1
|
Wei G, Zhang K, Shen FJ, Xie RR, Wang FW, Guo HQ, Liu L. Low-dose polystyrene microplastics exposure increases susceptibility to obesity-induced MASLD via disrupting intestinal barrier integrity and gut microbiota homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118310. [PMID: 40403691 DOI: 10.1016/j.ecoenv.2025.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
The global incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has surged in recent years, potentially impacted by both high-energy food intake (e.g., high-fat diet, HFD) and environmental pollutants like microplastics (MPs). However, the combined impacts of MPs exposure and HFD feeding, particularly under long-time exposure, low concentrations MPs conditions, on the MASLD progression remain to be fully elucidated. In this study, C57BL/6 J male mice were fed either a normal chow diet or HFD with or without low-dose MPs (polystyrene) exposure (25-30 μg/kg body weight /day) for 14 weeks. The adverse health effects associated with MASLD development were evaluated, including intestinal permeability, gut microbiota composition, hepatic lipid metabolism, and the mediating role of the gut-liver axis. Additionally, HFD with or without low-dose MPs exposure was withdrawn to further verify this process. Our data demonstrated that low-dose MPs exposure or HFD feeding significantly increased the gut permeability, oxidative stress, pro-inflammatory response and apoptosis, while concurrently contributing to gut dysbiosis (e.g., reduced levels of Akkermansia) and MASLD development. Furthermore, low-dose MPs exposure exacerbated these effects in combination with HFD feeding, exhibiting a 'double hit' effect. Notably, the impacts of low-dose MPs exposure combined with HFD feeding on MASLD were difficult to reverse after two weeks withdrawing, likely due to the limited recovery potential of intestinal barrier integrity and gut microbiota homeostasis. These finding underscore the importance of avoiding MPs exposure in the pathogenesis of MASLD, particularly under a metabolic disorder conditions, and provide valuable insights for the developing therapeutic strategies to combat MASLD caused by MPs exposure.
Collapse
Affiliation(s)
- Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Kai Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Feng-Jie Shen
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Feng-Wei Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Hua-Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China.
| | - Lin Liu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
2
|
Aib H, Parvez MS, Czédli HM. Pharmaceuticals and Microplastics in Aquatic Environments: A Comprehensive Review of Pathways and Distribution, Toxicological and Ecological Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:799. [PMID: 40427912 PMCID: PMC12111788 DOI: 10.3390/ijerph22050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceuticals and microplastics are persistent emerging contaminants that pose significant risks to aquatic ecosystems and ecological health. Although extensively reviewed individually, a comprehensive, integrated assessment of their environmental pathways, bioaccumulation dynamics, and toxicological impacts remains limited. This review synthesizes current research on the environmental fate and impact of pharmaceuticals and microplastics, emphasizing their combined influence on aquatic organisms and ecosystems. This review provides a thorough and comprehensive examination of their predominant pathways, sources, and distribution, highlighting wastewater disposal, agricultural runoff, and atmospheric deposition. Studies indicate that pharmaceuticals, such as antibiotics and painkillers, are detected in concentrations ranging from ng/L to μg/L in surface waters, while MPs are found in densities up to 106 particles/m3 in some marine and freshwater systems. The toxicological effects of these pollutants on aquatic organisms, particularly fish, are discussed, with emphasis on bioaccumulation and biomagnification in the food chain, physiological effects including effects on growth, reproduction, immune system performance, and behavioral changes. The ecological consequences, including disruptions to trophic dynamics and ecosystem stability, are also addressed. Although valuable efforts, mitigation and remediation strategies remain inadequate, and further research is needed because they do not capture the scale and complexity of these hazards. This review highlights the urgent need to advance treatment technologies, establish comprehensive regulatory frameworks, and organize intensive research on long-term ecological impacts to address the environmental threats posed by pharmaceuticals and microplastics.
Collapse
Affiliation(s)
- Haithem Aib
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Hydrobiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Md. Sohel Parvez
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Hydrobiology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Herta Mária Czédli
- Department of Civil Engineering, University of Debrecen, 4028 Debrecen, Hungary;
| |
Collapse
|
3
|
Li K, Gao Y, Zhang Y, Zheng Y, Li G, Zhang L, Wu J, Shi Y, Huo M, Wang X. Establishment and application of standard analysis methods for microplastic samples: Urban sewage and sewage sludge as a source of microplastics in the environment. ENVIRONMENTAL RESEARCH 2025; 273:121237. [PMID: 40020867 DOI: 10.1016/j.envres.2025.121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The widespread use of plastics has led to the ubiquitous presence of microplastics (MPs) in the environment, posing risks to ecosystems and human health. Wastewater treatment plants (WWTPs), which often fail to completely remove MPs during treatment, have become a significant source of pollution. However, inconsistencies in sampling, pretreatment, and identification methods hinder comparative studies. This study developed a standardized method for MP analysis in WWTP water and sludge samples. Metal filters and ultrasound-assisted transfer improved desorption efficiency, while NaI flotation achieved nearly complete MP recovery. A two-step digestion method combining Fenton reagent and cellulase effectively removed organic matter (weight loss of 54.21 ± 2.00%) while maintaining 100% MP recovery. By tailoring the method to variables such as treatment processes, water volume, and pollution sources, a "gold standard" approach was designed to evaluate the environmental abundance of MPs in various WWTPs. Application of this method revealed MP concentrations of 2530-18,240 MP/L in influent and 650-1700 MP/L in effluent, with an estimated daily discharge of 1.42 × 108 MP/d into the environment. Primary sedimentation and skimming removed 57.07% of MPs, with secondary and advanced treatments enhancing removal. MPs primarily transferred to sludge, averaging 38.6-104.5 MP/g (dry weight). The most abundant MPs in influent were PU, PET, and PTFE, while PA, PU, and PET dominated in effluent. MPs smaller than 0.5 mm accounted for 98%, with regular particles increasing in effluent. This efficient method establishes a "gold standard" for MP analysis in WWTPs.
