1
|
Bhaumik S, Baishnab SS, Shahir A, Mahapatra S, Mandal S. Unveiling the effects of polyethylene microplastic on the physiological responses across different size classes of Telescopium telescopium. MARINE POLLUTION BULLETIN 2025; 217:118112. [PMID: 40347743 DOI: 10.1016/j.marpolbul.2025.118112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 04/10/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Microplastics (MPs) have wreaked havoc on aquatic ecosystems due to their heightened accumulation potential. Polyethylene (PE) is the most dominant MP polymer contaminating several estuaries globally. This study aims to evaluate the acute exposure of MPs on two size classes of mangrove horn snail, Telescopium telescopium. Small (50-70 mm) and large (90-120 mm) sized organisms were exposed to polyethylene microplastics (PE-MPs) of diameter 34-50 μm, for a period of 21 days. PE-MP toxicity was assessed by monitoring the physiological energetics and oxidative stress biomarker responses at three environmentally relevant concentrations (2, 20, 200 μg L-1). Negative Scope for Growth was observed in both size classes at medium and high concentrations. Moreover, PE-MPs significantly induced oxidative damage at 20 and 200 μg L-1 concentrations. Noticeable DNA damage was observed across all PE-MP concentrations. Small sized gastropods were more vulnerable to MP toxicity than their larger counterparts. Integrated Biomarker Response indicated Superoxide Dismutase as the most responsive biomarker for assessing the toxicological effects of MPs. Present study provides new insights on the potential impacts of PE-MPs on different size classes of T. telescopium from Sundarbans Estuarine System.
Collapse
Affiliation(s)
- Snigdha Bhaumik
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Soumya Subhra Baishnab
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Ahmed Shahir
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sayantan Mahapatra
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
2
|
Roshni K, Renjithkumar CR, Amal R, Devipriya SP. Characterization and risk assessment of microplastics accumulated in sediments and benthic molluscs in the mangrove wetlands along the south-west coast of India. MARINE POLLUTION BULLETIN 2025; 216:117955. [PMID: 40222224 DOI: 10.1016/j.marpolbul.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
In the present study, occurrence and characteristics of microplastics in mangrove sediments and benthic molluscs viz., black clam (Villorita cyprinoides), yellow clam (Meretrix casta), mangrove horn snail (Telescopium telescopium) and brackish water snail (Neripteron violaceum) were studied from mangrove habitats of Vembanad Lake, the largest estuary and a Ramsar site on the south-west coast of India. The average microplastic abundance in mangrove sediments varied between 235 ± 49.5 and 1414 ± 182 items/kg dry weight, with an average concentration of 673.45 ± 365.05 items/kg dry weight, which was at a relatively higher level compared to other mangrove regions of India. The highest abundance was recorded for gastropod T. telescopium (38.5 ± 11.48 items/individual). The predominant shape, colour and size of microplastic in mangrove sediment and molluscs were fragments, black and < 500 μm, respectively. The major polymers identified were polyethylene and polypropylene in sediments and molluscs. Higher values of ecological risk indices (Microplastic index and Microplastics diversity integrated index) indicated a severe microplastic pollution risk for the molluscs in the mangroves. The high bio-accumulation factor also highlights the possibility of using these species as bioindicators of plastic pollution in mangrove habitats. The results of the present study could be useful to prepare effective management strategy to minimize plastic pollution load in mangrove habitats.
Collapse
Affiliation(s)
- Kuttanelloor Roshni
- School of Environmental Studies, Cochin University of Science and Technology, Cochin-682022, India
| | | | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Cochin-682022, India
| | | |
Collapse
|
3
|
Liang X, Liu C, Wang H, Li H, Luo J, Luo G, Hu W, Lan W, Wu L, Fang S, Tian Y, Sun X. Spatial retention, absorption, transport, and enrichment of microplastics in mangrove sediment complex system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126354. [PMID: 40318782 DOI: 10.1016/j.envpol.2025.126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Mangrove areas are the major sink of pollutants such as microplastics (MPs, less than 5000 μm in diameter). The spatial retention, transport, and accumulation of microplastics (MPs) within the complex mangrove sediment system has become a hotspot in the field of emerging contaminants. In this study, the Xiaoguansha mangrove forest in Guangxi Province, China, was selected as a representative case to investigate the horizontal and vertical distribution of MPs in sediments. To elucidate the processes of MP retention, accumulation, and their downward transport into deeper soil layers, a combination of statistical methods was employed, including the Kruskal-Wallis one-way ANOVA, correlation analysis, regression fitting, and Structural Equation Model (SEM). The results showed that: (1) The average abundance of MPs in the mangrove area (2414.0 ± 1570.8 items/kg) was significantly higher-by a factor of 2.24-than that in the tidal flat areas, suggesting that mangroves play a vital role in seawater purification.(2) The MPs in the smaller size range (0-1000 μm) tend to accumulate more readily in mangrove areas compared to larger particles (1000-5000 μm), implying a heightened potential risk to environmental and ecosystem health.(3) With the increase in soil depth, exhibited an exponentially decreasing trend, primarily due to the well-developed root systems of mangroves and the physicochemical adsorption capacity of the surrounding sediments. (4) Spatial retention and sediment absorption contributed 67.2 % and 32.8 %, respectively, to the enrichment of MPs in mangrove areas. The SEM analysis confirmed that the distribution of MPs was primarily governed by extensive root system and dense physical structure of mangrove. In addition, adsorption effects driven by the fundamental physicochemical properties of the sediments also contributed to MP retention. The findings contribute to a deeper understanding of the behavior of MPs in the mangrove-covered water-sediment system.
Collapse
Affiliation(s)
- Xiuqiong Liang
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Chunxiang Liu
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Haoyu Wang
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Haonan Li
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Jin Luo
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Gang Luo
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Wei Hu
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China.
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Guangxi, Beihai, 536000, China.
| | - Leishi Wu
- Marine Environmental Monitoring Center of Guangxi, Guangxi, Beihai, 536000, China.
| | - Sheng Fang
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Centre of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Yan Tian
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Guangxi, Nanning, 530028, China.
| | - Xiang Sun
- College of Resources, Environment and Materials, Guangxi University, Guangxi, Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Guangxi, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, 530004, China.
| |
Collapse
|
4
|
Andoy CJM, Ochigue PCD, Romarate RA, Rodil MSP, Nakano H, Bacosa HP. Spatial and vertical distribution of microplastics in mangrove sediment in the southern Philippines. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107223. [PMID: 40393259 DOI: 10.1016/j.marenvres.2025.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Mangroves in the Philippines are essential ecosystems that support a diverse array of species. It also provides various ecosystem services, such as trapping of pollutants, including plastics. Microplastics are one of the pollutants that pose a significant ecological threat. These can be retained in mangroves and in the deeper layers of sediments. Thus, this study aimed to determine and characterize the microplastics in different areas and sediment depths in the mangroves in Misamis Oriental (Alubijid), Surigao del Norte (Siargao), and Lanao del Norte (Bacolod) in Mindanao, Philippines. The abundance of microplastics in Alubijid recorded the highest values (750.00-2250.00 items kg-1), followed by Siargao (250.00-750.00 items kg-1) and Bacolod (83.33-583.33 items kg-1). Microplastics were prevalent in the landward zone of Alubjid (1150 items kg-1) and Bacolod (216.67 items kg-1). The microplastic morphology varied depending on the site, with fragments being predominant in Alubijid (42 %), fibers in Siargao (56 %), and films in Bacolod (41 %). The dominant color was green in Bacolod (32 %), blue in Siargao (34 %), and transparent in Alubijid (33 %). Prevalent polymers were polypropylene in Alubijid (45 %) and Bacolod (36 %), and polyester in Siargao (33 %). Moreover, there were no trends in microplastic abundance, color, shape, and polymer type with depth among all sites. The characteristics of microplastics at the site may be attributed to the plastic use, economic activities, and solid waste management practices in the area. Our findings serve as baseline data leading to the formulation of strategies for microplastic impacts on mangrove ecosystems.
Collapse
Affiliation(s)
- Camille Joy M Andoy
- Department of Environmental Science, School of Interdisciplinary Studies, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte, 9200, Philippines
| | - Princess Claire D Ochigue
- Department of Environmental Science, School of Interdisciplinary Studies, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte, 9200, Philippines
| | - Rodolfo A Romarate
- Department of Environmental Science, School of Interdisciplinary Studies, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte, 9200, Philippines
| | - Mary Sheenalyn P Rodil
- Department of Chemistry, College of Science, Technological University of the Philippines, Ayala Blvd., Ermita, Manila, 1000, Metro Manila, Philippines
| | - Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok, Thailand
| | - Hernando P Bacosa
- Department of Environmental Science, School of Interdisciplinary Studies, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte, 9200, Philippines.
| |
Collapse
|
5
|
Menezes KM, Costa MBD, Schuab JM, Dalbó GZ, Alves MM, Ocaris ERY, Rodrigues FL. Microplastic contamination in the mangroves of Piraquê-Açu and Piraquê-Mirim rivers, Aracruz (Brazil): An analysis in sediment, water, and biota. MARINE POLLUTION BULLETIN 2025; 214:117696. [PMID: 39987760 DOI: 10.1016/j.marpolbul.2025.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Mangroves are transitional ecosystems between terrestrial and marine environments, typical of tropical and subtropical regions. They contribute to socio-economic development by providing fisheries resources, which are essential for income generation and a significant source of animal protein. Thus, the consumption of marine organisms, particularly contaminated bivalves, represents a potential route for human exposure to microplastics (MPs). This study evaluated the presence, spatiotemporal distribution, and characterization of microplastics in sediment, surface water, and two bivalve species used for human consumption. Samples were collected from five distinct sites across the Aracruz mangrove (ES) to ensure a comprehensive representation of the study area. A total of 7806 microplastic particles were detected in the analyzed matrices, with the highest concentrations found in sediments, corroborating existing literature that identifies sediments as sinks for MPs. Filament-type microplastics predominated in all matrices, aligning with previous studies that report this form as prevalent in mangrove sediments. Blue microplastics were the most frequently observed across all matrices, potentially associated with discarded or abandoned fishing gear, a common practice in fishing zones. Crassostrea rhizophorae exhibited a higher concentration of MPs compared to Mytella strigata. Analysis of dry and wet periods revealed higher MP concentrations during the dry season, potentially explained by reduced dilution and increased accumulation of pollutants, while rainy seasons promoted MP transport to larger water bodies. A positive correlation between MPs in bivalves and those in surface water suggests that waterborne MPs are a significant contamination source for filter-feeding organisms.
