1
|
Qin W, Zheng S, Zhou L, Liu X, Chen T, Wang X, Li Q, Zhao Y, Wang D, Xu G. High-Coverage Metabolomics Reveals Gut Microbiota-Related Metabolic Traits of Type-2 Diabetes in Serum. J Proteome Res 2025; 24:1649-1661. [PMID: 40130449 DOI: 10.1021/acs.jproteome.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic perturbations of the gut microbiome have been implicated in the pathogenesis of multiple human diseases, including type-2 diabetes (T2D). However, our understanding of the global metabolic alterations of the gut microbiota in T2D and their functional roles remains limited. To address this, we conducted a high-coverage metabolomics profiling analysis of serum samples from 1282 Chinese individuals with and without T2D. Among the 220 detected microbiota-associated compounds detected, 111 were significantly altered, forming a highly interactive regulatory network associated with T2D development. Pathway enrichment and correlation analyses revealed aberrant metabolic pathways, primarily including the activation of pyrimidine metabolism, unsaturated fatty acid biosynthesis, and diverse amino acid metabolisms such as Tryptophan metabolism, Lysine metabolism, and Branched-chain amino acid biosynthesis. A microbiota-dependent biomarker panel, comprising pipecolinic acid, methoxysalicylic acid, N-acetylhistamine, and 3-hydroxybutyrylcarnitine, was defined and validated with satisfactory sensitivity (>78%) for large-scale, population-based T2D screening. The functional role of a gut microbial product, N-acetylhistamine, was further elucidated in T2D progression through its inhibition of adenosine monophosphate-activated protein kinase phosphorylation. Overall, this study expands our understanding of gut microbiota-driven metabolic dysregulation in T2D and suggests that monitoring these metabolic changes could facilitate the diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Ying Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Rao J, Ding C, Shi Y, Zhou W, Yu C, Wang T, Zhu L, Huang X, Bao H, Cheng X. Association of body fat percentage with diabetes in hypertensive adults of different genders: a cross-sectional study. Front Endocrinol (Lausanne) 2025; 16:1467886. [PMID: 40104135 PMCID: PMC11913714 DOI: 10.3389/fendo.2025.1467886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Background While numerous epidemiological studies on body fat and diabetes already exist, there remains a scarcity of evidence regarding gender differences within hypertensive populations. The aim of this study was to examine gender-specific differences in the association of body fat percentage (BFP) with diabetes. Methods and results This cross-sectional study encompassed 14,228 hypertensive patients from the Chinese Hypertension Registry. An easily obtainable anthropometric parameter, Clínica University de Navarra-Body Adiposity Estimator (CUN-BAE) equation was used to calculate body fat percentage (BFP). Diabetes was defined as the self-report of a previous diagnosis of diabetes, fasting blood glucose ≥ 7.0mmol/l, and the use of antidiabetic agents. The average BFP was 24.5% in men and 37.0% in women. Multivariate logistic regression analysis revealed a dose-dependent relationship between BFP and the risk of diabetes in men (odds ratio [OR] 1.09, 95% CI 1.07, 1.11) and women (OR 1.06, 95% CI 1.04, 1.07) while considering BFP as a continuous variable. After taking BFP as the quartile across different genders, compared with Q1 group, the risk of diabetes in Q4 group increased 176% (OR 2.76, 95% CI 2.15, 3.55) in men and 66% (OR 1.66, 95% CI 1.36, 2.03) in women. Furthermore, the positive association was found to be more significant in men, whether BFP was considered a continuous variable (P for interaction = 0.016) or a categorical variable in quartiles (P for interaction = 0.008). In addition, the positive association between BFP and diabetes remained consistent across various subgroups. Conclusion BFP is positively associated with the increased risk of diabetes in hypertensive population, especially in men.