Collapse
Affiliation(s)
- Keqing Li
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yidi Gao
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Ying Zhang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yiyun Zheng
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Guanqiao Li
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Leilei Zhang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Jinghui Wu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Yan Shi
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Xianze Wang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
4
|
Roy IRW, Raj AS, Viaroli S. Microplastic removal, identification and characterization in Chennai sewage treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125120. [PMID: 40147407 DOI: 10.1016/j.jenvman.2025.125120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Sewage treatment plants (STPs) act as either sinks or sources of microplastic (MP) contamination in the environment. This study examined and assessed the occurrence, removal efficiencies, abundance and characteristics of MPs in two STPs in Chennai, India. Large volumes of influent and effluent water were collected and filtered on site via a filter in a series system. The samples were later treated in the laboratory to isolate the MPs from other organic and inorganic particles. The MPs were analysed via Fourier Transform Infra-Red (FTIR) spectroscopy and Raman spectroscopy to analyse the chemical composition of the isolated microplastics. Pollution load index (PLI) and EU classification, labelling and packaging (CLP) standard was incorporated to assess the pollution risk of MPs in STP. According to the results obtained from this research work, the MP concentrations in the influent waters were high for both STPs (5443 MPs/L and 4800 MPs/L). Although the MP removal efficiency of the STPs were quite high (~96 % and ~93 %), the pollution load indices at Kodungaiyur and Koyambedu STPs were observed to be 0.272 and 0.208 respectively, which were moderately contaminated. PORI scores revealed that Kodungaiyur Plant is in danger level I with the hazard score of 9.25 and Koyambedu plant is in danger level II with the hazard score of 12.78. The estimated quantity of the MPs discharged from the monitored STPs was approximately 28.4 & 28.2 billion MPs/day.
Collapse
Affiliation(s)
- I Ronald Win Roy
- Department of Physics, Loyola College, Chennai, Tamil Nadu, India.
| | - A Stanley Raj
- Department of Physics, Loyola College, Chennai, Tamil Nadu, India
| | | |
Collapse
|
5
|
Sukkuea A, Inpun J, Cherdsukjai P, Akkajit P. Automatic microplastic classification using dual-modality spectral and image data for enhanced accuracy. MARINE POLLUTION BULLETIN 2025; 213:117665. [PMID: 39961188 DOI: 10.1016/j.marpolbul.2025.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
The development of an automatic microplastic (MPs) classification system using spectra is crucial due to the time-consuming and error-prone nature of analyzing individual spectra, especially with a large quantity of MPs. This study presents a classification system using a dual-modality dataset from micro-Fourier Transform Infrared Spectroscopy (μFTIR) for five common polymer types: polypropylene, polystyrene, polyethylene terephthalate, polyethylene, and polyamide. A comparison of machine learning models, including Decision Tree (DT), Extremely Randomized Trees (ET), Support Vector Classifier (SVC), and Multiclass Logistic Regression (LR), is conducted using features extracted by AlexNet, ResNet18, and Vision Transformer (ViT). Notably, the AlexNet with Logistic Regression (AlexNet-LR) model demonstrated exceptional performance, achieving a validation accuracy of 99.03 % and nearly perfect test scores of 99.99 %. However, ResNet18-LR was selected for web deployment due to its shorter training and inference times compared to AlexNet-LR, while still achieving 99 % validation and test accuracy. This highlights the effectiveness of using a dual-modality dataset for precise microplastic classification. MPsSpecClassify, a web-based application, was developed to enable users to efficiently identify MPs and improve microplastic pollution management.
Collapse
Affiliation(s)
- Arsanchai Sukkuea
- School of Engineering and Technology, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand; Research Center for Intelligent Technology and Integration, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jakkaphong Inpun
- School of Information and Communication Technology, University of Phayao, Phayao 56110, Thailand
| | - Phaothep Cherdsukjai
- Marine and Coastal Resources Research Center (Upper Andaman Sea), Department of Marine and Coastal Resources, Phuket 83000, Thailand
| | - Pensiri Akkajit
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket 83120, Thailand.
| |
Collapse
|
6
|
Lu N, Su Q, Li Y, Qu L, Kong L, Cheng J, Wang C, Sun J, Han J, Wang X. Characterization of microplastic distribution, sources and potential ecological risk assessment of domestic sewage from ships. ENVIRONMENTAL RESEARCH 2025; 268:120755. [PMID: 39798657 DOI: 10.1016/j.envres.2025.120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Shipboard domestic sewage, encompassing both black water and gray water, has the potential to transport significant quantities of environmentally harmful microplastics, a concern that has garnered increasing global attention. In this study, Fourier infrared (FTIR) detection was used to detect microplastics in marine domestic wastewater. The primary objective was to evaluate the abundance and characteristics of microplastics present in ship domestic sewage, investigate potential sources and influencing factors, and assess the ecological risks associated with ship sewage through analyses of microplastic abundance and hazard indices. The findings revealed that the mean abundance of microplastics in ship domestic sewage are 50.82 particles per liter(n/L), with gray water exhibiting significantly higher levels at 167 n/L compared to black water at 36.96 n/L and mixed sewage at 46.57 n/L. Fiber microplastics constituted a predominant 95% of all samples collected from ships, followed by film microplastics. In terms of color distribution, transparent and blue microplastics were the most prevalent, with the majority measuring between 100 and 1000 μm in size. Polyethylene terephthalate (PET) emerged as the most common polymer type, followed by polypropylene (PP). The risk assessment highlighted that microplastics in domestic wastewater pose significant ecological risks to aquatic organisms, with pollution load indices consistently reaching Class IV levels. Correlation analyses between microplastic abundance and the physicochemical properties of sewage demonstrated a significant relationship between microplastic levels and the concentration of suspended solids in ship sewage. This study provides essential data to inform the development of regulatory policies aimed at managing the discharge of black water and gray water discharges from both domestic and international vessels.
