1
|
Tang C, Zhou Y, He Y, Zhang W, Huang Y, Du W, Guo J, Chen G. Association of metal mixtures during the second trimester with gestational hypothyroidism and its mediation by metabolites. ENVIRONMENTAL RESEARCH 2025; 276:121534. [PMID: 40185263 DOI: 10.1016/j.envres.2025.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Exposure to metals has been linked to an increased risk of gestational hypothyroidism (GHT), but the combined effects of metal mixtures and the role of serum metabolites in this relationship remain poorly understood. Therefore, this study aimed to examine the associations between metal exposure and GHT risk and to explore the mediating role of serum metabolites. In a case-control study with 30 pairs of GHT patients and controls matched by age, gestational age, parity, and obesity status, we measured serum metabolites and whole blood metal levels using UPLC-MS/MS and ICP-MS, respectively. Conditional logistic regression was employed to assess the individual effects of metals on GHT risk, while Bayesian kernel machine regression (BKMR) and quantile g-computation evaluated the combined effects of metal co-exposure. Mediation analyses were conducted to investigate the role of serum metabolites in these associations. Arsenic (As), chromium (Cr), nickel (Ni), and selenium (Se) were significantly associated with increased GHT risk (OR: Se = 1.62, Cr = 1.11, Ni = 1.14, As = 1.21). Joint exposure to As, Ni, and Se was positively associated with GHT risk. Mediation analyses revealed that free fatty acids (FFA, 18:5) mediated the associations of Ni and Se with GHT, explaining 31.33 % and 49.16 % of the associations, respectively. Our findings suggest that blood levels of As, Ni, and Se are associated with an increased risk of GHT, and that the Ni- and Se-GHT associations are mediated by FFA (18:5), providing insights into the mechanisms linking metal exposure, serum metabolites, and GHT risk.
Collapse
Affiliation(s)
- Chenjun Tang
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yexinyi Zhou
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yinyin He
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wenyi Zhang
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yun Huang
- Department of Reproductive Endocrinology, and Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Wenjun Du
- Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Jing Guo
- Department of Reproductive Endocrinology, and Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China; Department of Reproductive Endocrinology, and Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Choi S, Kim MJ, Kang S, Moon MK, Lee G, Lee I, Choi K, Cho NH, Park YJ, Park J. Urinary trace elements and thyroid nodule formation in a longitudinal cohort of older women: Findings from KoGES. J Trace Elem Med Biol 2025; 88:127622. [PMID: 39999676 DOI: 10.1016/j.jtemb.2025.127622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Thyroid nodules are common in older populations, but the role of trace elements in their development and growth remains unclear. Previous studies have reported inconsistent findings regarding the association between trace elements and thyroid nodules. This study investigated the associations between urinary concentrations of various trace elements and the prevalence and incidence of thyroid nodules in older women, a population at higher risk for thyroid disorders. Cross-sectional and longitudinal analyses were conducted using data from 653 women aged 60 years and older in the Ansung cohort of the Korean Genome and Epidemiology Study (KoGES). Urinary concentrations of 18 elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS), and mercury was analyzed using a Direct Mercury Analyzer (DMA). Logistic regression was used to assess associations between trace element exposure and thyroid nodule prevalence, stratified by nodule size (3.0-4.9 mm, 5.0-9.9 mm, and ≥10.0 mm). Higher urinary concentrations of Mn (OR 2.04; 95 % CI, 1.27-3.28), Cu (OR 1.71; 95 % CI, 1.08-2.72), and Co (OR 1.48; 95 % CI, 0.94-2.31) were significantly associated with larger thyroid nodules (≥10.0 mm). Zinc (OR 1.33; 95 % CI, 0.84-2.11) showed a weaker but positive association with larger nodules, while uranium exposure was notably linked to the development of new nodules during follow-up (OR 7.70; 95 % CI, 1.56-38.10 for nodules ≥5.0 mm). The findings suggest that trace elements, particularly Mn, Cu, Co, Zn, and U, may contribute to the formation and growth of thyroid nodules in older women. Future research should investigate the underlying mechanisms and expand to other populations to better understand these associations.