Collapse
Affiliation(s)
- Jingan Rao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Congcong Ding
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Yumeng Shi
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Wei Zhou
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Yu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Wang
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lingjuan Zhu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Li L, Ji W, Wang Z, Cheng Y, Gu K, Wang Y, Zhou Y. Air Pollution and Diabetes Mellitus: Association and Validation in a Desert Area in China. J Clin Endocrinol Metab 2025; 110:e851-e860. [PMID: 38593183 DOI: 10.1210/clinem/dgae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
CONTEXT Despite the growing evidence pointing to the detrimental effects of air pollution on diabetes mellitus (DM), the relationship remains poorly explored, especially in desert-adjacent areas characterized by high aridity and pollution. OBJECTIVE We conducted a cross-sectional study with health examination data from more than 2.9 million adults in 2 regions situated in the southern part of the Taklamakan Desert, China. METHODS We assessed 3-year average concentrations (2018-2020) of particulate matter (PM1, PM2.5, and PM10), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) through a space-time extra-trees model. After adjusting for various covariates, we employed generalized linear mixed models to evaluate the association between exposure to air pollutants and DM. RESULTS The odds ratios for DM associated with a 10 µg/m3 increase in PM1, PM2.5, PM10, CO, and NO2 were 1.898 (95% CI, 1.741-2.070), 1.07 (95% CI, 1.053-1.086), 1.013 (95% CI, 1.008-1.018), 1.009 (95% CI, 1.007-1.011), and 1.337 (95% CI, 1.234-1.449), respectively. Notably, men, individuals aged 50 years or older, those with lower educational attainment, nonsmokers, and those not engaging in physical exercise appeared to be more susceptible to the adverse effects of air pollution. Multiple sensitivity analyses confirmed the stability of these findings. CONCLUSION Our study provides robust evidence of a correlation between prolonged exposure to air pollution and the prevalence of DM among individuals living in desert-adjacent areas. This research contributes to the expanding knowledge on the relationship between air pollution exposure and DM prevalence in desert-adjacent areas.
Collapse
Affiliation(s)
- Lin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weidong Ji
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhe Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yinlin Cheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Kuiying Gu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yushan Wang
- Center of Health Management, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Lu SL, Pan ZH, Cui Z, Wang JL, Yang JL, Lv YF, Cao CY, Huang XF. AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse. Life Sci 2025; 362:123344. [PMID: 39736351 DOI: 10.1016/j.lfs.2024.123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo. In this study, we developed an AAV2-mediated gene delivery system incorporating an Albumin-binding domain (ABD) fused to FGF21, and we evaluated its effects in a type 2 diabetic mouse model. METHODS The plasmids pAAV-FGF21-Luciferase, pHelper, and the capsid plasmid were transfected into HEK293T cells to generate recombinant AAV (rAAV) virus. A type 2 diabetes mellitus (T2DM) mouse model was established for evaluation. The rAAV was administered via tail vein injection into the mice. The effects of rAAV injection on various parameters were assessed using commercial kits. Histological changes in the liver and adipose tissue of T2DM mice were examined using hematoxylin and eosin (H&E) staining. RESULTS The data showed that the inclusion of ABD significantly prolonged the half-life of FGF21 in the serum of mice. Additionally, AAV2-mediated delivery of ABD-FGF21 to the liver resulted in sustained gene expression and a significant increase in circulating FGF21 levels in mice. Treatment with AAV2-ABD-FGF21 led to several benefits, including reduced fasting glucose, improved insulin sensitivity, decreased triglyceride and total cholesterol levels, and improved body weight in T2DM mice. Furthermore, serum analysis and histological examination showed no significant liver damage at the study endpoint after seven weeks. CONCLUSION In conclusion, we have developed a novel strategy for producing long-acting FGF21 using the AAV vector, and AAV2-ABD-FGF21 shows promise as a therapeutic approach for type 2 diabetes mellitus and other glycolipid metabolic disorders.