Collapse
Affiliation(s)
- Na Lu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Qing Su
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Yuxia Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Ling Qu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Lingna Kong
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Jiayi Cheng
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Chao Wang
- Liaoning Maritime Safety Administration, Dalian, 116026, China.
| | - Jian Sun
- Liaoning Maritime Safety Administration, Dalian, 116026, China.
| | - Jianbo Han
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Xiaomeng Wang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Xiong Y, Chen Z, Xiang H, Liu Y, Wang Y. Polystyrene microplastics disrupt adrenal steroid synthesis in male mice via mitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117528. [PMID: 39674024 DOI: 10.1016/j.ecoenv.2024.117528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Microplastics have gained significant social attention, as they can enter our bodies through food and drinking water. The adrenal gland is essential for the maintenance of metabolic homeostasis and stress responses. Nevertheless, the effects of microplastics on the steroid synthesis in the adrenal cortex was still unclear. In this study, through both in vivo and in vitro models, we found that polystyrene microplastics (PS-MPs) impaired adrenal steroid synthesis, leading to a reduction in corticosterone levels. In vivo, we further observed that chronic exposure to PS-MPs (0.25, 0.5 and 1 mg/d for 4 weeks) could induce abnormal mitochondrial morphology and functional disruptions of adrenal glands in male mice, along with an imbalance in cellular oxidative stress, manifested as increased level of reactive oxygen species, diminished antioxidant activity (glutathione peroxidase and superoxide dismutase). In vitro, these occurrences coincided with an elevated rate of cell apoptosis observed in adrenocortical cells following exposure to PS-MPs. We proposed that mitochondrial dysfunction not only directly influenced the biosynthetic processes of steroid hormones but also induced cell apoptosis through the initiation of cellular oxidative stress. The latter may represent a common mechanism underlying the multi-organ toxicity induced by PS-MPs in the body. Our findings would provide new insights for the development of more effective environmental protection measures and the reduction of plastic pollution.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhe Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hanmin Xiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Gao S, Wu Q, Zhang B, Peng M, Zeng J, Zhu L. Significant effects of rural wastewater treatment plants in reducing microplastic pollution: A perspective from China's southwest area. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136488. [PMID: 39549406 DOI: 10.1016/j.jhazmat.2024.136488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Sewage systems are a major source for microplastics in riverine exports to oceans. Urban areas are generally considered hotspots for microplastic discharge, whereas emissions from rural areas remain largely understudied. Hence, this study investigated the abundance, characteristics, and polymer types of microplastics in rural wastewater treatment plants (WWTPs) in Guiyang and estimated the annual microplastic emissions of China based on sewage discharge. The influent abundance of microplastics was 3.8-8.2 items/L, the effluent abundance was 3.1-5.9 items/L, with a lower removal rate of 14.4 %-54.6 %, which might be influenced by lower operating loads and influent concentrations. Raman spectroscopy analysis revealed that polyvinyl alcohol (PVA) was the predominant polymer type. Rural WWTPs were more effective at removing large-sized particles (> 0.1 mm) and films, resulting in higher removal effectiveness by weight (49.1 %) compared to urban WWTPs (30.8 %). Based on the abundance of microplastics in WWTPs within the study area and China's annual sewage discharge, this study estimated the microplastic emissions released through sewage in China in 2022. The annual microplastic emissions through sewage in China were estimated to be 2995.7 tons, with rural and urban areas contributing 25.1 % and 74.9 %, respectively. Approximately 724.8 tons and 1001.6 tons of microplastics were removed from rural and urban WWTPs, respectively. This work indicates the unignorable emissions of microplastics from rural sewage and highlights the crucial role of rural WWTPs in reducing microplastic pollution.
Collapse
Affiliation(s)
- Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qixin Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Borui Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Meixue Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jie Zeng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liang Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Foglia A, Pittura L, Vivani V, Sgroi M, De Simoni L, Eusebi AL, Gorbi S, Regoli F, Fatone F. Microplastics in urban water cycles: Looking for a more scientific approach for sampling and characterization in wastewater and drinking water treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175919. [PMID: 39226968 DOI: 10.1016/j.scitotenv.2024.175919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Specific campaigns to detect microplastics (MPs) in the urban water cycle were carried out in three drinking water plants and two wastewater treatment plants. A self-designed sampler for MPs detection in water matrices was in this study preliminary validated and then tested in long term campaigns sampling up to 1000 L. Raw drinking water and wastewater show microplastics (MPs) concentrations of 2-11 and of 480-801 MPs/m3, respectively, and MPs removals of 47-78 % and of 84-98 %, correspondingly. Specific roles of chemical and physical conventional processes in microplastics removals were investigated. Solid-liquid separation, flotation and filtration are the main processes for achieving high microplastics removal. Regarding concentrated matrices, MPs concentrations in sludge samples varied in the range of 5000-500,000 MPs/m3. Finally, shapes, size classes and polymers' typologies were investigated in the extracted MPs. The detected sizes are mainly 0.5-0.1 mm in drinking waters while 5-1 mm in wastewaters. Wastewaters were predominated by synthetic fibers (polyester type), while drinking waters were mainly characterized by fragments and the fibers were mostly of natural origin. Finally, the results of this study supported best practices and guidelines for a representative assessment of MPs in water (sampling methods, extraction procedures, characterization and quantification).