Collapse
Affiliation(s)
- Karina Machado Menezes
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91540-000 Porto Alegre, RS, Brazil; Laboratório de Biologia Costeira e Análise de Microplásticos, Universidade Federal do Espírito Santo, 29075-053, Vitória, ES, Brazil; Laboratório de Pesquisa e Desenvolvimento de Metodologias para Análise de Petróleo (LABPETRO), Vitória, ES, Brazil.
| | - Mercia Barcellos da Costa
- Laboratório de Biologia Costeira e Análise de Microplásticos, Universidade Federal do Espírito Santo, 29075-053, Vitória, ES, Brazil; Laboratório de Pesquisa e Desenvolvimento de Metodologias para Análise de Petróleo (LABPETRO), Vitória, ES, Brazil
| | - João Marcos Schuab
- Laboratório de Biologia Costeira e Análise de Microplásticos, Universidade Federal do Espírito Santo, 29075-053, Vitória, ES, Brazil; Laboratório de Pesquisa e Desenvolvimento de Metodologias para Análise de Petróleo (LABPETRO), Vitória, ES, Brazil
| | - Gustavo Zambon Dalbó
- Laboratório de Biologia Costeira e Análise de Microplásticos, Universidade Federal do Espírito Santo, 29075-053, Vitória, ES, Brazil; Laboratório de Pesquisa e Desenvolvimento de Metodologias para Análise de Petróleo (LABPETRO), Vitória, ES, Brazil
| | - Mateus Marçal Alves
- Laboratório de Biologia Costeira e Análise de Microplásticos, Universidade Federal do Espírito Santo, 29075-053, Vitória, ES, Brazil; Laboratório de Pesquisa e Desenvolvimento de Metodologias para Análise de Petróleo (LABPETRO), Vitória, ES, Brazil
| | | | - Fabio Lameiro Rodrigues
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91540-000 Porto Alegre, RS, Brazil; Centro de Estudos Costeiros, Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul, 95625-000, Imbé, RS, Brazil
| |
Collapse
|
6
|
Capparelli MV, Gámez-Herrera DJ, Pérez-Ceballos R, Suárez-Mozo NY, Fonseca-Peña SVD, Borges-Ramírez MM, Osten JRV, Zaldívar-Jiménez A, Moulatlet GM. Impact of mangrove restoration on microplastic bioaccumulation in fiddler crabs across degraded, restored, and natural ecosystems. MARINE POLLUTION BULLETIN 2025; 214:117815. [PMID: 40101604 DOI: 10.1016/j.marpolbul.2025.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Understanding the role of mangroves in microplastic (MPs) bioaccumulation is crucial to addressing the pollution in these ecosystems, particularly in restored areas. Here, we 1) evaluate the MPs plastic-biota-sediment accumulation factor (pBSAf) in the fiddler crab Minuca rapax and 2) describe MPs type, colour, and polymeric characteristics in areas with varying restoration and degradation levels in the Southern Gulf of Mexico. We used regression models to evaluate the role of mangrove tree height, basal area, and crab individuals' density in explaining pBSAf. The highest pBSAf values were observed in natural and restored mangrove areas, particularly those with higher crab densities and taller trees. MPs were more diverse in composition in both crabs and sediments from natural areas. Mangrove biota tissue's bioaccumulation may provide insights into ecosystem health and food web impacts and indicate restoration progress.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| | - Dulce J Gámez-Herrera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Rosela Pérez-Ceballos
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico; Consejo Nacional de Humanidades de Ciencias y Tecnologías (CONAHCYT), Mexico
| | - Nancy Yolimar Suárez-Mozo
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Shirley V D Fonseca-Peña
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Merle M Borges-Ramírez
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | | | | | - Gabriel M Moulatlet
- The Arizona Institute for Resilience, University of Arizona, Tucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Li M, Liu Q, Wang J, Deng L, Yang D, Qian X, Fan Y. Exploring the response of bacterial community functions to microplastic features in lake ecosystems through interpretable machine learning. ENVIRONMENTAL RESEARCH 2025; 271:121098. [PMID: 39938630 DOI: 10.1016/j.envres.2025.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Microplastics (MPs) are ubiquitous and have various characteristics. However, their impacts on bacterial community functions in lakes remain elusive. In this study, we identified 33 different MPs features including their abundance, shape, color, size, and polymer type, from Taihu Lake, China. These features were used to construct 48 machine learning models, utilizing four types of machine learning regression algorithms, to investigate how different MP features influence human health, carbon/nitrogen cycling, and energy source-related functions of bacterial communities. The XGBoost models provided the best performance with an average R2 of 0.85 in explaining the abundance of functions. Yellow-, fragment-, and polyethylene terephthalate (PET) MPs were the most important features by Shapley values. Yellow- and PET-MPs mainly had primarily negative impacts on human pathogens pneumonia and chemoheterotrophy, respectively. Fragment-MPs had a primarily positive impact, which shifted from positive to negative at a proportion of 0.5 for methanol oxidation. Moreover, MPs may affect community structure by filtering for functional traits. These findings are important for understanding the effects of MP pollution on bacterial community function and its role in the global carbon and nitrogen cycling and human health and help us to determine the potential impacts of MP pollution on ecosystems.
Collapse
Affiliation(s)
- Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ligang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Daojun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Gonçalves GRL, Grey C, Koomson A, Aggrey-Fynn J, Nyarko BK, Narayanaswamy BE. Patterns and implications of plastic accumulation in mangrove ecosystems and sandy beaches in Western and Central regions of Ghana, West Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11996-12012. [PMID: 40259081 PMCID: PMC12049385 DOI: 10.1007/s11356-025-36359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
Plastic pollution has become increasingly apparent in sandy beach zones and aquatic environments, creating more than just visual pollution. Impacts are observed in many environmental and social levels, including the fishing communities that depend on the coastal environment for their livelihoods. Plastic pollution was assessed on the sandy beaches and mangroves of Ghana's Western and Central regions. The study's objective was to determine the composition, abundance and sources of plastic litter at four different sites during the wet and dry seasons. Samples were collected from within 50 cm2 quadrats placed randomly along four transects at each site. Plastic litter was classified according to the OSPAR guide. A total of 1895 plastic litter items with a combined weight of ~ 3000 g, representing 30 plastic categories, were collected. The average number and weight of plastic litter items were 19.73 ± 31.37 number of plastics per 50 cm2 and 32.59 ± 45.47 g per 50 cm2. The minimum and maximum plastic litter items were 0 to 159/50 cm2. The highest amount of plastic litter was found in Ghana's Central region. The total plastic litter weight is the variable that present statistical difference between the wet and dry season period. Bags, bottles, and fragments were the most common plastic items found, with 70% of the plastic litter being land-based, with the most frequent polymer types found in this study being polyethylene (~ 54%) and polypropylene (~ 20%). Mangrove regions act as sinks, specifically trapping plastic bags, contrary to the sandy beach areas, which mainly comprise plastic bottles that accumulate in these regions. Regions that have numerous communities, or are urbanised centres, tend to have higher levels or plastic litter. West Africa generally has poor waste management, absence of safe drinking water, and high levels of single-use plastics which are some of the main reasons for increased levels of plastic litter specifically in Ghana. Urgent actions are needed to prevent, mitigate and control plastic pollution in Ghana and the wider region.
Collapse
Affiliation(s)
- Geslaine Rafaela Lemos Gonçalves
- University of the Highlands and Islands, UHI House, Old Perth Road, Inverness, IV2 3JH, UK.
- Scottish Association for Marine Science, Oban, Argyll, Scotland, PA37 1QA, UK.
| | - Curtis Grey
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Albert Koomson
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Aggrey-Fynn
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Kofi Nyarko
- Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana
| | | |
Collapse
|
9
|
Cerri F, Mohamed S, Galli P. Mangrove forests as a natural trap for marine plastic litter: Insights from the Maldives. MARINE POLLUTION BULLETIN 2025; 213:117677. [PMID: 39952225 DOI: 10.1016/j.marpolbul.2025.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Plastic pollution poses a significant threat to coastal ecosystems, including mangroves, which naturally trap debris due to their complex, three-dimensional structures. In the Maldives, inadequate plastic waste management exacerbates the accumulation of plastic in these critically endangered ecosystems, which are characterized by unique morphologies consisting of small patches with tide-influenced water bodies. Despite their ecological and socio-economic importance, mangroves in the archipelago have remained undocumented in terms of plastic pollution. This micro article presents the first evidence of plastic debris in Maldivian mangroves with accumulation observed on four islands dominated by species like Ceriops tagal, Bruguiera cylindrica, Rhizophora mucronata, and Pemphis acidula. The high tree density and the three-dimensional structure of these mangroves act as natural traps for marine litter, particularly single-use PET water bottles. These findings underscore the urgent need for conservation efforts and waste management policies to prevent further degradation and ensure their long-term sustainability.