Collapse
Affiliation(s)
- Sen-Lin Lu
- College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Zhi-Hao Pan
- College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Zhi Cui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Ji-Li Wang
- College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Jian-Lin Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Ya-Feng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Chun-Yu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xiao-Fei Huang
- College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
5
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025; 7:16-34. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
7
|
Shen Y, Jiang L, Xie X, Meng X, Xu X, Dong J, Yang Y, Xu J, Zhang Y, Wang Q, Shen H, Zhang Y, Yan D, Zhou L, Jiang Y, Chen R, Kan H, Cai J, He Y, Ma X. Long-Term Exposure to Fine Particulate Matter and Fasting Blood Glucose and Diabetes in 20 Million Chinese Women of Reproductive Age. Diabetes Care 2024; 47:1400-1407. [PMID: 38776453 DOI: 10.2337/dc23-2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Evidence of the associations between fine particulate matter (PM2.5) and diabetes risk from women of reproductive age, in whom diabetes may have adverse long-term health effects for both themselves and future generations, remains scarce. We therefore examined the associations of long-term PM2.5 exposure with fasting blood glucose (FBG) level and diabetes risk in women of reproductive age in China. RESEARCH DESIGN AND METHODS This study included 20,076,032 women age 20-49 years participating in the National Free Preconception Health Examination Project in China between 2010 and 2015. PM2.5 was estimated using a satellite-based model. Multivariate linear and logistic regression models were used to examine the associations of PM2.5 exposure with FBG level and diabetes risk, respectively. Diabetes burden attributable to PM2.5 was estimated using attributable fraction (AF) and attributable number. RESULTS PM2.5 showed monotonic relationships with elevated FBG level and diabetes risk. Each interquartile range (27 μg/m3) increase in 3-year average PM2.5 concentration was associated with a 0.078 mmol/L (95% CI 0.077, 0.079) increase in FBG and 18% (95% CI 16%, 19%) higher risk of diabetes. The AF attributed to PM2.5 exposure exceeding 5 μg/m3 was 29.0% (95% CI 27.5%, 30.5%), corresponding to an additional 78.6 thousand (95% CI 74.5, 82.6) diabetes cases. Subgroup analyses showed more pronounced diabetes risks in those who were overweight or obese, age >35 years, less educated, of minority ethnicity, registered as a rural household, and residing in western China. CONCLUSIONS We found long-term PM2.5 exposure was associated with higher diabetes risk in women of reproductive age in China.
Collapse
Affiliation(s)
- Yang Shen
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Lifang Jiang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xia Meng
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jing Dong
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Jihong Xu
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Ya Zhang
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Haiping Shen
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Lu Zhou
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Yixuan Jiang
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Jing Cai
- Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
8
|
Yang T, Wu C, Li Y, Wang C, Mao Z, Huo W, Li J, Li Y, Xing W, Li L. Association of short-chain fatty acids and the gut microbiome with type 2 diabetes: Evidence from the Henan Rural Cohort. Nutr Metab Cardiovasc Dis 2024; 34:1619-1630. [PMID: 38653672 DOI: 10.1016/j.numecd.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Human studies about short-chain fatty acids (SCFAs), the gut microbiome, and Type 2 diabetes (T2DM) are limited. Here we explored the association between SCFAs and T2DM and the effects of gut microbial diversity on glucose status in rural populations. METHODS AND RESULTS We performed a cross-sectional study from the Henan Rural Cohort and collected stool samples. Gut microbiota composition and faecal SCFA concentrations were measured by 16S rRNA and GC-MS. The population was divided based on the tertiles of SCFAs, and logistic regression models assessed the relationship between SCFAs and T2DM. Generalized linear models tested the interactions between SCFAs and gut microbial diversity on glucose indicators (glucose, HbAlc and insulin). Compared to the lowest tertile of total SCFA, acetate and butyrate, the highest tertile exhibited lower T2DM prevalence, with ORs and 95% CIs of 0.291 (0.085-0.991), 0.160 (0.044-0.574) and 0.171 (0.047-0.620), respectively. Restricted cubic spline demonstrated an approximately inverse S-shaped association. We also noted interactions of the ACE index with the highest tertile of valerate on glucose levels (P-interaction = 0.022) and the Shannon index with the middle tertile of butyrate on insulin levels (P-interaction = 0.034). Genus Prevotella_9 and Odoribacter were inversely correlated with T2DM, and the genus Blautia was positively associated with T2DM. These bacteria are common SCFA-producing members. CONCLUSIONS Inverse S-shaped associations between SCFAs (total SCFA, acetate, and butyrate) and T2DM were observed. Valerate and butyrate modify glucose status with increasing gut microbial diversity.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Cuiping Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuqian Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenqian Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