Collapse
Affiliation(s)
- Alessia Foglia
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Pittura
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Veronica Vivani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Massimiliano Sgroi
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia De Simoni
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Stefania Gorbi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
10
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
12
|
Bastante-Rabadán M, Boltes K. Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. TOXICS 2024; 12:589. [PMID: 39195691 PMCID: PMC11359687 DOI: 10.3390/toxics12080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
In real environments, pollutants do not occur in isolation. Instead, they can be found in complex mixtures with effects that are completely different from those of the individual components. In this review, articles from 2017 to May 2024 have been selected to provide an overview of the existing knowledge on complex mixtures between micropollutants and micro and nanoplastics in organisms in terrestrial and aquatic environments. It was found that the corresponding toxicological parameters to determine the interaction between the compounds were not calculated in most of the literature reviewed. Our analysis shows that, in aquatic environments, synergistic effects have been found more frequently than antagonistic effects. In terrestrial environments, the joint toxicological action of microplastics or nanoplastics with emerging contaminants has been less studied, but synergistic effects may also predominate. Future work should thoroughly investigate the nature of the interactions in order to properly assess the risk posed by this cocktail of compounds in ecosystems.
Collapse
Affiliation(s)
- Marina Bastante-Rabadán
- Departamento de Química Analítica Química Física e Ingeniería Química, Universidad de Alcalá, Campus Científica Tecnológico, Ctra. A-II km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
| | - Karina Boltes
- Departamento de Química Analítica Química Física e Ingeniería Química, Universidad de Alcalá, Campus Científica Tecnológico, Ctra. A-II km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
- IMDEA Instituto Madrileño de Estudios Avanzados Water, Avda. Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Chand R, Iordachescu L, Bäckbom F, Andreasson A, Bertholds C, Pollack E, Molazadeh M, Lorenz C, Nielsen AH, Vollertsen J. Treating wastewater for microplastics to a level on par with nearby marine waters. WATER RESEARCH 2024; 256:121647. [PMID: 38657311 DOI: 10.1016/j.watres.2024.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/10/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Retention of microplastics (MPs) at the third largest wastewater treatment plant (WWTP) in Sweden was investigated. The plant is one of the most modern and advanced of its kind, with rapid sand filter for tertiary treatment in combination with mechanical, biological, and chemical treatment. It achieved a significantly high treatment efficiency, which brought the MP concentration in its discharge on par with concentrations measured in marine waters of the same region. This novel data shows that properly designed modern WWTPs can reduce the MP content of sewage down to background levels measured in the receiving aquatic environment. Opposite to current understanding of the retention of MP by WWTPs, a modern and well-designed WWTP does not have to be a significant point source for MP. MPs were quantified at all major treatment steps, including digester inlet and outlet sludge. MPs sized 10-500 µm were analyzed by a focal plane array based micro-Fourier transform infrared (FPA-µFTIR) microscopy, a hyperspectral imaging technique, while MPs above 500 µm were analyzed by Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Mass was estimated from the hyperspectral images for MPs <500 µm and from microscope images >500 µm. The overall treatment efficiency was in terms of MP counts 99.98 %, with a daily input of 6.42 × 1010 and output of 1.04 × 107 particles. The mass removal efficiency was 99.99 %. The mechanical part of the treatment, the pre-treatment, and primary stages, reduced both the MP counts and mass by approximately 71 %. The combined biological treatment, secondary settling, and final polishing with rapid sand filtration removed nearly all the remaining 29 %. MPs became successively smaller as they passed the different treatment steps. The digester inlet received 1.04 × 1011 MPs daily, while it discharged 9.96 × 1010 MPs, causing a small but not significant decrease in MP counts, with a corresponding MP mass reduction of 9.56 %.
Collapse
Affiliation(s)
- Rupa Chand
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark.
| | - Lucian Iordachescu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| | - Frida Bäckbom
- Käppala, Södra Kungsvägen 315, Lidingö 18163, Sweden
| | | | | | | | - Marziye Molazadeh
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark; Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Asbjørn Haaning Nielsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| |
Collapse
|
14
|
Tserendorj D, Illés Á, Károly Á, Stadler-Szalai R, Sandil S, Mireisz T, Dobosy P, Pomázi F, Baranya S, Adányi M, Záray G. Microfiber emission from a municipal wastewater treatment plant in Hungary. Sci Rep 2024; 14:12041. [PMID: 38802478 PMCID: PMC11130252 DOI: 10.1038/s41598-024-62817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Since the ingestion of both natural and anthropogenic microfibers produces a deleterious effect on aquatic organisms, it is crucial to explore the emission of these pollutants by WWTPs into the receiving water bodies, such as rivers. Cellulose- and petroleum-based microfibers, as well as microplastic particles, were collected from the effluent of a municipal WWTP operating with activated sludge technology in Budapest, Hungary. During two sampling campaigns organized in February and April of 2023 on different working days and at different times of the day, 123-145 L of effluent was sieved and filtered. The organic matter was removed by hydrogen-peroxide treatment. All fibers and particles larger than 10 µm were counted, and using a fluorescence microscope, the fibers were geometrically characterized in terms of length and diameter. Each fiber was individually identified by transflection-FT-IR method. The fiber concentration varied in the range of 1.88-2.84 and 4.25-6.79 items/L during the 7th and the 16th week of 2023, respectively. In February and April, the proportion of microfibers in the solid particles was 78.3 and 94.7%, respectively. In the effluent the cellulose-based microfibers were dominant (53-91%), while among the petroleum-based microfibers, polyester occurred most often. The median length of cellulose-based fibers was considerably higher in April than in February (650 vs. 1250 µm), and simultaneously the median diameter also increased from 21 to 29 µm. This behaviour was also seen, albeit to a lesser extent, in connection to microfibers derived from petroleum. The treated wastewater's daily microfiber transport to the Danube River varied between 0.44 - 0.69 and 0.94-1.53 billion in February and April 2023, respectively.