Collapse
Affiliation(s)
- Sohyeon Choi
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Min Joo Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sunyoung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Hyemin Hospital, Seoul, Republic of Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Division of Endocrinology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Gowoon Lee
- Department of Safety Engineering, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Inae Lee
- Department of Public Health, Keimyung University, Daegu, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nam H Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea.
| |
Collapse
|
3
|
Yang J, Wang T, Li K, Wāng Y. Associations between per- and polyfluoroalkyl chemicals and abdominal aortic calcification in middle-aged and older adults. J Adv Res 2025; 70:203-222. [PMID: 38705256 PMCID: PMC11976567 DOI: 10.1016/j.jare.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Per- and polyfluoroalkyl substances (PFAS) have infiltrated countless everyday products, raising concerns about potential effects on human health, specifically on the cardiovascular system and the development of abdominal aortic calcification (AAC). However, our understanding of this relationship is still limited. OBJECTIVES This study aims to investigate the effects of PFAS on AAC using machine learning algorithms. METHODS Leveraging the power of machine learning technique, extreme gradient boosting (XGBoost), we assessed the relationship between PFAS exposure and AAC risk. We focused on three PFAS compounds, perfluorodecanoic acid (PFDeA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) through multiple logistic regression, restricted cubic spline (RCS), and quantile g-computation (QGC) models. To get more insight into the underlying mechanisms, mediation analyses are used to investigate the potential mediating role of fatty acids and blood cell fractions in AAC. RESULTS Our findings indicate that elevated serum levels of PFHxS and PFDeA are associated with the increased risk of AAC. The QGC analyses underscore the overall positive association between the PFAS mixture and AAC risk, with PFHxS carrying the greatest weight, followed by PFDeA. The RCS analyses reveal a dose-dependent increase between serum PFHxS concentration and AAC risk in an inverted V-shape way. Moreover, age and PFHxS exposure are identified as the primary factors contributing to abdominal aortic calcification risk in SHapley Additive exPlanation (SHAP) summary plot combined with XGBoost technique. Although PFAS significantly change the profile of fatty acids, we do not find any mediating roles of them in AAC. Despite strong associations between PFAS exposure and hematological indicators, our analysis does not find evidence that these indicators mediate the development of AAC. CONCLUSIONS In summary, our study highlights the detrimental impact of PFAS on abdominal aortic health and emphasizes the need for further research to understand the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jijingru Yang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Li
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yán Wāng
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Chung SM, Chang MC. Cadmium exposure and thyroid hormone disruption: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:37-46. [PMID: 38142367 DOI: 10.1515/reveh-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION This meta-analysis aimed to analyze the effect of cadmium (Cd) exposure on thyroid hormone disruption. CONTENT Databases including PubMed, Embase, Cochrane Library, and Scopus were searched for studies published up to December 14, 2022. Studies evaluating the association between Cd exposure (blood Cd [BCd] or urine Cd [UCd]) and thyroid function (thyroid-stimulating hormone [TSH], free thyroxine [FT4], total triiodothyronine [TT3]) or thyroid autoimmunity (thyroglobulin antibody [TgAb] or thyroperoxidase Ab [TPOAb]) were included. SUMMARY AND OUTLOOK This systematic review included 12 cross-sectional studies. Cd exposure showed a neutral association with TSH (pooled correlation=0.016, 95 % confidence interval [CI]=-0.013 to 0.045, p=0.277), FT4 (pooled correlation=0.028, 95 % CI=-0.005 to 0.061, p=0.098), and thyroid autoimmunity (pooled odds ratio=1.143, 95 % CI=0.820-1.591, p=0.430). However, Cd exposure showed a positive association with TT3 (pooled correlation=0.065, 95 % CI=0.050-0.080, p<0.001), which was consistent with the BCd and UCd subgroup analyses (pooled correlation=0.053 and 0.081, respectively, both p<0.001). Cd exposure was not associated with TSH, FT4, or thyroid autoimmunity but tended to increase with TT3.