Collapse
Affiliation(s)
- Federico Cerri
- Department of Earth and Environmental Sciences DISAT, University of Milano -Bicocca, Piazza Della Scienza 1, 20126 Milano, Italy; MaRHE Centre (Marine Research and Higher Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives.
| | - Shazla Mohamed
- The Maldives National University, Rahdhebai Higun, Machangolhi, Malé, Maldives
| | - Paolo Galli
- Department of Earth and Environmental Sciences DISAT, University of Milano -Bicocca, Piazza Della Scienza 1, 20126 Milano, Italy; MaRHE Centre (Marine Research and Higher Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| |
Collapse
|
10
|
Gonçalves GRL, Koomson A, Aggrey-Fynn J, Nyarko BK, Narayanaswamy BE. Invisible Peril: Assessing microplastic pollution in Ghanaian mangroves. MARINE POLLUTION BULLETIN 2025; 211:117361. [PMID: 39631189 DOI: 10.1016/j.marpolbul.2024.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Mangroves are key providers of crucial ecological services. This study's aim is to investigate the levels of microplastic (MP) contamination in mangroves from Ghana's Western and Central regions. A total of 1303 particles were analysed from sediment and water samples, 65 % comprising MPs. West and Central regions had notable differences in MPs abundance. Sediment had the highest number of MPs (703 MPs), with concentrations ranging from 0.01 to 2.23 MPs/g·dw, whilst concentrations in water ranged from 0.2 to 3.75 MPs/l. Fibre shapes were the most abundant MP (67 %) followed by fragments. Ten different groups of polymers were found, with polyester, polyethylene and polypropylene being the most abundant. Synthetic hair, textile and water sachets/small plastic bags were expected to be the source of most MPs collected. High population abundance was shown to be related to high levels of MPs. Our findings suggest reducing single-use plastics, waste management/treatment, and clean drinking water, could reduce the impact of MPs in Ghana.
Collapse
Affiliation(s)
- Geslaine R L Gonçalves
- The Scottish Association for Marine Science (SAMS), Oban, Argyll, Scotland PA37 1QA, UK.
| | - Albert Koomson
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Joseph Aggrey-Fynn
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Benjamin Kofi Nyarko
- Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana.
| | | |
Collapse
|
11
|
Bruffey BR, Rodrigues LJ. Distribution of microplastics in the tidal flats of La Parguera, Puerto Rico. MARINE POLLUTION BULLETIN 2025; 211:117371. [PMID: 39644627 DOI: 10.1016/j.marpolbul.2024.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Tidal flats form behind mangrove forests and are critical coastal ecosystems influenced by ocean and land-based processes. To assess microplastics (MPs, <5 mm) distribution within tidal flats we studied four sites in southwest Puerto Rico with varying mangrove densities and anthropogenic influences. We characterized MPs from surface sediments along a transect at each tidal flat. On average 148.64 ± 138.87 MPs kg-1 were collected with the majority (55.5 %) 0.3-1 mm in size. MPs abundance within transects was positively correlated to distance from mangroves at three sites. The most common polymers were polyethylene (48.4 %) and polypropylene (16.1 %). As expected, the roadside site had the highest abundance of MPs, but surprisingly, a remote island site had the second highest amount. Two other sites likely benefited from thicker mangrove cover and less human interference. While mangroves minimized MPs accumulation, improved waste management is also needed to reduce MPs delivered to these ecosystems.
Collapse
Affiliation(s)
- Brenna R Bruffey
- Department of Geography and the Environment, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Lisa J Rodrigues
- Department of Geography and the Environment, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| |
Collapse
|
12
|
He Y, Fang C, Zeng Z, Fu B, Cui Z, Wang J, Yang H. Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178488. [PMID: 39813845 DOI: 10.1016/j.scitotenv.2025.178488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria. We purified the bacterial strains Acinetobacter venetianus E1-1, Serratia marcescens E1-2, Chryseobacterium cucumeris E1-3 and Bacillus albus E1-4 from P1 that were able to reduce the mass of the 75 μm PE-MPs substrate by 3.67 to 6.59 %, respectively and use it as a sole carbon source. The degradation was accompanied by surface deformation of the MPs and introduction of polar oxygen-containing carbonyl and carboxylic acid functional groups thereby decreasing the hydrophobicity of the substrate. Whole-genome sequencing of S. marcescens E1-2, the most effective degrader, revealed it possesses a variety of enzymes and metabolic pathways related to PE degradation. Our results indicated that the PE-MP degrading bacteria isolated from screened mangrove sediments represent an effective strategy for in situ MP pollution remediation and uncovering mechanisms associated with PE degradation.
Collapse
Affiliation(s)
- Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Zeqian Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Ziyi Cui
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
13
|
Rico A, Redondo-Hasselerharm PE, Schell T, Sanders CJ, Bernardino AF. Microplastic burial potential and ecological risks in mangrove forests of the Amazon River delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177666. [PMID: 39571803 DOI: 10.1016/j.scitotenv.2024.177666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Coastal mangrove ecosystems have been shown to be important microplastic (MP) sinks. Yet, information regarding their MP sequestration capacity is scant. Here, we characterized the spatial and vertical distribution of MPs in mangrove ecosystems of the Amazon River delta and quantified, for the first time, their MP burial and potential economic value related to their surface water filtering capacity. Furthermore, we assessed the ecotoxicological risks considering differing effect mechanisms for benthic organisms (i.e., food dilution and translocation-mediated effects). Soil core samples (up to 3 m) were taken from seven locations in the northern part of the Amazon River delta and analyzed for MP contamination. MPs in the 100-5000 μm range were measured and the polymer type was characterized using Fourier Transform Infrared Spectroscopy. The collected soil samples were dated based on a radionuclide analysis, and a burial analysis was done based on the sediment mass accumulation rates and the mass concentration of MPs. The outcomes of this study show that MPs are ubiquitous contaminants in mangroves of the Amazon River delta (present in 30 out of the 35 analyzed samples). The largest MP concentration was found in the upper soil layer (0-15 cm), 138 MPs/kg dw, which has been deposited and reworked during the time of the soil core collection. However, moderate exposure levels were also found in older samples (71-138 MPs/kg dw), and in samples taken before the plastic era (≈ 1870-1930), suggesting a downward MP migration. We estimated a mean burial rate of 0.32 ± 0.17 kg of MPs km2/year, which corresponds to 0.55 ± 0.28 tons per year in the Amazon River delta. Based on the estimated burial rate, we valued the removal of MPs from surface waters by these mangroves at 0.3-1.1 million USD per year. Our study shows that the exposure levels of MPs in mangroves of the Amazon River delta are relatively low when compared to other mangrove ecosystems and ecotoxicological risks for benthic organisms are not expected given the current exposure levels.
Collapse
Affiliation(s)
- Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain.
| | - Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Christian J Sanders
- National Marine Sciences Centre, Southern Cross University, Coffs Harbour NSW2450, Australia
| | - Angelo F Bernardino
- Departamento de Oceanografia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| |
Collapse
|
14
|
Sajad S, Allam BK, Debnath A, Bangotra P, Banerjee S. Pollution status of microplastics in the sediments of warm monomictic Dal lake, India: Abundance, composition, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125247. [PMID: 39505103 DOI: 10.1016/j.envpol.2024.125247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
This report presents the first investigation of microplastic (MP) contamination in the shoreline sediments of Dal Lake, Jammu and Kashmir, India. The MP concentrations ranged from 503 to 3154 MP/kg, with a notable seasonal variation. The highest concentrations of microplastics occurred in the Spring, ranging from 467 to 3445 MP/kg. Microplastics were identified using optical microscopy, Fourier Transform Infrared spectroscopy, and thermogravimetric analysis. Polymer analysis revealed that the Gagribal basin was contaminated with polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyamide (PA), and polyethylene terephthalate (PET). In contrast, the Nigeen basin mainly comprises PE, PP, and PS. The significantly elevated Polymer Hazard Index (PHI) values, exceeding 1000 in the Gagribal basin, were attributed to the presence of PVC. Sediment quality was assessed using Pollution Load Index (PLI), Potential Ecological Risk Index (PERI), and PHI. Health risk metrics, such as estimated daily intake (EDI) and microplastic carcinogenic risks (MPCR), were also evaluated. There is a positive correlation between microplastic abundance and total organic carbon (TOC), total phosphorus (TP), and total nitrogen (TN). The Nigeen basin, characterized by a higher proportion of less hazardous polymers like PP, exhibited greater TOC levels due to enhanced microbial degradation of microplastics. Conversely, the Gagribal basin, with its higher presence of toxic polymers like PVC, had lower TOC levels, likely due to these compounds' inhibition of microbial activity. This study provides crucial insight into the spatial distribution and ecological impact of MPs in Dal Lake, setting the stage for future research on their effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Samreen Sajad
- Department of Environmental Sciences, Sharda University, Greater Noida, India
| | - Bharat Kumar Allam
- Department of Chemistry, Rajiv Gandhi University (A Central University), Rono Hills, Doimukh, Arunachal Pradesh, India
| | - Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Pargin Bangotra
- Department of Physics, Netaji Subhas University of Technology, New Delhi, India
| | - Sushmita Banerjee
- Department of Environmental Sciences, Sharda University, Greater Noida, India.
| |
Collapse
|
15
|
Páez-Osuna F, Valencia-Castañeda G, Bernot-Simon D, Arreguin-Rebolledo U. A critical review of microplastics in the shrimp farming environment: Incidence, characteristics, effects, and a first mass balance model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176976. [PMID: 39461520 DOI: 10.1016/j.scitotenv.2024.176976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
This review provides a critical overview of the sources, incidence, accumulation, effects, and interactions of microplastics (MPs) with other contaminants in the shrimp aquaculture environment, emphasizing this sector's challenges and future implications. A first and novel mass MPs balance model was developed to explore the fate and fluxes of MPs within shrimp farming systems. Two literature searches were conducted: one focused on MPs, crustaceans, and shrimp in aquaculture, and other on the effects of MPs in crustaceans, emphasizing shrimp. A total of 78 and 461 peer-reviewed papers were retrieved, respectively. This review details aspects of MPs in the shrimp farming environment, including water, sediments, food, zooplankton, and shrimp tissues. MPs can act as vectors for contaminants, including biological and chemical substances commonly used in shrimp aquaculture. A primary concern is the interaction between MPs and pathogens; thus MPs can facilitate the transport and retention of disease-causing agents. Key questions involve identifying which pathogen groups are most efficiently transported by MPs and how this may exacerbate disease outbreaks in aquaculture. This suggests that microorganisms can establish on MPs surfaces to disseminate an infection. Therefore, the possibility of disease outbreaks and epidemics is expected to rise as MP abundance increases. The mass balance shows that the primary source of MPs is associated with water during the filled (19.3 %) and water exchange (77.2 %) of shrimp ponds, indicating that MPs in the water input play a critical role in the MP dynamic in the shrimp farming environment. However, this initial mass balance model has several weaknesses, including liming, atmospheric deposition, and natural food, which must be addressed as other MPs suppliers. Macrofauna that incidentally enters shrimp ponds may also constitute a significant part of the MPs inventory. Future research should focus on the impact of polystyrene and polyethylene fibers commonly found in crustacean tissues.