Collapse
Affiliation(s)
- Davaakhuu Tserendorj
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
| | - Ádám Illés
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
| | - Ágnes Károly
- Hungarian Institute for Forensic Sciences, Mosonyi Str. 9, Budapest, 1087, Hungary
| | - Rita Stadler-Szalai
- Hungarian Institute for Forensic Sciences, Mosonyi Str. 9, Budapest, 1087, Hungary
| | - Sirat Sandil
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
| | - Tamás Mireisz
- Doctoral School of Environmental Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1113, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
| | - Flóra Pomázi
- Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111, Hungary
- National Laboratory for Water Science and Water Security, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111, Hungary
| | - Sándor Baranya
- Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111, Hungary
- National Laboratory for Water Science and Water Security, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111, Hungary
| | - Mónika Adányi
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1113, Hungary
| | - Gyula Záray
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary.
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Út 29-31, Budapest, 1113, Hungary.
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, 1113, Hungary.
| |
Collapse
|
15
|
Chen H, Wu Y, Zou Z, Yang X, Tsang YF. Thermal hydrolysis alleviates polyethylene microplastic-induced stress in anaerobic digestion of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134124. [PMID: 38565020 DOI: 10.1016/j.jhazmat.2024.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 μg/L and 124.0 ± 5.1 μg/L, respectively. ATBC at 124.0 μg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Yi Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zhiming Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| |
Collapse
|
16
|
Kukkola A, Schneidewind U, Haverson L, Kelleher L, Drummond JD, Sambrook Smith G, Lynch I, Krause S. Snapshot Sampling May Not Be Enough to Obtain Robust Estimates for Riverine Microplastic Loads. ACS ES&T WATER 2024; 4:2309-2319. [PMID: 38752202 PMCID: PMC11091885 DOI: 10.1021/acsestwater.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Wastewater treatment plants (WWTPs) have been described as key contributors of microplastics (MPs) to aquatic systems, yet temporal fluctuations in MP concentrations and loads downstream are underexplored. This study investigated how different sampling frequencies (hourly, weekly, and monthly) affect MP estimates in a stream linked to a single WWTP. Utilizing fluorescence microscopy and Raman spectroscopy, considerable hourly variations in MP concentrations were discovered, while the polymer composition remained consistent. This temporal variability in MP loads was influenced by MP concentration, discharge rates, or a mix of both. These results show a high uncertainty, as relying on sparse snapshot samples combined with annual discharge data led to significant uncertainties in MP load estimates (over- and/or underestimation of emissions by 3.8 billion MPs annually at this site). Our findings stress the necessity of higher-frequency sampling for better comprehending the hydrodynamic factors influencing MP transport. This improved understanding enables a more accurate quantification of MP dynamics, crucial for downstream impact assessments. Therefore, preliminary reconnaissance campaigns are essential for designing extended, representative site-monitoring programs and ensuring more precise trend predictions on a larger scale.
Collapse
Affiliation(s)
- Anna Kukkola
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Uwe Schneidewind
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Lee Haverson
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Liam Kelleher
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Jennifer D. Drummond
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Gregory Sambrook Smith
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Stefan Krause
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- LEHNA
- Laboratoire d’ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
17
|
Sheng S, Han N, Wei Y, Wang J, Han W, Xing B, Xing M, Zhang W. Liver Injury Induced by Exposure to Polystyrene Microplastics Alone or in Combination with Cadmium in Mice Is Mediated by Oxidative Stress and Apoptosis. Biol Trace Elem Res 2024; 202:2170-2183. [PMID: 37736782 DOI: 10.1007/s12011-023-03835-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Microplastics (MPs) have been considered an emerging environmental pollutant which, when combined with toxic metals, enter the circulatory system of mammals and eventually cause damage. Therefore, it is important to study the toxicity of the mixture of MPs and heavy metals for evaluating risk assessment of mammals. In the present study, the toxicological effects of different concentrations of polystyrene (PS)-MPs alone or in combination with cadmium chloride (CdCl2) during chronic exposure (8 weeks) were evaluated using intragastric administration in mice. Using comparative analysis, it was revealed that PS-MPs alone or in combination with Cd could destroy the normal structural morphology of liver tissue and increase the levels of two biochemical indicators of liver damage, thereby inducing changes in antioxidant and hyperoxide capacities. In addition, PS-MPs and/or Cd activated the antioxidant signaling pathway Nrf2-Keap1 and affected the endogenous apoptosis signaling pathway p53-Bcl-2/Bax, thus promoting apoptosis. These findings suggested that exposure to MPs alone or in combination with Cd led to adverse effects on the liver. Furthermore, it was revealed that co-exposure to MPs and Cd reduced Cd toxicity, thereby highlighting the possibility MPs may act as carriers of other toxic substances and coordinate with them. Therefore, evaluating the synergistic or anti-agonistic effects of MPs on the toxicity and bioavailability of xenobiotics is in the future critical in environmental toxicological studies.