Collapse
Affiliation(s)
- Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Lee J, Jang H, Pearce EN, Shin HM. Exposome-wide association study of thyroid function using U.S. National Health and Nutrition Examination Survey data. ENVIRONMENTAL RESEARCH 2025; 269:120884. [PMID: 39828196 DOI: 10.1016/j.envres.2025.120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Previous epidemiologic studies examining thyroid function and chemical exposures have typically focused on a single or a limited number of chemical classes, often neglecting the effects of chemical mixtures. This study addressed this gap by exploring the associations between exposure to hundreds of chemicals and thyroid function using an exposome-wide association study (ExWAS) approach and National Health and Nutrition Examination Survey (NHANES) data. We analyzed data from three NHANES cycles (2007-2008, 2009-2010, and 2011-2012), which include measures of thyroid function (free and total triiodothyronine [T3], free and total thyroxine [T4], thyroid-stimulating hormone [TSH]) and chemical biomarker concentrations from 9,082 participants. For adolescents (aged 12-19 years) and adults (aged ≥20 years), we employed multiple regression by accounting for survey weights to identify biomarkers associated with thyroid function test levels and used Bayesian group weighted quantile sum (BGWQS) regression to assess the effects of chemical mixtures on these measurements. After adjusting for multiple comparisons, we found in single exposure scenarios that 44 and 67 biomarkers were associated with at least one thyroid function measure in adolescents and adults, respectively (adjusted p-value <0.05). In scenarios involving mixed chemical exposures, groups such as pesticides, sodium/iodide symporter (NIS) inhibitors, and metals were associated with alterations in thyroid hormones or TSH across both age groups. Volatile organic compounds were specifically linked to lower T4 levels in adolescents, whereas phenols and parabens were associated with lower TSH levels exclusively in adults. Although limited by the cross-sectional data, this study identified chemical biomarkers linked to thyroid function.
Collapse
Affiliation(s)
- Jiyun Lee
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Hyuna Jang
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
6
|
Xiang J, Fan L, Li H, Song Q, Jin Y, He R, Pan X, Wang D. Molecular disturbances and thyroid gland dysfunction in rats chronically exposed to a high dose of NaAsO₂: Insights from proteomic and phosphoproteomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136746. [PMID: 39637814 DOI: 10.1016/j.jhazmat.2024.136746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Arsenic is a ubiquitous hazardous metalloid that poses a significant threat to human health. Although researchers have investigated the detrimental effects of arsenic on the thyroid, a comprehensive exploration of its toxicological impact and underlying molecular mechanisms remains to be conducted. Both this study and our previous reports demonstrated that chronic exposure to sodium arsenite (NaAsO2) results in histological impairment and dysfunction of the thyroid glands in Sprague-Dawley (SD) rats. Proteomic and phosphoproteomic analyses were performed to investigate the molecular mechanisms underlying the effects of chronic NaAsO2 exposure on thyroid function in SD rats. NaAsO2 disrupts the synthesis of thyroid hormones (THs) and alters the expression of the THs-synthesizing enzyme dual oxidase 2. In addition, oxidative phosphorylation, the AMP-activated protein kinase signaling pathway, central carbon metabolism in cancer, cysteine and methionine metabolism, cellular response to heat stress, and protein processing in the endoplasmic reticulum were upregulated, whereas glutathione metabolism was downregulated. In conclusion, this study revealed thyroid damage in SD rats induced by chronic NaAsO2 exposure and elucidated the disrupted molecular pathways, thereby providing novel insights into the molecular mechanisms underlying arsenic exposure and its impact on thyroid function.
Collapse
Affiliation(s)
- Jie Xiang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Hui Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Xueli Pan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, Guizhou, PR China.
| |
Collapse
|
7
|
Tan MY, Zhang P, Wu S, Zhu SX, Gao M. Association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and serum thyroid function measures: Recent Findings from NHANES 2007-2012 and Mendelian randomization. Front Endocrinol (Lausanne) 2025; 16:1467254. [PMID: 39926348 PMCID: PMC11802436 DOI: 10.3389/fendo.2025.1467254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Objective There is limited epidemiological data regarding the association of blood lipids with thyroid hormones. Thus, the present article aims to explore whether there is an association between non-high-density to high-density lipoprotein cholesterol ratio (NHHR) and thyroid hormones. Methods We analyzed samples from 3,881 adults aged 20 years and above who took part in the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2012. The study tested for thyroid hormones, including total triiodothyronine (TT3), free triiodothyronine (FT3), total thyroxine (TT4), free thyroxine (FT4), as well as thyroid-stimulating hormone (TSH). Survey-weighted linear regression and restricted cubic spline (RCS) models were employed to investigate the relationship between NHHR and thyroid hormones. Subsequently, subgroup analyses were conducted. In Mendelian randomization (MR), the inverse variance weighting method (IVW) is used as the primary analytical approach. Results This study finally comprised 3,881 adults aged 20 years and older. After extensive adjustments for covariables, the regression analysis revealed significant negative associations between NHHR and FT4 (β: -0.11, 95% confidence interval [CI]: -0.18, -0.04), FT4/FT3 (β: -0.06, 95% CI: -0.08, -0.04), and TT4/TT3 (β: -0.001, 95% CI: -0.001, 0.000). Both observational and Mendelian randomization studies suggest that high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol may not significantly influence the risk of hyperthyroidism or hypothyroidism. Conclusions The study indicates negative associations between NHHR and FT4, as well as the ratios of FT4/FT3 and TT4/TT3. This suggests that NHHR may reflect changes in thyroid function, highlighting its potential clinical significance in assessing thyroid function and metabolic health.