9
|
Tang LT, Feng L, Cao HY, Shi R, Luo BB, Zhang YB, Liu YM, Zhang J, Li SY. Investigation of the causal relationship between inflammatory bowel disease and type 2 diabetes mellitus: a Mendelian randomization study. Front Genet 2024; 15:1325401. [PMID: 38435063 PMCID: PMC10904574 DOI: 10.3389/fgene.2024.1325401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) and inflammatory bowel disease (IBD) have been associated, according to various epidemiological research. This study uses Mendelian randomization (MR) to investigate the causal link between T2DM and IBD. Methods: To investigate the causal relationship between IBD and T2DM risk using European population data from the genome-wide association study (GWAS) summary datasets, we constructed a two-sample MR study to evaluate the genetically predicted impacts of liability towards IBD outcomes on T2DM risk. As instrumental variables (IVs), we chose 26 single nucleotide polymorphisms (SNPs) associated with IBD exposure data. The European T2DM GWAS data was obtained from the IEU OpenGWAS Project database, which contains 298,957 cases as the outcome data. The causal relationship between T2DM and IBD using a reverse MR analysis was also performed. Results: The two-sample MR analysis, with the Bonferroni adjustment for multiple testing, revealed that T2DM risk in Europeans is unaffected by their IBD liability (odds ratio (OR): 0.950-1.066, 95% confidence interval (CI): 0.885-1.019, p = 0.152-0.926). The effects of liability to T2DM on IBD were not supported by the reverse MR analysis either (OR: 0.739-1.131, 95% confidence interval (CI): 0.651-1.100, p = 0.058-0.832). MR analysis of IBS on T2DM also have no significant causal relationship (OR: 0.003-1.007, 95% confidence interval (CI): 1.013-5.791, p = 0.069-0.790). FUMA precisely mapped 22 protein-coding genes utilizing significant SNPs of T2DM acquired from GWAS. Conclusion: The MR study showed that the existing evidence did not support the significant causal effect of IBD on T2DM, nor did it support the causal impact of T2DM on IBD.
Collapse
Affiliation(s)
- Ling-tong Tang
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Lei Feng
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Hui-ying Cao
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Rui Shi
- Department of Clinical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bei-bei Luo
- Department of Clinical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-bi Zhang
- Department of Clinical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-mei Liu
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jian Zhang
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Shuang-yue Li
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Hou X, Mao Z, Song X, Li R, Liao W, Kang N, Zhang C, Liu X, Chen R, Huo W, Wang C, Hou J. Synergistic association of long-term ozone exposure and solid fuel use with biomarkers of advanced fibrosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85318-85329. [PMID: 37382821 DOI: 10.1007/s11356-023-28337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
This study aims to explore the association of combined exposure to cooking fuel type and ambient ozone (O3) levels with hepatic fibrosis indices among rural adults. A total of 21,010 participants were derived from the Henan Rural Cohort. Information regarding cooking fuel type was collected through a questionnaire, and the concentration of ground-level O3 for each subject was obtained from the Tracking Air Pollution in China (TAP) dataset. A generalized linear model was used to examine the independent association of cooking fuel type or O3 exposure with hepatic fibrosis indices (FIB-4, APRI, and AST/ALT), and their possible interactions with advanced fibrosis were conducted. Compared to clean fuel users, solid fuel users had increased the risk of advanced fibrosis, the adjusted odds ratio (OR) of its assessment by FIB-4 1.240 (1.151, 1.336), by APRI 1.298 (1.185, 1.422), and by AST/ALT 1.135 (1.049, 1.227), respectively. Compared to low O3 exposure, the adjusted ORs of advanced fibrosis assessed by FIB-4, APRI, and AST/ALT in women with high O3 exposure were correspondingly 1.219 (1.138, 1.305), 1.110 (1.017, 1.212), and 0.883 (0.822, 0.949). The adjusted ORs of advanced fibrosis assessed by FIB-4, APRI, and AST/ALT for solid fuel users with high O3 exposure relative to clean fuel users with low O3 exposure in women were 1.557 (1.381, 1.755), 1.427 (1.237, 1.644), and 0.979 (0.863, 1.108), respectively. Significant additive effect of O3 exposure and solid fuel use on FIB-4-defined advanced fibrosis was observed in women, which was quantified by RERI (0.265, 95%CI: 0.052, 0.477), AP (0.170 95%CI: 0.045, 0.295), and SI (1.906, 95%CI: 1.058, 3.432). Solid fuel users with high O3 exposure were significantly associated with elevated hepatic fibrosis indices among rural women, suggesting that poor air quality may induce hepatocellular injury, and women might be more vulnerable to air pollution. The findings indicate that using cleaner fuels in cooking is an effective measure to maintain sustainable development of the environment and gain beneficial effect on human health. Clinical trial registration: The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaoqin Song