Collapse
Affiliation(s)
- Shuai Sheng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ningxin Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yufeng Wei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinghan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Boyu Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Wen Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
18
|
Bhatia SK, Kumar G, Yang YH. Understanding microplastic pollution: Tracing the footprints and eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169926. [PMID: 38199349 DOI: 10.1016/j.scitotenv.2024.169926] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics (MPs) pollution has emerged as a critical environmental issue with far-reaching consequences for ecosystems and human health. These are plastic particles measuring <5 mm and are categorized as primary and secondary based on their origin. Primary MPs are used in various products like cosmetics, scrubs, body wash, and toothpaste, while secondary MPs are generated through the degradation of plastic products. These have been detected in seas, rivers, snow, indoor air, and seafood, posing potential risks to human health through the food chain. Detecting and quantifying MPs are essential to understand their distribution and abundance in the environment. Various microscopic (fluorescence microscopy, scanning electron microscopy) and spectroscopy techniques (FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy) have been reported to analyse MPs. Despite the challenges in scalable removal methods, biological systems have emerged as promising options for eco-friendly MPs remediation. Algae, bacteria, and fungi have shown the potential to adsorb and degrade MPs in wastewater treatment plants (WWTPs) offering hope for mitigating this global crisis. This review examines the sources, impacts, detection, and biological removal of MPs, highlighting future directions in this crucial field of environmental conservation. By fostering global collaboration and innovative research a path towards a cleaner and healthier planet for future generations can be promised.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
Rathore C, Saha M, de Boer J, Desai A, Gupta P, Naik A, Subha HY. Unraveling the land-based discharge of microplastics from sewers to oceans - A comprehensive study and risk assessment in wastewaters of Goa, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169621. [PMID: 38157900 DOI: 10.1016/j.scitotenv.2023.169621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Owing to their pervasive dispersion in the environment and their potential ramifications on both marine life and human health, microplastics (MPs) are of increasing concern. However, there is still a lack of research on the release of MPs from different land-based pathways like creeks, drainage outfalls, and conduits into coastal water systems in India. This study represents comprehensive research into the attribution of MPs in the estuarine system, specifically those emanating from wastewater sources in Panjim City, Goa, India. Urban wastewater collected from different locations in and around Panjim City exhibited values ranging from 79 ± 21 to 338 ± 7 MPs/L, with a prevalence of fibrous and black MP particles. The size range of the MPs at all sampling sites was 100-300 μm. Analysis by μ-FTIR revealed 35 distinct polymeric compositions in wastewater, with a dominance of polyacrylamide (PAM), polyvinyl chloride (PVC), and polyamide (PA). Additionally, primary and secondary MPs were studied to unravel the contributions from land-based sources. This included the quantification of MPs in ten samples from personal care products (PCPs) and twenty samples from washing machine effluents (WMEs). MPs in PCPs ranged from 1.8 to 1554 MPs/g. Microfibres and fragments were predominant in WMEs (3986 to 4898 MPs/L). This study suggests a strong relation between polymers found in wastewater effluent and those present in PCPs and WMEs. The identified polymers showed high polymer hazard indices (IV and V), posing a significant threat to the ecosystem and a potential risk to human health.
Collapse
Affiliation(s)
- Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Jacob de Boer
- Vrije University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Aniket Desai
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akshata Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Haritha Yespal Subha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Department of Marine Chemistry, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| |
Collapse
|
20
|
Khatoon N, Mallah MA, Yu Z, Qu Z, Ali M, Liu N. Recognition and detection technology for microplastic, its source and health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11428-11452. [PMID: 38183545 DOI: 10.1007/s11356-023-31655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Microplastic (MP) is ubiquitous in the environment which appeared as an immense intimidation to human and animal health. The plastic fragments significantly polluted the ocean, fresh water, food chain, and other food items. Inadequate maintenance, less knowledge of adverse influence along with inappropriate usage in addition throwing away of plastics items revolves present planet in to plastics planet. The present study aims to focus on the recognition and advance detection technologies for MPs and the adverse effects of micro- and nanoplastics on human health. MPs have rigorous adverse effect on human health that leads to condensed growth rates, lessened reproductive capability, ulcer, scrape, and oxidative nervous anxiety, in addition, also disturb circulatory and respiratory mechanism. The detection of MP particles has also placed emphasis on identification technologies such as scanning electron microscopy, Raman spectroscopy, optical detection, Fourier transform infrared spectroscopy, thermo-analytical techniques, flow cytometry, holography, and hyperspectral imaging. It suggests that further research should be explored to understand the source, distribution, and health impacts and evaluate numerous detection methodologies for the MPs along with purification techniques.
Collapse
Affiliation(s)
- Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Manthar Ali Mallah
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, 67480, Sindh, Pakistan
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
- Health Science Center, South China Hospital, Shenzhen University, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
21
|
Contreras-Llin A, Diaz-Cruz MS. Microplastic removal in managed aquifer recharge using wastewater effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122967. [PMID: 38030113 DOI: 10.1016/j.envpol.2023.122967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental issue, with its impacts on ecosystems and human health yet to be fully understood. This study aims to investigate the presence and distribution of MPs in the soil of a managed aquifer recharge (MAR) system, built with different reactive barriers of natural materials and irrigated with the secondary effluent of a wastewater treatment plant (WWTP). MPs were extracted from reactive barrier material following an approach based on the density separation of MPs with posterior oxidant digestion, combined with visual and chemical characterisation by Fourier-Transform Infrared Spectroscopy (FTIR). The results revealed the widespread occurrence of MPs in the MAR soil samples. MPs concentration in the different barrier materials ranged from 60 to 236 n kg-1. The most dominant morphologies were fragments (60%) and fibers (17%), and the most abundant colour was white (51%), followed by transparent MPs (20%). Polypropylene (PP) was detected in all the samples with an abundance of 47%, followed by polyethylene (PE, 34%). The interplay of barrier composition significantly influences the retention of MPs, with compost (T5) and woodchips (T4) exhibiting the most notable retention rates. Remarkably, the outer layers of the reactive barriers display superior retention compared to the deeper layers. The findings of this study demonstrate the good performance of the MAR system in retaining MPs and contribute to the growing body of knowledge on MPs pollution in freshwater systems while providing insights into the dynamics of MPs transport and accumulation in soil. Such information can inform the development of effective wastewater management strategies to mitigate the impacts of these pollutants on water resources and safeguard the environment.