Collapse
Affiliation(s)
- Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435, Culiacán 80000, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico
| | | | - Uriel Arreguin-Rebolledo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Programa de Estancias de Investigación DGAPA, UNAM, Mexico
| |
Collapse
|
16
|
Greenshields J, Anastasi A, Irving AD, Capper A. A systematic review to assess current surface water and sediment microplastic sampling practices in seagrass and mangrove ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66615-66629. [PMID: 39661091 PMCID: PMC11666669 DOI: 10.1007/s11356-024-35690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Global plastic production is estimated to be 400 million tonnes per annum, with ~ 5.25 trillion fragments floating in our oceans. Microplastics (< 5 mm) have the potential to disproportionately accumulate and become trapped in mangroves and seagrass meadows, creating plastic 'sinks'. This is concerning as these ecosystems are of great ecological and economic importance, with microplastics causing harm to inhabiting flora and fauna. However, accurately measuring microplastic abundance, comparing findings, and determining potential impacts are difficult due to a lack of standardised sampling protocols. Therefore, a systematic literature review was completed to review currently adopted microplastic sampling methods in surface water and sediment in seagrass and mangrove ecosystems. These were compared with recommendations from existing governmental and institutional groups as a first step to standardising methods for future sampling procedures in seagrasses and mangroves.
Collapse
Affiliation(s)
- Jack Greenshields
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia.
| | - Amie Anastasi
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia
- Central Queensland Innovation and Research Precinct, Central Queensland University, Rockhampton, 4701, Australia
| | - Andrew D Irving
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia
- Central Queensland Innovation and Research Precinct, Central Queensland University, Rockhampton, 4701, Australia
| | - Angela Capper
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia
| |
Collapse
|
17
|
Zhao Z, Wei Y, Wang Y, Peng G, Zeng EY, Yu K, Xu XR, Li R. Fate and drivers of mariculture-derived microplastics from ponds to mangrove forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124790. [PMID: 39178934 DOI: 10.1016/j.envpol.2024.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Due to the combined influences of marine and terrestrial disturbances, the sources of microplastics (MPs) in mangrove ecosystems are complex and diverse. Previous studies have inferred the possible involvement of mariculture activities as a potential source of mangrove MPs based on the characteristics of MPs. However, the direct contributions of mariculture-derived MPs to mangrove MPs remain largely unknown. In this study, we systematically investigated the fate of MPs in the discharge of mariculture wastewater by quantifying the source contributions of mariculture-derived MPs to rivers and mangroves. The majority of detected MPs were transparent fibers, with their composition primarily comprising materials commonly used in mariculture activities such as polyvinylpyrrolidone (PVP), polyethylene terephthalate (PET), and nylon. The partial least squares path model elucidated the relationships among the composition of MPs in ponds, rivers, and mangroves, indicating that ponds exert a substantial direct effect on mangroves, particularly significant in the sediments (63.68%). Water turbidity, sediment carbon content, and sediment particle size are key ecological factors influencing the abundance of mariculture-derived MPs. This study provides compelling evidence regarding the sources of mangrove MPs and novel insights into mitigating the dissemination of MPs.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yihua Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiang-Rong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, China.
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
18
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
19
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
20
|
Yona D, Sari SHJ, Sudono CVA, Siburian ASJ, Wahyudi AD. Alarming cigarette butts contamination on sandy beaches of East Java, Indonesia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60314-60325. [PMID: 39377908 DOI: 10.1007/s11356-024-35252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cigarette butts, along with other plastic items, have been extensively studied as the primary source of marine litter in coastal areas around the world. Although there has been extensive research on cigarette butts in coastal areas worldwide, there have been no publications related to this in coastal areas in Indonesia. Therefore, this research is the first to report on the pollution of cigarette butts on different Indonesian beaches, specifically in the East Java Province. The study aimed to assess the abundance, size distribution, and pollution levels associated with cigarette butts from 15 different beaches. Cigarette butts were collected using a 5 × 5 m quadrate transect, placed 20 m apart along the coastline from December 2022 to August 2023. The collected cigarette butts were counted and measured in three different sizes: 0.5-2.5 cm, 2.5-5 cm, and 5-10 cm. A total of 323 cigarette butts were collected, with densities ranging from 0.08 to 3.32 items m-2. The majority of butts were classified as meso-size (0.5-2.5 cm), suggesting incomplete smoking and a higher potential for toxin release. The Cigarette Butt Pollution Index (CBPI) revealed a spectrum of pollution levels, from low to severe, with most beaches exhibiting severe pollution. Factors such as negligent smoking behavior, inadequate waste management infrastructure, and beach environmental conditions were identified as key contributors to this pollution. This study highlights the urgent need for comprehensive strategies, including public awareness campaigns, improved waste management, and beach clean-ups, to mitigate the environmental impact of cigarette butt pollution on Indonesian beaches.
Collapse
Affiliation(s)
- Defri Yona
- Marine Science Department, Fisheries and Marine Science Faculty, Universitas Brawijaya, Jalan Veteran, Malang City, East Java Province, Indonesia.
- Marine Resources Exploration and Management Research Group, Universitas Brawijaya, Jl. Veteran, Malang City, East Java Province, Indonesia.
| | - Syarifah Hikmah Julinda Sari
- Marine Science Department, Fisheries and Marine Science Faculty, Universitas Brawijaya, Jalan Veteran, Malang City, East Java Province, Indonesia
- Marine Resources Exploration and Management Research Group, Universitas Brawijaya, Jl. Veteran, Malang City, East Java Province, Indonesia
| | - Chynta Veyra Aulia Sudono
- Marine Science Department, Fisheries and Marine Science Faculty, Universitas Brawijaya, Jalan Veteran, Malang City, East Java Province, Indonesia
| | - Andreas Steve Jonathan Siburian
- Marine Science Department, Fisheries and Marine Science Faculty, Universitas Brawijaya, Jalan Veteran, Malang City, East Java Province, Indonesia
| | - Angger Dwiky Wahyudi
- Marine Science Department, Fisheries and Marine Science Faculty, Universitas Brawijaya, Jalan Veteran, Malang City, East Java Province, Indonesia
| |
Collapse
|
21
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
22
|
Xu X, He L, Huang F, Jiang S, Dai Z, Sun R, Li C. Fiddler crabs (Tubuca arcuata) as bioindicators of microplastic pollution in mangrove sediments. CHEMOSPHERE 2024; 364:143112. [PMID: 39153532 DOI: 10.1016/j.chemosphere.2024.143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
In recent years, microplastics (MPs) have been widely found in the environment and pose potential risks to ecosystems, which attracted people's attention. Using bioindicators has been a great approach to understanding the pollution levels, bioavailability, and ecological risks of pollutants. However, only few studies have investigated MPs in mangrove ecosystems, with few bioindicators of MPs. Herein, the distribution of MPs in mangrove sediments and fiddler crabs (Tubuca arcuata) in mangroves was investigated. Results showed that the abundance values of MPs are 1160‒12,120 items/kg and 11-100 items/ind. in mangrove sediments and fiddler crabs, respectively. The dominant shape of MPs detected in mangrove sediments and fiddler crabs was fragments with sizes of 20‒1000 μm, larger MPs of 50-1000 μm were found in abundance. Polypropylene (PP), which is one of the most commonly used plastic materials, was the main polymer type. The distribution of MPs in fiddler crabs closely resembled that in surface mangrove sediments with a strong linear correlation (R2 > 0.8 and p < 0.05) between their abundance. Therefore, the MP contamination level in mangrove sediments can be determined by studying MP pollution in fiddler crabs. Moreover, the results of the target group index (TGI) indicated that fiddler crabs prefer feeding specific MPs in mangrove sediments. Our findings demonstrate the suitability of fiddler crabs as bioindicators for assessing MP pollution in mangrove sediments.
Collapse
Affiliation(s)
- Xiaohan Xu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fei Huang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqi Jiang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
23
|
Gan M, Zhang Y, Shi P, Cui L, Zhang C, Guo J. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in Northern China. MARINE POLLUTION BULLETIN 2024; 205:116656. [PMID: 38950516 DOI: 10.1016/j.marpolbul.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) are the pollutants, found widely across various environmental media. However, studies on the MP pollution in urban rivers and the necessary risk assessments remain limited. In this study, the abundance and characteristics of microplastics in a typical urban river were examined to evaluate their distribution, sources, and ecological risks. It was observed that the abundance of MPs in sediments (220-2840 items·kg-1 dry weight (DW)) was much higher than that in surface water (2.9-10.3 items·L-1), indicating that the sediment is the "sink" of river MPs. Surface water and sediment were dominated by small particle size MPs (< 0.5 mm). Fiber and debris were common shapes of MPs in rivers and sediments. The microplastics in river water and sediments were primarily white and transparent, respectively. Polypropylene (PP) and polyethylene (PE) were the major polymers found.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chengqian Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
24
|
Wu Y, Li Z, Deng Y, Bian B, Xie L, Lu X, Tian J, Zhang Y, Wang L. Mangrove mud clam as an effective sentinel species for monitoring changes in coastal microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134617. [PMID: 38749247 DOI: 10.1016/j.jhazmat.2024.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.