Collapse
Affiliation(s)
- Mo-Yao Tan
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Ping Zhang
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Shan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ming Gao
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Cao Y, Xiang S, Du Y, Chen M, Xue R, Li Q, Qiu J, Duan Y. Associations of combined exposure to selected metal mixtures with thyroid hormones in children: a cross-sectional study in China. Front Public Health 2025; 13:1387702. [PMID: 39911218 PMCID: PMC11794202 DOI: 10.3389/fpubh.2025.1387702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Background Exposure to several metal elements has been found to be associated with thyroid hormone homeostasis. However, evidence for combined exposure is inconclusive, especially for children. Objective To examine the individual and joint effects of blood metal elements on thyroid hormones in children. Methods A total of 12,470 children aged 0-14 were collected from January 2018 to December 2021 in Hunan Children's Hospital. The concentrations of lead (Pb), iron (Fe), calcium (Ca), copper (Cu), zinc (Zn) and magnesium (Mg) in blood were detected via atomic absorption spectrometry (AAS). The levels of thyroid stimulating hormone (TSH), triiodothyronine (TT3, FT3) and total and free thyroxine (TT4, FT4) were measured by electrochemiluminescence immunoassay (ECLIA). Generalized linear regression (GLR) model and Quantile-based g-computation (QGC) were employed to estimate the association between metal exposure and thyroid hormone homeostasis. Results GLR model showed that a unit increase in ln-transformed Fe was associated with increases in TT3 (β = 0.163; P FDR < 0.001), TT4 (β = 12.255; P FDR < 0.001) and FT3 (β = 0.615; P FDR < 0.001), as well as decreases in TSH (β = -0.471; P FDR = 0.005) and FT4 (β = -1.938; P FDR < 0.001). The result of QGC analysis indicated a positive relationship of the ln-transformed concentration of metal mixture with the levels of TT3 (β = 0.018; P = 0.012), TT4 (β = 2.251; P < 0.001) and FT3 (β = 0.074; P < 0.001) in children. Fe was the predominant contributor among the metal mixture with positive contributions to TT3 (weight = 0.439), TT4 (weight = 0.502) and FT3 (weight = 0.450). Conclusions The combined metal exposure was associated with increased levels of TT3, TT4, and FT3 in children and Fe appeared to be the major contributor. Further studies are warranted to confirm our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yuhan Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shiting Xiang
- Hunan Children's Research Institute (HCRI), The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Yuwei Du
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Meiling Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rumeng Xue
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qi Li
- Hunan Institute for Drug Control, Changsha, China
| | - Jun Qiu
- Hunan Children's Research Institute (HCRI), The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
9
|
Guo LC, Zhu P, Gui C, Deng J, Gao Y, Long C, Zhang H, Lv Z, Yu S. Disrupting effects of neonicotinoids and their interaction with metals on thyroid hormone, an evidence of children in a rural area, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117788. [PMID: 39854865 DOI: 10.1016/j.ecoenv.2025.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Neonicotinoids exposure was found to induce thyroid dysfunction. However, there lack of direct evidence between neonicotinoids exposure and thyroid hormone (TH) disruption in population study, especially in children, which limits the understanding on their health hazard. To fill this knowledge gap, we conducted a cross-sectional study on children of a rural area in South China (n = 88), and analyzed urinary ten neonicotinoids (including metabolites), serum TH, thyroxine-binding globulin (TBG), and thyroid stimulating hormone (TSH) levels. Based on linear regression, generalized additive model, and Bayesian kernel machine regression, neonicotinoids levels were found to be correlated with TH, TBG, and TSH levels, with stronger effects for metabolites than parent compounds in most cases. Mixture exposure of neonicotinoids had significantly positive effect on free triiodothyronine (T3). N-desmethyl-acetamiprid (N-dm-ACE) was negatively associated with T3 for female, which corresponded to much lower T3 levels for female than for male. Also, N-dm-ACE was found to non-monotonic associated with free thyroxine for male. Some neonicotinoids had interactive effects with lead and cadmium on TH disruption. The results provide an evidence on TH disruption of neonicotinoids in children, and highlight the need to explore TH disruption of neonicotinoids and safeguard the health of children.