Collapse
Affiliation(s)
- Albert Contreras-Llin
- ENFOCHEM, Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- ENFOCHEM, Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
22
|
Zhao W, Li J, Liu M, Wang R, Zhang B, Meng XZ, Zhang S. Seasonal variations of microplastics in surface water and sediment in an inland river drinking water source in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168241. [PMID: 37914114 DOI: 10.1016/j.scitotenv.2023.168241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The aim of this study was to examine microplastic (size distribution of 0.05-5 mm) occurrence and distribution in drinking water source of XJ River during both flooding and dry periods. Surface water and sediment samples were collected from the CS City section of the river in August and December 2020. During the flooding period, microplastic abundances were observed at 0.72-18.6 (7.32 ± 2.36) items L-1 in surface water and 26.3-302 (150 ± 75.6) items kg-1 dry weight (dw) in sediment. In the dry period, abundances were slightly higher at 2.88-17.7 (11.0 ± 3.08) items L-1 and 27.0-651 (249 ± 182) items kg-1 dw, respectively. Microplastics were found in higher concentrations in urban areas and downstream of wastewater treatment plants, suggesting anthropogenic sources. The diversity in shapes, colors, and types of microplastics in surface waters and sediments indicates specialized enrichment processes and persistent sources of microplastic pollution. Approximately 60 % of the microplastic particles identified fall within the 50-100 μm range. Furthermore, a significant correlation was observed between these smaller-sized particles and the overall prevalence of microplastics. Fourier-transform infrared spectroscopy and scanning electron microscopy indicated that the microplastics had been subjected to weathering in the environment, contributing to the production of oxygen-containing functional groups and surface cleavage features. The utilization of energy dispersive spectroscopy revealed the presence of microplastics associated with various heavy metals, highlighting the intricate nature of microplastic pollution. Moreover, the high abundance of microplastics may pose a potential ecological risk to the aquatic environment of the XJ River. The results of this study demonstrate concerning levels of microplastics in the XJ River, despite its status as a high-quality water source.
Collapse
Affiliation(s)
- Wenyu Zhao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Jing Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengyue Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China
| | - Rui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shengwei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Adeel M, Maniakova G, Rizzo L. Tertiary/quaternary treatment of urban wastewater by UV/H 2O 2 or ozonation: Microplastics may affect removal of E. coli and contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167940. [PMID: 37875205 DOI: 10.1016/j.scitotenv.2023.167940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
The aim of this study was to investigate the interference of polyethylene microplastics (MPs) on ultraviolet irradiation/hydrogen peroxide (UV/H2O2) and ozonation processes in the inactivation of E. coli bacteria (tertiary treatment) and removal of contaminants of emerging concern (CECs) (quaternary treatment) from simulated and real secondary treated urban wastewater. Three pharmaceuticals were investigated as model CECs, namely carbamazepine, sulfamethoxazole and trimethoprim. Experimental results showed that disinfection efficiency of UV/H2O2 treatment decreased (2.4, 1.8 and 1.3 log reductions of E. coli, initial H2O2 dose of 30 mg/L, 2.5 min treatment) as the initial concentration of MPs was increased (0.25, 0.5 and 1.0 g/L, respectively). Similarly, an increase in MPs concentration (0.25, 0.5 and 1.0 g/L) reduced the inactivation (4.7, 4.1 and 3.7 log reductions) of the target bacteria after 60 min of ozonation treatment. Although the disinfection efficiency of both treatment processes was negatively affected by the presence of MPs, UV/H2O2 was more effective than the ozonation, despite ozonation being investigated at high doses to better discriminate the effect of MPs. Noteworthy, CECs degradation by UV/H2O2 under realistic operating conditions was affected to some extent by MPs, while a lower effect was observed for ozonation, at not realistic ozone dose.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Gulnara Maniakova
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
24
|
Stapleton MJ, Ansari AJ, Ahmed A, Hai FI. Evaluating the generation of microplastics from an unlikely source: The unintentional consequence of the current plastic recycling process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166090. [PMID: 37553052 DOI: 10.1016/j.scitotenv.2023.166090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
This study casts light on the potential of microplastic generation during plastic recycling - an unintended consequence of the process. To date, microplastics have been detected in the wastewater and sludge from plastic recycling facilities; however, generation pathways, factors and minimisation strategies are understudied. The purpose of this study is to identify the factors affecting microplastic generation, namely, plastic type and weathering conditions. The size reduction phase, which involved the mechanical shredding of the plastic waste material, was identified to be the predominate source of microplastic generation. Material type was found to significantly affect microplastic generation rates. Focussing on the microplastic particles in the size range of 0.212-1.18 mm, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and high-density polyethylene (HDPE) generated 28,600 ± 3961, 21,093 ± 2211, 18,987 ± 752 and 6807 ± 393 particles/kg of plastic material shredded, respectively. The significant variations between different plastic types were correlated (R2 = 0.88) to the hardness of the plastic. Environmental weathering was observed to significantly affect microplastic generation rates. Generation rates increased for PC, PET, PP, and HDPE by 185.05 %, 159.80 %, 123.70 % and 121.74 %, respectively, over a six-month environmental exposure period. The results in this study confirm production of large amounts of microplastics from the plastic recycling industry through its operational processes, which may be a significant source for microplastic pollution if measures to reduce their production and removal from wastewater and sludge are not considered.