Collapse
Affiliation(s)
- Yinglin Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China; School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China.
| | - Zitong Li
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yanxia Deng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Bingbing Bian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ling Xie
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Xianye Lu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Jingqiu Tian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Liyun Wang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| |
Collapse
|
25
|
Mohan P, Shahul Hamid F, Furumai H, Nishikawa K. Beneath the surface: Exploring microplastic intricacies in Anadara granosa. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106581. [PMID: 38878345 DOI: 10.1016/j.marenvres.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
Anadara granosa or blood cockles have been reported to be a candidate for biomonitoring agents due to their sedimentary nature and their nutrient uptake mechanisms. Yet, this bivalve is still regarded as a delicacy in Asian cuisine. Malaysia is the largest exporter of this sea product that contaminated cockles may also be experienced by the importing countries. However, the bioaccumulation of microplastics in A. granosa cultivated in Malaysia has not been extensively studied. It is crucial to comprehend the risk posed to humans by consuming A. granosa in their diet. Therefore, the purpose of this research is to investigate the levels of microplastic accumulation in A. granosa from major exporters in Peninsular Malaysia, to evaluate the associated risk of microplastics on the species, and to estimate daily human consumption of microplastics through the consumption of A. granosa. The abundance of microplastics was quantified through the use of a stereo microscope, and the polymer type was determined using FTIR and micro-FTIR. Findings from this investigation revealed that all samples of A. granosa were contaminated with microplastics, with the highest levels of accumulation found in bivalves collected from the west coast (0.26 ± 0.15 particles/g) of Peninsular Malaysia. Fragment and fiber microplastics, measuring between 0.05 and 0.1 mm in size, were found to be the most prevalent in A. granosa, with blue being the dominant identified colour and rayon being the most common polymer type. Microplastic risk assessment due to the presence of polyacrylate, polycarbonate (PC), and polymethyl methacrylate (PMMA) resulted in a high risk of contamination for A. granosa. It was further determined that the current estimated dietary intake (EDI) suggests that consumers of A. granosa uptake approximately 21.8-93.5 particles/person/year of microplastics. This study highlights that A. granosa accumulates microplastics, which could potentially result in bioaccumulation and biomagnification in humans through consumption.
Collapse
Affiliation(s)
- Priya Mohan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Center for Research in Waste Management, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hiroaki Furumai
- Research and Development Initiative, Chuo University, Tokyo, Japan
| | | |
Collapse
|
26
|
Sahu N, Bhowmik M, Lakra RK, Haldar S. Tracing microplastic pollution in Mahi River estuary, Gulf of Khambhat, Gujarat, and their influence on functional traits of macrobenthos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47882-47898. [PMID: 39012532 DOI: 10.1007/s11356-024-34342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Most maritime habitats contain microplastic (MPs) contamination. The quality of the benthic ecosystem's habitat is declining as MPs accumulate in marine system. The contamination of MPs must therefore be investigated. We studied MPs pollution in the Mahi River, estuary, and macrobenthos. In the present study, the abundance of MPs fragments gradually decreased from the high tide zone to the low tide zone and muddy sediment has high MPs concentrations due to sediment characteristics and particle size. The majority of sediment and biota MPs were fibrous and black. MPs in both silt and biota have identical chemical compositions (modified cellulose), shapes, and colors. A significant source of pollutants and MPs fluxing into the ocean is well within the river system. Perinereis aibuhitensis ingested the most MPs out of 11 species, whereas Amphipods did not show any presence of MPs. Our findings showed that functional characteristics are essential for macrobenthos MPs intake. MPs in macrobenthos are high due to biological functions such as feeding, ecological groups, feeding mechanisms, body size, and bioturbation. MPs in marine sediment and organisms are tracked down to the Mahi River exceeding 50 km. The present work has investigated the idea that the macrobenthos that live in the sediment are ingesting the MPs that are building up there and this ingestion relies on the macrobenthos' functional characteristics.
Collapse
Affiliation(s)
- Nosad Sahu
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi, 682508, India
| | - Moumita Bhowmik
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Raj Kiran Lakra
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
27
|
Barari F, Eydi Gabrabad M, Bonyadi Z. Recent progress on the toxic effects of microplastics on Chlorella sp. in aquatic environments. Heliyon 2024; 10:e32881. [PMID: 38975222 PMCID: PMC11226894 DOI: 10.1016/j.heliyon.2024.e32881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Microplastics (MPs) are emerging contaminants that have harmful effects on ecosystems. Microalgae are important primary producers in aquatic environments, providing nutrients for various organisms. These microorganisms may be affected by MPs. Therefore, it is important to investigate the toxicity aspects of different MPs on Chlorella species. It can be seen that the BG-11 culture medium was the most commonly used medium in 40 % of the studies for the growth of Chlorella sp. Chlorella sp. grows optimally at a temperature of 25 °C and a pH of 7. Most studies show that Chlorella sp. can grow in the range of 3000-6000 lux. Moreover, various techniques have been used to analyze the morphological properties of MPs in different studies. These techniques included scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and transmission electron microscopy (TEM), which were used in 65 %, 35 %, and 27 % of the studies, respectively. 53 % of the research has focused on the toxic effects of PS on Chlorella sp. Findings show that 41 % of the studies investigated MPs concentrations in the range of 10-100 mg/L, followed by 32 % of the studies in the range of 100-1000 mg/L. The studies found that MPs were used in a spherical shape in 45 % of the cases. The enzymes most affected by MPs were superoxide dismutase (SOD) and Malondialdehyde (MDA), accounting for 48 % of the studies each. Additionally, exposure to MPs increased the activity of enzymes such as SOD and MDA. In general, it can be concluded that MPs had a relatively high negative effect on the growth of Chlorella sp.
Collapse
Affiliation(s)
- Fateme Barari
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Eydi Gabrabad
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Park KY, Kim MS, Oh N. Cytotoxicity of amine-modified polystyrene MPs and NPs on neural stem cells cultured from mouse subventricular zone. Heliyon 2024; 10:e30518. [PMID: 38770330 PMCID: PMC11103427 DOI: 10.1016/j.heliyon.2024.e30518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are found in various environments such as aquatic, terrestrial, and aerial areas. Once ingested and inhaled, these tiny plastic debris damaged the digestive and respiratory organ systems in animals. In humans, the possible connection between MPs and various diseases such as lung diseases has been raised. Yet, the impact of MPs on the human nervous system has been unclear. Previous research using animals and cultured cells showed possible neurotoxicity of MPs and NPs. In this study, we used neural stem cells cultured from mouse subventricular zone to examine the effects of polystyrene (PS) NPs and MPs with sizes of 0.1 μm, 1 μm, and 2 μm on the cell proliferation and differentiation. We observed that only positively charged NPs and MPs, but not negatively charged ones, decreased cell viability and proliferation. These amine-modified NPs and MPs decreased both neurogenesis and oligodendrogenesis. Finally, fully differentiated neurons and oligodendrocytes were damaged and removed by the application of NPs and MPs. All these effects varied among different sizes of NPs and MPs, with the greatest effects from 1 μm and the least effects from 2 μm. These results clearly demonstrate the cytotoxicity and neurotoxicity of PS-NPs and MPs.
Collapse
Affiliation(s)
- Ki-Youb Park
- Department of Chemistry and Biology, Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 47162, South Korea
| | - Man Su Kim
- College of Pharmacy, Inje University, Gimhae, 50834, South Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 47162, South Korea
| |
Collapse
|
29
|
Huang Y, Zhu Z, Li T, Li M, Cai Z, Wang X, Gong H, Yan M. Mangrove plants are promising bioindicator of coastal atmospheric microplastics pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133473. [PMID: 38219586 DOI: 10.1016/j.jhazmat.2024.133473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Plastics are commonly used by society and their break down into millimeter-sized bits known as microplastics (MPs). Due to the possibility of exposure, reports of them in atmospheric deposition, indoor, and outdoor air have sparked worry for public health. In tropical and subtropical regions all throughout the world, mangroves constitute a distinctive and significant type of coastal wetlands. Mangrove plants are considered to have the effect of accumulating sediment MPs, but the sedimentation of atmospheric MPs has not been reported. In this study, we illustrated the characteristics, abundance and spatial distribution of MPs in different species of mangrove leaves along the Seagull Island in Guangzhou. MPs samples from leaves in five species showed various shapes, colors, compositions, sizes and abundance. Acanthus ilicifolius had an average fallout rate of 1223 items/m2/day which has the highest abundance of MPs in all samples. Four shapes of MPs were found in all leaves surfaces including fiber, fragment, pellet, and film, with fiber is the most. The dominant types of MPs in all leaves were cellulose and rayon. Most of the total MPs size were smaller than 2 mm. Clearly, the microstructures of each species leaf surfaces had an impact on its ability to retain MPs. The plants rough blade surfaces and big folds or gullies caused more particles to accumulate and had a higher MPs retention capacity. Overall, our study contributes to a better knowledge of the condition of MPs pollution in atmosphere and the connection between leaves structure and the retention of MPs, which indicates that mangrove plants are promising bioindicator of coastal atmospheric MPs pollution.
