tang S, Godri Pollitt KJ. Exploring personal chemical exposures in China with wearable air pollutant monitors: A repeated-measure study in healthy older adults in Jinan, China. ENVIRONMENT INTERNATIONAL 2021; 156:106709. [PMID: 34153889 DOI: 10.1016/j.envint.2021.106709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 05/18/2023]
Abstract
The health impact of airborne contaminants has been challenging to assess due to current limitations in measurement technologies. The emergence of wearable passive samplers coupled with high resolution mass spectrometry (HR-MS) chemical analysis has enabled comprehensive characterization of personal exposures. We conducted a repeated-measure study among 84 older adults in Jinan, China, as part of the Biomarkers for Air Pollutants Exposure (China BAPE) study. Study objectives were: 1) to characterize the occurrence, magnitude, and distribution of personal exposure to airborne contaminants; 2) to evaluate the temporal variation of chemical exposures across the study population; and 3) to identify behavioral and environmental factors that influence the observed variance in chemical exposures. The FreshAir wristband was worn by participants for three consecutive days each month from September 2018 to January 2019 and collected with paired time-activity logs. Passive air samplers were also deployed in parallel at a local outdoor air monitoring station. Spearman's Rho trend test and trajectory cluster analysis were used to identify exposure trends and variation patterns, respectively. Out of the 70 airborne compounds of potential concern screened, 26 compounds from 10 chemical classes were found to be above detection thresholds across >70% of the study population. Personal exposures were predominantly characterized by nine polycyclic aromatic hydrocarbons (PAHs), four phthalates, three nitroaromatics, and two volatile organic compounds (VOCs). Phthalate personal exposures were positively correlated with outdoor temperatures while the inverse relationship was observed for certain PAHs (p < 0.05). Specifically, dimethyl phthalate (rs = 0.31) decreased as temperatures declined, while nitrobenzene (rs = -0.35) and naphthalene (rs = -0.40) increased as temperatures decreased. Compared to levels measured at the outdoor air monitoring site, personal exposure of phthalates was elevated (p < 0.05) and hexachlorobutadiene was lower across participants (p < 0.01). Personal exposure of these chemicals was further found to be weakly associated with daily duration participants spent outdoors. Individuals formed distinct clusters based on trajectories of chemical exposures across the sampling period (September to January), potentially suggestive of distinct emission sources. In conclusion, we demonstrate the feasibility of characterizing the occurrence and magnitude of personal exposure to airborne chemical contaminants using passive wristband samplers. The temporal variability of these personal exposure profiles was highlighted and with distinct trends identified across different groups of individuals. Future studies will integrate this data with other omics datasets collected from this population of Chinese older adults to investigate associations between exposure profiles and health relevant biomarkers, to provide evidence in feasibility of disease prevention through environmental improvements.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Zhang ZM, Wang LY, Gu YY, Sun AL, You JJ, Shi XZ, Chen J. Probing the contamination characteristics, mobility, and risk assessments of typical plastic additive-phthalate esters from a typical coastal aquaculture area, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125931. [PMID: 34492861 DOI: 10.1016/j.jhazmat.2021.125931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 06/13/2023]
Abstract
Contamination characteristics, equilibrium partitioning and risk assessment of phthalate esters (PAEs) were investigated in seawater, sediment and biological samples collected from the Xiangshan Bay area during an annual investigation between January and November 2019. PAE concentrations detected in the mariculture environment in surface seawater, sediment, and biological samples were 172-3365 ng/L, 190-2430 μg/kg (dry weight [dw]), and 820-4926 μg/kg (dw), respectively. The dominant congeners in different media included di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and di(2-ethylhexyl) phthalate (DEHP). The inner bay and the bay mouth were the gathering area of PAEs and heavily influenced by the mariculture activities, river inputs, and anthropogenic activities. The bioaccumulation of PAEs demonstrated benthic feeding fishes with relatively high trophic levels concentrated high levels of phthalates. The mobility of PAEs in sediment-seawater showed that the transfer tendency of low-molecular weight species was from the sediment to the water, which was in contrast with those of high-molecular weight PAEs. DEHP, DiBP and DnBP had various degrees of ecological risks in the aquatic environment, whereas only the DiBP posed potential risks in sediments. The current assessment of carcinogenic and noncarcinogenic risks posed by fish consumption were within acceptable limits for humans.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liu-Yong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Yan-Yu Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jin-Jie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
28
|
Qu M, Wang L, Liu F, Zhao Y, Shi X, Li S. Characteristics of dust-phase phthalates in dormitory, classroom, and home and non-dietary exposure in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38159-38172. [PMID: 33725303 DOI: 10.1007/s11356-021-13347-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The phthalate concentrations in dust from undergraduate dormitories, classrooms, and homes in Beijing, China, were measured in April 2017. We analyzed the characteristics of phthalates in dust from three environments. In addition, we estimated the daily intake of phthalates via three pathways using Monte Carlo simulations. The detection frequency of eight phthalates in dust ranges from 74.5 to 100%. Di (2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) are the most abundant phthalates. The median proportion of DEHP in dust is the highest, ranging from 67.1 to 72.9%. The PMF results indicated that two, four, and three types of phthalate sources exist in home, dormitory, and classroom, respectively. The differences in the phthalate concentrations between sunny and shaded rooms and urban and suburban classrooms are insignificant, whereas that between male and female dormitories is significant. The total daily intake of DEHP, DnBP, and DiBP ranges from 97.3 to 336 ng/ (kg·day). The oral intake for DEHP in classrooms and the dermal intake of DnBP and DiBP in homes are the highest. The carcinogenic risk of DEHP to university students is the highest in classrooms and the total carcinogenic risk of the three environments is 4.70 × 10-6.
Collapse
Affiliation(s)
- Meinan Qu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Fang Liu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yi Zhao
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiangzhao Shi
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Sijia Li
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|