Collapse
Affiliation(s)
- Ling-Chuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pan Zhu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Chunyan Gui
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yanhong Gao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Chaoyang Long
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Han Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanlu Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shengbing Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| |
Collapse
|
10
|
Cheng Y, Su J, Wang X, Huang R, Zhao Z, Tian K, Gu T, Wang X, Chen L, Zhao X. Associations between brominated flame retardants exposure and non-alcoholic fatty liver disease: Mediation analysis in the NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117762. [PMID: 39847885 DOI: 10.1016/j.ecoenv.2025.117762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Exposure to brominated flame retardants (BFRs) may negatively impact human health. The association of BFRs with nonalcoholic fatty liver disease (NAFLD) in the general population is unclear. Meanwhile, limited studies have investigated the potential role of oxidative stress and inflammation in this link. METHODS We included 4110 adults from the 2009-2014 National Health and Nutrition Examination Survey (NHANES). NAFLD was diagnosed by serum alanine aminotransferase (ALT), hepatic steatosis index (HSI), and United States fatty liver index (USFLI). The link between a single BFR exposure and NAFLD was estimated using weighted logistic regression and restricted cubic splines (RCS). The quantile-based g-computation (QGC), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were applied to evaluate the overall correlation of BFRs mixtures with NAFLD and identify significant compounds. Furthermore, we investigated the potential mediation function of oxidative stress and inflammation. RESULTS Our study demonstrated that specific concentrations of BFRs are related to an increased risk of NAFLD, both individually and when combined. PBB153, PBDE28, PBDE209, and PBDE153 exhibited the highest importance for NAFLD and were potential risk factors worthy of concern. Additionally, mediation analysis showed that absolute neutrophil cell count (ANC) and lymphocyte count (LC) (inflammation markers) have significantly mediated influences on the correlations of PBB153, PBDE85, and PBDE28 with N AFLD risk. Albumin (ALB) (oxidative stress marker) has notably mediated influences on the correlations of PBDE99, PBDE154, and PBDE85 with NAFLD risk. Men had higher serum BFRs concentrations than women, and the association between BFRs and NAFLD was also more prominent in men, which may be related to physiological differences between the sexes. CONCLUSIONS Our findings offer evidence for single and mixed associations of BFRs and NAFLD in ordinary US adults. Furthermore, oxidative stress and chronic inflammation may mediate the effects of BFR exposure on NAFLD development.
Collapse
Affiliation(s)
- Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jingyi Su
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Nantong Center for Disease Control and Prevention, Nantong, Jiangsu 226007, China
| | - Kai Tian
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Tianxiang Gu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital Affiliated Nantong Hospital of Nantong University, Nantong, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
11
|
Yu L, Zhang H, Liu J, Cao S, Li S, Li F, Xia W, Xu S, Li Y. Thyroid-stimulating hormone (TSH) mediates the associations between maternal metals and neurodevelopment in children: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125150. [PMID: 39427953 DOI: 10.1016/j.envpol.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Insufficient research has focused on the effects of metal mixtures on children's neurodevelopment and TSH's potential mediating effect. Plasma concentrations of ten metals were measured among 2887 pregnant women in a persistent Chinese birth cohort. At age two, children's neurodevelopment was assessed using mental development indexes (MDIs) and psychomotor development indexes (PDIs), defining neurodevelopmental delay as MDI≤ 79 (cognitive delay) or PDI≤ 79 (motor delay). The associations between single and mixed metals with neurodevelopment delay risk were examined using generalized linear regression complemented by weighted quantile sum (WQS) regression. To investigate the mediated effects of infant Thyroid-Stimulating Hormone (TSH) on metal-associated neurodevelopment delay risk, mediation analyses were conducted. According to the single-metal model, V, Mn, and Pb levels are positively associated with neurodevelopment delay. The WQS model found consistent associations (Odds Ratio [OR] 1.55, 95% Confidence Interval [CI] 1.23 to 1.95), highlighting V, Mn, and Pb as the main causes of cognitive delay. Further mediation analysis revealed that the association between metals (mainly V, Mn, and Pb) and neurodevelopment delay risk is mediated by TSH, with proportions ranging from 3.18 to 10.14% (all P < 0.05). Our findings highlighted prenatal exposure to metals was associated with higher risks of neurodevelopmental delay, with TSH possibly mediating this effect.