Collapse
Affiliation(s)
- Yuanyin Huang
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ziying Zhu
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tianmu Li
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Minqian Li
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zeming Cai
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaocui Wang
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Han Gong
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Muting Yan
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
30
|
Gu YG, Jordan RW, Jiang SJ. Probabilistic risk assessment of microplastics on aquatic biota in coastal sediments. CHEMOSPHERE 2024; 352:141411. [PMID: 38350515 DOI: 10.1016/j.chemosphere.2024.141411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
As an emerging form of pollution, microplastic contamination of the coastal ecosystems is one of the world's most pressing environmental concerns. Coastal sediments have been polluted to varying degrees by microplastics, and their ubiquitous presence in sediments poses a threat to marine organisms. However, there is currently no ecological risk assessment of microplastics on aquatic biota in sediments. This study, for the first time, established a new procedure to evaluate the toxicity of microplastics on aquatic biota in sediments, based on the probabilistic risk assessment (PRA) concept. The choice of Zhelin Bay as the case study site was based on its severe pollution status. The average content of microplastics in the sediments of Zhelin Bay was 2054.17 items kg-1 dry weight, and these microplastics consisted of 46 different species. Microplastics in sediments exist in five different forms, with the film form being the main composition, and the majority of microplastics have particle sizes ranging from 100 to 500 μm. Correlation analysis (CA) reveals significant negative correlations between microplastic abundance, and Al2O3 and SiO2. The toxicity of microplastics, based on the PRA concept, suggests that Zhelin Bay surface sediments had a low probability (3.43%) of toxic effects on aquatic biota.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 572025, China.
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shi-Jun Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; College of Oceanography, Hohai University, Nanjing, 245700, China
| |
Collapse
|
31
|
Gao S, Li Z, Zhang S. Trophic transfer and biomagnification of microplastics through food webs in coastal waters: A new perspective from a mass balance model. MARINE POLLUTION BULLETIN 2024; 200:116082. [PMID: 38367586 DOI: 10.1016/j.marpolbul.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Since the 1950s, plastic pollution and its risk have been recognized as irreversible and nonnegligible problems as global plastic production has increased. In recent years, the transport and trophic transfer of microplastics (MPs) in biotic and abiotic environment have attracted extensive attention from researchers. In this study, based on the Ecotracer module from Ecopath with Ecosim (EwE) model, the marine ranching area of Haizhou Bay, Jiangsu Province, China, was taken as a case study by linking the environmental plastic inflow with MPs in organisms to simulate the variation of MPs in the marine food web for 20 years, as well as its potential trophic transfer and biomagnification. We found that the concentration of MPs in top consumers first increased when the concentration of MPs in the environment increased, while that in primary consumers first decreased when the concentration of MPs in the environment decreased. Moreover, high TL consumers had a stronger ability to accumulate MPs, and pelagic prey fishes was the opposite. From the perspective of the food web, all functional groups showed significant trophic magnification along with the trophic level and no biodilution. Generally, there is a direct relationship between the MPs in marine organisms and environmental inflow. If the pollutants flowing into the environment can be reduced, the MP pollution problem in coastal waters will be effectively alleviated. Our research can further provide a scientific basis for ecological risk assessment and management of MPs and biodiversity protection in marine ecosystems.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Li
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| |
Collapse
|
32
|
Aguirre-Sanchez A, Purca S, Cole M, Indacochea AG, Lindeque PK. Prevalence of microplastics in Peruvian mangrove sediments and edible mangrove species. MARINE POLLUTION BULLETIN 2024; 200:116075. [PMID: 38335630 DOI: 10.1016/j.marpolbul.2024.116075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Mangrove ecosystems have been hypothesised as a potential sink of microplastic debris, which could pose a threat to mangrove biota and ecological function. In this field-study we establish the prevalence of microplastics in sediments and commercially-exploited Anadara tuberculosa (black ark) and Ucides occidentalis (mangrove crab) from five different zones in the mangrove ecosystem of Tumbes, Peru. Microplastic were evident in all samples, with an average of 726 ± 396 microplastics/kg for the sediment, although no differences between the different zones of the mangrove ecosystem were observed. Microplastic concentrations were 1.6± 1.1 items/g for the black ark and 1.9 ± 0.9 microplastics/g for the mangrove crab, with a difference in the microplastic abundance between species (p < 0.05), and between the gills and stomachs of the crab (p < 0.01). Human intake of microplastics from these species, for the population in Tumbes, is estimated at 431 items per capita per year. The outcomes of this work highlight that the mangrove ecosystem is widely contaminated with microplastics, presenting a concern for the marine food web and food security.
Collapse
Affiliation(s)
- Angelica Aguirre-Sanchez
- Facultad de Ciencias Veterinarias y Biológicas, Biología Marina, Laboratorio de Ecología Marina, Universidad Científica del Sur, Lima, Peru.
| | - Sara Purca
- Área Funcional de Investigaciones Marino Costeras (AFIMC), Dirección General de Investigaciones en Acuicultura (DGIA), Instituto del Mar del Peru (IMARPE), Callao, Peru
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| | - Aldo G Indacochea
- Facultad de Ciencias Veterinarias y Biológicas, Biología Marina, Laboratorio de Ecología Marina, Universidad Científica del Sur, Lima, Peru
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
33
|
Kerpen NB, Larsen BE, Schlurmann T, Paul M, Guler HG, Goral KD, Carstensen S, Christensen ED, Fuhrman DR. Microplastic retention in marine vegetation canopies under breaking irregular waves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169280. [PMID: 38128667 DOI: 10.1016/j.scitotenv.2023.169280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The present study provides indications and underlying drivers of wave-induced transport and retention potential of microplastic particles (MP) in marine vegetation canopies having different densities. The anthropogenic occurrence of MP in coastal waters is well documented in the recent literature. It is acknowledged that coastal vegetation can serve as a sink for MP due to its energy dissipating features, which can mimic a novel ecosystem service. While the transport behavior of MP in vegetation has previously been investigated to some extent for stationary flow conditions, fundamental investigations for unsteady surf zone flow conditions under irregular waves are still lacking. Herein, we demonstrate by means of hydraulic model tests that a vegetation's retention potential of MP in waves increases with the vegetation shoot density, the MP settling velocity and decreasing wave energy. It is found that particles migrating by traction (predominantly in contact with the bed) are trapped in the wake regions around a canopy, whereas suspended particles are able to pass vegetated areas more easily. Very dense canopies can also promote the passage of MP with diameters larger than the plant spacing, as the canopies then show characteristics of a solid sill and avoid particle penetration. The particle migration ability through a marine vegetation canopy is quantified, and the key drivers are described by an empirical expression based on the particle settling velocity, the canopy length and density. The findings of this study may contribute to improved prediction and assessment of MP accumulation hotspots in vegetated coastal areas and, thus, may help in tracing MP sinks. Such knowledge can be considered a prerequisite to develope methods or new technologies to recover plastic pollutants and rehabilitate valuable coastal environments.
Collapse
Affiliation(s)
- Nils B Kerpen
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Bjarke Eltard Larsen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Torsten Schlurmann
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Maike Paul
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Hasan Gokhan Guler
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark; Middle East Technical University, Department of Civil Engineering, Ocean Engineering Research Center, Cankaya, Ankara, Turkey
| | - Koray Deniz Goral
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Stefan Carstensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Erik Damgaard Christensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - David R Fuhrman
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
34
|
Curl LF, Hurst SA, Pomory CM, Lamont MM, Janosik AM. Assessing microplastics contamination in unviable loggerhead sea turtle eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169434. [PMID: 38104820 DOI: 10.1016/j.scitotenv.2023.169434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Sea turtles, in comparison with marine mammals, sea birds, and fishes, are the most affected by microplastics in terms of number of individuals impacted and concentration within each organism. The ubiquitous nature and persistence of microplastics in the environment further compromises sea turtles as many species are currently vulnerable, endangered, or critically endangered. The objective of this study was to quantify microplastic contamination in unviable loggerhead sea turtle eggs (Caretta caretta). Eggs were collected from seven locations along the northwest coast of Florida. A total of 70 nests and 350 eggs were examined. Microplastics (n = 510) were found in undeveloped loggerhead sea turtle eggs across all seven sites, suggesting that maternal transference and/or exchange between the internal and external environment were possible. The frequency found was 7.29 ± 1.83 microplastic pieces per nest and 1.46 ± 0.01 per egg. Microplastics were categorized based on color, shape, size, and type of polymer. The predominant color of microplastics were blue/green (n = 236), shape was fibers (n = 369), and length was 10-300 μm (n = 191). Identified fragments, films, beads and one foam (n = 187) had the most common area of 1-10 μm2 (n = 45). Micro-Fourier Transform Infrared (μ-FTIR) spectroscopy analysis demonstrated that polyethylene (11 %) and polystyrene (7 %) were the main polymer types. For the first time microplastics were found in unviable, undeveloped loggerhead sea turtle eggs collected in northwest Florida. This work provides insight into the distribution patterns of microplastic pollutants in loggerhead sea turtle eggs and may extend to other species worldwide.
Collapse
Affiliation(s)
| | | | | | - Margaret M Lamont
- United States Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, United States of America
| | | |
Collapse
|
35
|
Xie S, Song K, Liu S, Li Y, Wang J, Huang W, Feng Z. Distribution and characteristics of microplastics in 16 benthic organisms in Haizhou Bay, China: Influence of habitat, feeding habits and trophic level. MARINE POLLUTION BULLETIN 2024; 199:115962. [PMID: 38157831 DOI: 10.1016/j.marpolbul.2023.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are widely found in the ocean and cause a serious risk to marine organisms. However, fewer studies have been conducted on benthic organisms. This study conducted a case study on the pollution characteristics of MPs on 16 marine benthic organisms in Haizhou Bay, and analyzed the effects of habitat, trophic level, and feeding mode on the MPs pollution characters. The results showed that MPs were detected in all 16 organisms with an average abundance of 8.84 ± 9.14 items/individual, which is in the middle-high level in the international scale. Among the detected MPs, the main material was cellophane. This study showed that benthic organisms can be used as indicator organisms for MPs pollution. MPs in organisms can be affected by their habitat, trophic level, and feeding mode. Comprehensive analysis of MPs in benthic organisms will contribute to fully understand the characterization and source resolution of MPs pollution.