- Physical Examination Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
11
|
Ding Z, Zhang L, Niu M, Zhao B, Liu X, Huo W, Hou J, Mao Z, Wang Z, Wang C. Stroke prevention in rural residents: development of a simplified risk assessment tool with artificial intelligence. Neurol Sci 2023; 44:1687-1694. [PMID: 36653543 DOI: 10.1007/s10072-023-06610-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Limited studies have focused on the risk assessment of stroke in rural regions. Moreover, the application of artificial intelligence in stroke risk scoring system is still insufficient. This study aims to develop a simplified and visualized risk score with good performance and convenience for rural stroke risk assessment, which is combined with a machine learning (ML) algorithm. METHODS Participants of the Henan Rural Cohort were enrolled in this study. The total participants (n = 38,322) were randomly split into a train set and a test set in the ratio of 7:3. An ML algorithm was used to select variables and the logistic regression was then applied to construct the scoring system. The C-statistic and the Brier score (BS) were used to evaluate the discrimination and calibration. The Framingham stroke risk profile (FSRP) and the self-reported stroke risk function (SRSRF) were chosen to be compared. RESULTS The Rural Stroke Risk Score (RSRS) was produced in this study, including age, drinking status, triglyceride, type 2 diabetes mellitus, hypertension, waist circumference, and family history of stroke. On validation, the C-statistic was 0.757 (95% CI 0.749-0.765) and the BS was 0.058 in the test set. In addition, the discrimination of RSRS was 6.02% and 7.34% higher than that of the FSRP and SRSRF, respectively. CONCLUSIONS A well-performed scoring system for assessing stroke risk in rural residents was developed in this study. This risk score would facilitate stroke screening and the prevention of cardiovascular disease in economically underdeveloped areas.
Collapse
Affiliation(s)
- Zhongao Ding
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
| | - Liying Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
- Department of Software Engineering, School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Miaomiao Niu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
| | - Bo Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China
| | - Zhenfei Wang
- Department of Software Engineering, School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, Zhengzhou, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
12
|
Kang N, Wu R, Liao W, Zhang C, Liu X, Mao Z, Huo W, Hou J, Zhang K, Tian H, Lin H, Wang C. Association of long-term exposure to PM 2.5 constituents with glucose metabolism in Chinese rural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160364. [PMID: 36427733 DOI: 10.1016/j.scitotenv.2022.160364] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence on the associations of fine particulate matter (PM2.5) constituents and glucose metabolism is limited in resource-limited areas. This study aimed to explore the associations of PM2.5 constituents with glucose metabolism in rural areas, and to further specify the most responsible constituent. METHODS A total of 38,442 adults were recruited from the Henan Rural Cohort Study during 2015-2017. Three-year averaged concentrations of PM2.5 mass and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-), soil particles (SOIL) and sea salt (SS)) were estimated by a hybrid satellite-based model. Generalized linear model was applied to explore the associations of PM2.5 mass and its constituents with type 2 diabetes mellitus (T2DM), fasting blood glucose (FBG), insulin, and HOMA-β. Proportion and residual analyses were employed to specify the most responsible constituent. RESULTS The adjusted odds ratio (OR) for T2DM associated with 1 μg/m3 increase was 1.02 for PM2.5 mass, 1.28 for BC, 1.15 for NH4+, 1.08 for NO3-, 1.10 for OM, 1.11 for SO42-, and 1.12 for SOIL. Significant associations of PM2.5 mass and its constituents with elevated FBG, decreased insulin and HOMA-β were also observed. Proportion and residual analyses indicated that BC was the most responsible constituent, in which 1 percentage increment in the proportion of BC in PM2.5 corresponded with 1.51-fold risk for T2DM, 0.17 mmol/L increase in FBG, 2.18 μU/mL decrease in insulin, and 38.26 % decrease in HOMA-β; and 1 μg/m3 increment in the PM2.5-adjusted BC corresponded with 1.59-fold risk for T2DM, 0.53 mmol/L increase in FBG, 4.79 μU/mL decrease in insulin, and 91.32 % decrease in HOMA-β. CONCLUSIONS PM2.5 mass and its constituents (BC, NH4+, NO3-, OM, SO42-, SOIL) were associated with T2DM, increased FBG, decreased insulin and HOMA-β, of which BC was most responsible for these associations. TRIAL REGISTRATION The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruiyu Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Hualiang Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
14
|
Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:834485. [PMID: 35242721 PMCID: PMC8886906 DOI: 10.3389/fcimb.2022.834485] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| |
Collapse
|