Collapse
Affiliation(s)
- Michael J Stapleton
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aziz Ahmed
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
25
|
Amini M, Hosseini SMP, Chaibakhsh N. High-performance NiO@Fe 3O 4 magnetic core-shell nanocomposite for catalytic ozonation degradation of pharmaceutical pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98063-98075. [PMID: 37603241 DOI: 10.1007/s11356-023-29326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Pharmaceuticals that are present in superficial waters and wastewater are becoming an ecological concern. Therefore, it is necessary to provide high-performance methods to limit the harmful ecological effects of these materials to achieve a sustainable environment. In this research, NiO@Fe3O4 nanocomposite was prepared by the co-precipitation method and utilized in the catalytic ozonation process for the degradation of 1-cyclopropyl-6-fluoro-4-oxo-7-piperazin-1-yl-quinoline-3-carboxylic acid (ciprofloxacin antibiotic), for the first time. The influencing parameters in the degradation process were analyzed and optimized via response surface methodology (RSM). The optimal ciprofloxacin removal efficiency (100%) was found at pH = 6.5, using 7.5 mg of the NiO@Fe3O4 nanocatalyst and 0.2 g L-1 h-1 ozone (O3) flow, applied over 20 min. Results showed a significant synergistic effect in the analyzed system, which makes the proposed catalytic ozonation process more efficient than using the catalyst and ozone separately. Also, based on the kinetic analysis data, the catalytic ozonation process followed the pseudo-first-order model. In addition, the nanocatalyst showed high recyclability and stability (88.37%) after five consecutive catalytic ozonation process cycles. In conclusion, the NiO@Fe3O4 nanocatalyst/O3 system can be effectively used for the treatment of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 41996-13776, Iran
| | | | - Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 41996-13776, Iran.
| |
Collapse
|
26
|
Zhang B, Wu Q, Gao S, Ruan Y, Qi G, Guo K, Zeng J. Distribution and removal mechanism of microplastics in urban wastewater plants systems via different processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121076. [PMID: 36641065 DOI: 10.1016/j.envpol.2023.121076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastic pollution threatens water systems worldwide. As one of the most important parts of city wastewater treatment, wastewater treatment plants are not only microplastics interception barriers but also emission sources. Water samples were collected from each sewage treatment plant stage and sludge from the sludge dewatering room. Microplastics were extracted using wet peroxide oxidation and flotation, and the abundance, size, shape, and polymer type of microplastics were detected. Basis on the results, the influence of each process on the removal rate and characteristics of microplastics under the same influent source was analysed. The influent microplastic concentration in this study was 32.5 ± 1.0 n/L, which rapidly decreased after treatment. The removal rates of the sequencing batch reactor activated sludge, cyclic activated sludge, and anaerobic anoxic oxic technologies were 73.0%, 75.6%, and 83.9%, respectively. Most microplastics were transported to the sludge, and the concentration of microplastics in dehydrated sludge was 27.2 ± 3.1 n/g. Microplastics removal occurred primarily during the primary and secondary stages. Disposal processes, settling time, and process design affected wastewater treatment plant microplastic removal rates at each stage. Significant differences in microplastic characteristics were observed at each stage, with the most abundant being fragment shaped, particle sizes of 30-100 μm, and black in colour. Sixteen polymer types were identified using a Raman spectrometer. The predominant polymers are polypropylene, polyethylene, and polyethylene terephthalate. This study demonstrates that optimising the process design of existing wastewater treatment plants is crucial for the prevention and control of microplastic pollution. It is suggested that the process settings of contemporary wastewater treatment plants should be studied in depth to develop a scientific foundation for avoiding and managing microplastic pollution in urban areas.
Collapse
Affiliation(s)
- Borui Zhang
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China
| | - Qixin Wu
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China.
| | - Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Yunjun Ruan
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Guizhi Qi
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China
| | - Ke Guo
- Guiyang Research Academy of Eco-Environmental Science, Guiyang, Guizhou, 550000, China
| | - Jie Zeng
- Key Laboratory of Karst Geological Resources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| |
Collapse
|
27
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
28
|
Üstün GE, Bozdaş K, Can T. Abundance and characteristics of microplastics in an urban wastewater treatment plant in Turkey. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119890. [PMID: 35932899 DOI: 10.1016/j.envpol.2022.119890] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered one of the important sources of aquatic/terrestrial microplastic (MP) pollution. Therefore, the abundance and properties of MPs in the wastewater and sludge of an urban WWTP in Bursa Turkey were investigated. The amount, properties, and removal of MPs were evaluated. The results showed that the average abundance of MPs was 135.3 ± 28.0 n/L in the influent and 8.5 ± 4.7 n/L in the effluent, with a 93.7% removal rate, MP was removed and transferred to the sludge. The daily MP amount released in the aquatic environment is calculated as 525 million MPs, and the annual amount is 1.9 × 1011 MPs. The abundance of MPs in the sludge thickening and sludge filter cake is 17.9 ± 2.3 and 9.5 ± 2.3 n/g dry weight (dw), respectively. The sludge disposal amount of WWTP is 81.5 tons/day and the approximate amount of MP accumulated in the sludge per year is calculated as 2.8 × 1011 MPs. In wastewater and sludge samples, fragment dominant shape, black main colour, and 500-1000 μm sizes are the most common size. The main MP types in wastewater samples at the influent are polypropylene (PP, 36.8%), polyethylene (PE, 31.0%), polystyrene (PS, 11.8%), polyethylene terephthalate (PET, 8.0%), and polyamide (PA, 7.1%), at the effluent (PE, 33.0%), (PP, 52.5%), and (PS, 8.2%). In the sludge cake, the distribution is (PE, 40.8%), (PP, 27.6%), (PS, 18.7%) and (PET, 8.0%). The results of this study show that MPs are removed from wastewater with high efficiency by treatment processes and a significant amount accumulates in the sludge. Therefore, it is suggested that to integrate advanced treatment processes into urban WWTPs and use effective sludge disposal management practices to reduce the amount of MP released into the environment with effluent and sludge.
Collapse
Affiliation(s)
- Gökhan Ekrem Üstün
- Bursa Uludağ University, Faculty of Engineering, Department of Environmental Engineering, Bursa, 16059, Turkey.
| | - Kübra Bozdaş
- Bursa Uludağ University, Faculty of Engineering, Department of Environmental Engineering, Bursa, 16059, Turkey
| | - Tuğba Can
- Bursa Uludağ University, Faculty of Engineering, Department of Environmental Engineering, Bursa, 16059, Turkey
| |
Collapse
|