Collapse
Affiliation(s)
- Siqi Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China; University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shiwei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - You Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
36
|
Talukdar A, Kundu P, Bhattacharjee S, Dey S, Dey A, Biswas JK, Chaudhuri P, Bhattacharya S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166165. [PMID: 37574065 DOI: 10.1016/j.scitotenv.2023.166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.
Collapse
Affiliation(s)
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post-graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah 711301, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology & Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Nadia, West Bengal 741235, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| |
Collapse
|
37
|
Liu S, Hu R, Peng N, Zhou Z, Chen R, He Z, Wang C. Phylogenetic and ecophysiological novelty of subsurface mercury methylators in mangrove sediments. THE ISME JOURNAL 2023; 17:2313-2325. [PMID: 37880540 PMCID: PMC10689504 DOI: 10.1038/s41396-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Mangrove sediment is a crucial component in the global mercury (Hg) cycling and acts as a hotspot for methylmercury (MeHg) production. Early evidence has documented the ubiquity of well-studied Hg methylators in mangrove superficial sediments; however, their diversity and metabolic adaptation in the more anoxic and highly reduced subsurface sediments are lacking. Through MeHg biogeochemical assay and metagenomic sequencing, we found that mangrove subsurface sediments (20-100 cm) showed a less hgcA gene abundance but higher diversity of Hg methylators than superficial sediments (0-20 cm). Regional-scale investigation of mangrove subsurface sediments spanning over 1500 km demonstrated a prevalence and family-level novelty of Hg-methylating microbial lineages (i.e., those affiliated to Anaerolineae, Phycisphaerae, and Desulfobacterales). We proposed the candidate phylum Zixibacteria lineage with sulfate-reducing capacity as a currently understudied Hg methylator across anoxic environments. Unlike other Hg methylators, the Zixibacteria lineage does not use the Wood-Ljungdahl pathway but has unique capabilities of performing methionine synthesis to donate methyl groups. The absence of cobalamin biosynthesis pathway suggests that this Hg-methylating lineage may depend on its syntrophic partners (i.e., Syntrophobacterales members) for energy in subsurface sediments. Our results expand the diversity of subsurface Hg methylators and uncover their unique ecophysiological adaptations in mangrove sediments.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Nenglong Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruihan Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Abdel Ghani SA, Shobier AH, El-Sayed AAM, Shreadah MA, Shabaka S. Quantifying microplastics pollution in the Red Sea and Gulfs of Suez and Aqaba: Insights from chemical analysis and pollution load assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166031. [PMID: 37541508 DOI: 10.1016/j.scitotenv.2023.166031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Microplastics (MPs) constitute the majority of marine plastic litter. The pollution caused by MPs has been categorized as a gradual and persistent crisis, but little is known about its extent along the shores of the Red Sea, particularly on the Egyptian side. The Red Sea is a rapidly developing region and home to critical ecosystems with high levels of endemism. This study represents the first comprehensive survey investigating the extent of MP pollution along the Egyptian shores of the Red Sea, including the Gulf of Suez and Aqaba. Mean concentrations ranged from 23.3 ± 15.28 to 930.0 ± 181.9 MPs/kg DW. Out of 17 beaches surveyed, 12 had mean concentrations of <200 items/kg, indicating a low occurrence of MPs compared to the shores of the Mediterranean Coast of Egypt. The pollution load index varied from low to medium levels in most locations. Ras Mohamed, a marine protected area, showed high vulnerability to MP pollution. All the investigated particles were fragments of secondary MPs. The sources of pollution mainly come from maritime activities, including cargo shipping and intense recreational activities. Fourier Transform Infrared Spectroscopy identified four plastic polymers, with polyethylene and polypropylene being the most common. The surface morphology of plastic particles was examined using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. All the particles exhibited signs of degradation, which could generate countless plastic pieces with possible deleterious impacts. This work has highlighted the importance of conducting region-specific assessments of mismanaged plastic waste, focusing on the role of tourism and recreational navigation as contributors to plastic litter, to estimate plastic waste inputs into the waters of the Red Sea Coast of Egypt. Efforts are needed to develop strategic plans to reduce the disposal of plastic waste in the region.
Collapse
Affiliation(s)
| | - Aida H Shobier
- National Institute of Oceanography and Fisheries, Niof, Egypt
| | | | - M A Shreadah
- National Institute of Oceanography and Fisheries, Niof, Egypt
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, Niof, Egypt.
| |
Collapse
|
39
|
Li T, Wang Y, Jiao M, Zhao Z, Li R, Qin C. Distinct microplastics abundance variation in root-associated sediments revealed the underestimation of mangrove microplastics pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165611. [PMID: 37478953 DOI: 10.1016/j.scitotenv.2023.165611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Mangrove sediment is acknowledged as the critical sink of microplastics (MPs). However, the potential effect of mangrove root systems on the MPs migration in sediment remains largely unknown. Here, our study characterized the spatial distribution of MPs trapped in root hair, rhizosphere, and non-rhizosphere zones, and analyzed their correlations with physicochemical properties of sediments. The significantly increased MPs abundances toward root systems shed light on the distinct effect on the migration of MPs exerted by mangrove root systems. Partial least squares path modeling (PLS-PM) analysis revealed that pore water content and pH influenced the abundances of different MP characteristics (shape, color, size, and type) and further promoted the accumulation of MPs toward the root systems. In different mangrove areas from landward to seaward, other sediment properties (median grain size, clay content, and salinity) also controlled MP distribution. Additionally, smaller-sized MPs (<1000 μm) were more easily transported to the root systems. Our study emphasizes the importance of considering root systems effect when investigating the mechanisms of MPs distribution and migration in mangrove sediments.
Collapse
Affiliation(s)
- Tiezhu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Chengrong Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
40
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
41
|
Sari Erkan H, Takatas B, Ozturk A, Gündogdu S, Aydın F, Koker L, Ozdemir OK, Albay M, Onkal Engin G. Spatio-temporal distribution of microplastic pollution in surface sediments along the coastal areas of Istanbul, Turkey. MARINE POLLUTION BULLETIN 2023; 195:115461. [PMID: 37659384 DOI: 10.1016/j.marpolbul.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Microplastics (MPs) have become prevalent in various environmental compartments, including air, water, and soil, attracting attention as significant pollutant parameters. This study investigated the prevalence of MP pollution in surface sediments along Istanbul's Marmara Sea, encompassing the megacity and the Bosphorus. A comprehensive sampling approach was employed, covering 43 stations across four seasons and depths ranging from 5 to 70 m. The objective was to assess the impact of terrestrial, social, and industrial activities on MPs. The average concentrations varied per season, with fall, winter, spring, and summer values recorded as 2000 ± 4100, 1600 ± 3900, 4300 ± 12,000, and 9500 ± 20,300 particles/kg-DW. The study identified river stations in the Golden Horn and sea discharge locations as hotspots for high concentrations. Notably, the dominant shape shifted from fibers in fall, winter, and spring to fragments during summer, coinciding with mucilage occurrences. The study identified 11 different polymers, with polyethylene (44 %) and polypropylene (31 %) being the most common.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye.
| | - Betul Takatas
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| | - Alihan Ozturk
- Yildiz Technical University, Control and Automation Engineering Department, 34349 Istanbul, Turkiye
| | - Sedat Gündogdu
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkiye
| | - Fatih Aydın
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Latife Koker
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Oguz Kaan Ozdemir
- Yıldız Technical University, Department of Metallurgical and Materials Engineering, 34220 İstanbul, Turkiye
| | - Meric Albay
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Guleda Onkal Engin
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| |
Collapse
|
42
|
Chanda A, Akhand A. Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove's Blue Carbon Stock. Life (Basel) 2023; 13:1787. [PMID: 37629645 PMCID: PMC10455859 DOI: 10.3390/life13081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The Sundarban is the world's largest contiguous mangrove forest and stores around 26.62 Tg of blue carbon. The present study reviewed the factors causing a decline in its blue carbon content and poses a challenge in enhancing the carbon stock of this region. This review emphasized that recurrent tropical cyclones, soil erosion, freshwater scarcity, reduced sediment load into the delta, nutrient deficiency, salt-stress-induced changes in species composition, mangrove clearing, and anthropogenic pollution are the fundamental drivers which can potentially reduce the total blue carbon stock of this region. The southern end of the Ganges-Brahmaputra-Meghna Delta that shelters this forest has stopped its natural progradation due to inadequate sediment flow from the upper reaches. Growing population pressure from the north of the Sundarban Biosphere Reserve and severe erosion in the southern end accentuated by regional sea-level rise has left minimal options to enhance the blue carbon stock by extending the forest premises. This study collated the scholarly observations of the past decades from this region, indicating a carbon sequestration potential deterioration. By collecting the existing knowledge base, this review indicated the aspects that require immediate attention to stop this ecosystem's draining of the valuable carbon sequestered and, at the same time, enhance the carbon stock, if possible. This review provided some key recommendations that can help sustain the blue carbon stock of the Indian Sundarban. This review stressed that characterizing the spatial variability of blue carbon with more sampling points, catering to the damaged trees after tropical cyclones, estuarine rejuvenation in the upper reaches, maintaining species diversity through afforestation programs, arresting coastal erosion through increasing sediment flow, and combating marine pollution have become urgent needs of the hour. The observations synthesized in this study can be helpful for academics, policy managers, and decision makers willing to uphold the sustainability of the blue carbon stock of this crucial ecosystem.
Collapse
Affiliation(s)
- Abhra Chanda
- School of Oceanographic Studies, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Anirban Akhand
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, Nagase, Yokosuka 239-0826, Kanagawa, Japan
| |
Collapse
|
43
|
Garcés-Ordóñez O, Castillo-Olaya V, Espinosa-Díaz LF, Canals M. Seasonal variation in plastic litter pollution in mangroves from two remote tropical estuaries of the Colombian Pacific. MARINE POLLUTION BULLETIN 2023; 193:115210. [PMID: 37385182 DOI: 10.1016/j.marpolbul.2023.115210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Mangroves in estuaries are highly vulnerable to the impacts of plastic litter pollution, because their location at river mouths and the high capacity of mangrove trees to trap plastic items. Here, we present new results on the abundance and characteristics of plastic litter during high and low rainfall seasons in mangrove waters and sediments of the Saija and Timbiqui River estuaries in the Colombian Pacific. In both estuaries, microplastics were the most common size (50-100 %), followed by mesoplastics (13-42 %) and macroplastics (0-8 %). Total abundances of plastic litter were higher during the high rainfall season (0.17-0.53 items/m-3 in surface waters and 764-832 items/m-2 in sediments), with a moderately positive relationship between plastic abundances recorded in both environmental matrices. The most common microplastics were foams and fragments. Continuous research and monitoring are required for a better understanding and management of these ecosystems and their threats.
Collapse
Affiliation(s)
- Ostin Garcés-Ordóñez
- Programa Calidad Ambiental Marina, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis - INVEMAR, calle 25 # 2-55 Rodadero, Santa Marta, Colombia; GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Red de Vigilancia para la Conservación y Protección de las aguas marinas y costeras de Colombia-REDCAM, Santa Marta, Colombia.
| | - Victoria Castillo-Olaya
- Programa Calidad Ambiental Marina, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis - INVEMAR, calle 25 # 2-55 Rodadero, Santa Marta, Colombia
| | - Luisa F Espinosa-Díaz
- Programa Calidad Ambiental Marina, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis - INVEMAR, calle 25 # 2-55 Rodadero, Santa Marta, Colombia; Red de Vigilancia para la Conservación y Protección de las aguas marinas y costeras de Colombia-REDCAM, Santa Marta, Colombia
| | - Miquel Canals
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| |
Collapse
|
44
|
Chen B. Bibliometric analysis and current research in the field of microplastics (MPs) in mangrove. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023. [DOI: 10.1007/s10668-023-03481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/06/2023] [Indexed: 09/01/2023]
|
45
|
Zheng X, Sun R, Dai Z, He L, Li C. Distribution and risk assessment of microplastics in typical ecosystems in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163678. [PMID: 37100141 DOI: 10.1016/j.scitotenv.2023.163678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Microplastic pollution in the marine environment has attracted worldwide attention. The South China Sea is considered a hotspot for microplastic pollution due to the developed industries and high population density around the South China Sea. The accumulation of microplastics in ecosystems can adversely affect the health of the environment and organisms. This paper reviews the recent microplastic studies conducted in the South China Sea, which novelty summarizes the abundance, types, and potential hazards of microplastics in coral reef ecosystems, mangrove ecosystems, seagrass bed ecosystems, and macroalgal ecosystems. A summary of the microplastic pollution status of four ecosystems and a risk assessment provides a more comprehensive understanding of the impact of microplastic pollution on marine ecosystems in the South China Sea. Microplastic abundances of up to 45,200 items/m3 were reported in coral reef surface waters, 5738.3 items/kg in mangrove sediments, and 927.3 items/kg in seagrass bed sediments. There are few studies of microplastics in the South China Sea macroalgae ecosystems. However, studies from other areas indicate that macroalgae can accumulate microplastics and are more likely to enter the food chain or be consumed by humans. Finally, this paper compared the current risk levels of microplastics in the coral reef, mangrove, and seagrass bed ecosystems based on available studies. Pollution load index (PLI) ranges from 3 to 31 in mangrove ecosystems, 5.7 to 11.9 in seagrass bed ecosystems, and 6.1 to 10.2 in coral reef ecosystems, respectively. The PLI index varies considerably between mangroves depending on the intensity of anthropogenic activity around the mangrove. Further studies on seagrass beds and macroalgal ecosystems are required to extend our understanding of microplastic pollution in marine environments. Recent microplastic detection in fish muscle tissue in mangroves requires more research to further the biological impact of microplastic ingestion and the potential food safety risks.
Collapse
Affiliation(s)
- Xuanjing Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
46
|
Cardoso-Mohedano JG, Ruiz-Fernández AC, Sanchez-Cabeza JA, Camacho-Torres SM, Ontiveros-Cuadras JF. Microplastics transport in a low-inflow estuary at the entrance of the Gulf of California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161825. [PMID: 36716892 DOI: 10.1016/j.scitotenv.2023.161825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are recognized as a global emergent pollution impact, which can affect all food chains. Estimating MPs transport pathways in coastal ecosystems is needed to assess their likely effects. Here, we studied MPs accumulation and transport pathways in the Estero de Urias lagoon system (low-inflow estuary) using field data and a 3D particle model. Field results showed that the MPs present similar abundances throughout the study area during the dry and rainy seasons. Model simulations indicated that i) morphology and tidal currents caused the MPs discharged in the lagoon to remain inside, and ii) wind-induced currents caused the MPs in the coastal area to be transported to the southwest. These transport processes may be responsible for homogenizing MPs concentrations through the studied area. In addition, model simulations suggested that EUL-dense waters can export MPs from the coastal area to the sea bottom.
Collapse
Affiliation(s)
- Jose Gilberto Cardoso-Mohedano
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km. 9.5, 24157 Ciudad del Carmen, Campeche, Mexico.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico
| | | | - Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Unidad Académica Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y Limnología, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
47
|
Kor K, Jannat B, Ershadifar H, Ghazilou A. Microplastic occurrence in finfish and shellfish from the mangroves of the northern Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 189:114788. [PMID: 36871342 DOI: 10.1016/j.marpolbul.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess microplastic (MP) pollution in some aquatic animals inhabiting planted and natural mangrove swamps in the northern Gulf of Oman. The KOH-NaI solution was used to retrieve MPs from the gastrointestinal tracts of animals. The highest MP prevalence was recorded in crabs (41.65 %) followed by fish (33.89 %) and oysters (20.8 %). The abundance of MPs in examined animals varied from zero in Sphyraena putnamae to 11 particles in a Rhinoptera javanica specimen. When polluted-only animals were considered, the mean abundance of MPs significantly varied among species and between locations. The mean density of ingested MPs was higher in the planted mangrove animals (1.79 ± 2.89 vs. 1.21 ± 2.25 n/individual; mean ± SD). Among the examined fish species, R. javanica ingested the highest number of MPs (3.83 ± 3.93 n/individual; mean ± SD). The polyethylene/ polypropylene fragments or fibers of average 1900 μm size were recorded as predominant (>50 % occurrence) MP particles.
Collapse
Affiliation(s)
- Kamalodin Kor
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Ershadifar
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Amir Ghazilou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran.
| |
Collapse
|
48
|
Fang C, Zheng R, Hong F, Chen S, Chen G, Zhang M, Gao F, Chen J, Bo J. First evidence of meso- and microplastics on the mangrove leaves ingested by herbivorous snails and induced transcriptional responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161240. [PMID: 36587672 DOI: 10.1016/j.scitotenv.2022.161240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Ronghui Zheng
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fukun Hong
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shunyang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Guangcheng Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Min Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fulong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jincan Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Bo
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
49
|
Wang Y, Jiao M, Li T, Li R, Liu B. Role of mangrove forest in interception of microplastics (MPs): Challenges, progress, and prospects. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130636. [PMID: 37056008 DOI: 10.1016/j.jhazmat.2022.130636] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/19/2023]
Abstract
Mangroves receive microplastics (MPs) from terrestrial, marine and atmospheric sources, acting as a huge filter for environmental MPs between land and sea. Due to the high primary production and complex hydrodynamic conditions in mangroves, MPs are extensively intercepted in various ways while flowing through mangroves, leading to a long-standing but fiercely increasing MPs accumulation. However, current researches mainly focused on the occurrence, source and fate of MPs pollution in mangroves, ignoring the role of mangrove forests in the interception of MPs. Our study firstly demonstrates that mangrove ecosystems have significantly greater MPs interception capacity than their surrounding environments. Then, the current status of studies related to the interception of MPs in mangrove ecosystems is comprehensively reviewed, with the main focus on the interception process and mechanisms. At last, the most pressing shortcomings of current research are highlighted regarding the intercepted flux, interception mechanisms, retention time and ecological risks of MPs in mangrove ecosystems and the relevant future perspectives are provided. This review is expected to emphasize the critical role of mangrove forests in the interception of MPs and provide the foundational knowledge for evaluating the MPs interception effect of mangrove forests globally.
Collapse
Affiliation(s)
- Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
50
|
Khoshmanesh M, Sanati AM, Ramavandi B. Co-occurrence of microplastics and organic/inorganic contaminants in organisms living in aquatic ecosystems: A review. MARINE POLLUTION BULLETIN 2023; 187:114563. [PMID: 36623469 DOI: 10.1016/j.marpolbul.2022.114563] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Most studies on microplastics (MPs) and organisms, regardless of the MPs type and their presence in the environment and organisms, have been performed on a laboratory scale. In this review, reports of simultaneous analysis of the abundance of MPs and organic/inorganic contaminants in aquatic organisms in the natural environment have been collected and bibliometric analysis was performed. Biological and environmental factors affecting MPs absorption by organisms were discussed. The majority of microplastics were identified as fibrous and black with a small size (<500 μm). A positive correlation was reported between microplastic numbers and organic/inorganic contaminants in the tissue of some species. The most positive linear relationship between heavy metal and MPs was reported for Heniochus acuminatus from the Gulf of Mannar. To preserve biodiversity and the risks of transferring MPs and contaminants to aquatic organisms and humans, it is necessary to control microplastic contamination.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| |
Collapse
|