Collapse
Affiliation(s)
- Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuting Cao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Li H, Xiang J, Song Q, Jin Y, Zhou M, Fan L, Wang D. Active Vitamin D Ameliorates Arsenite-Induced Thyroid Dysfunction in Sprague-Dawley Rats by Inhibiting the Toll-like Receptor 4/NF-KappaB-Mediated Inflammatory Response. TOXICS 2024; 12:887. [PMID: 39771102 PMCID: PMC11728788 DOI: 10.3390/toxics12120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Arsenic, a well-known environmental endocrine disruptor, exerts interference on the body's endocrine system. Our previous investigations have demonstrated that chronic exposure to sodium arsenite (NaAsO2) can induce thyroid damage and dysfunction in Sprague-Dawley (SD) rats. Vitamin D (VD) is an indispensable fat-soluble vitamin that plays a crucial role in maintaining thyroid health. In recent years, numerous studies have demonstrated the association between VD deficiency and the development of various thyroid disorders. However, the precise intervention roles and mechanisms of VD in arsenic-induced thyroid injury remain elusive. This study aimed to investigate the intervention effect of VD on NaAsO2-induced thyroid dysfunction in SD rats. The results demonstrated that exposure to NaAsO2 activates the TLR4/NF-κB signaling pathway in thyroid tissue of rats, leading to apoptosis of thyroid cells and subsequent inflammatory damage and disruption of serum thyroid hormone secretion. Supplementation with TAK-242 (a TLR4 inhibitor) and VD effectively inhibits the activation of the TLR4/NF-κB signaling pathway in rat thyroid tissue exposed to NaAsO2, thereby reducing the inflammatory damage and dysfunction caused by arsenic exposure. In conclusion, the findings of this study offer innovative insights into the application of VD in the prevention and treatment of thyroid dysfunction caused by arsenic exposure.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
| | - Jie Xiang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
| | - Meitong Zhou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (H.L.); (J.X.); (Q.S.); (Y.J.); (M.Z.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
13
|
Fan L, Song Q, Jin Y, He R, Diao H, Luo P, Wang D. Prolonged exposure to NaAsO 2 induces thyroid dysfunction and inflammatory injury in Sprague‒Dawley rats, involvement of NLRP3 inflammasome‒mediated pyroptosis. Arch Toxicol 2024; 98:3673-3687. [PMID: 39120795 DOI: 10.1007/s00204-024-03837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Arsenic, a well-known hazardous toxicant, has been found in recent years to act as an environmental endocrine disruptor that accumulates in various endocrine organs, impeding the normal physiological functions of these organs and altering hormone secretion levels. Moreover, some research has demonstrated a correlation between arsenic exposure and thyroid functions, suggesting that arsenic has a toxicological effect on the thyroid gland. However, the specific type of thyroid gland damage caused by arsenic exposure and its potential molecular mechanism remain poorly understood. In this study, the toxic effects of sodium arsenite (NaAsO2) exposure at different doses (0, 2.5, 5.0 and 10.0 mg/kg bw) and over different durations (12, 24 and 36 weeks) on thyroid tissue and thyroid hormone levels in Sprague‒Dawley (SD) rats were investigated, and the specific mechanisms underlying the effects were also explored. Our results showed that NaAsO2 exposure can cause accumulation of this element in the thyroid tissue of rats. More importantly, chronic exposure to NaAsO2 significantly upregulated the expression of NLRP3 inflammasome-related proteins in thyroid tissue, leading to pyroptosis of thyroid cells and subsequent development of thyroid dysfunction, inflammatory injury, epithelial-mesenchymal transition (EMT), and even fibrotic changes in the thyroid glands of SD rats. These findings increase our understanding of the toxic effects of arsenic exposure on the thyroid gland and its functions.
Collapse
Affiliation(s)
- Lili Fan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qian Song
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Ying Jin
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Rui He
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Heng Diao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Dapeng Wang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
14
|
Sheng X, Gao J, Chen K, Zhu X, Wang Y. Hyperthyroidism, hypothyroidism, thyroid stimulating hormone, and dementia risk: results from the NHANES 2011-2012 and Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1456525. [PMID: 39507203 PMCID: PMC11538144 DOI: 10.3389/fnagi.2024.1456525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction As the world ages, dementia places a heavy burden on society and the economy, but current methods of diagnosing dementia are still limited and there are no better therapies that target the causes of dementia. The purpose of this work is to explore the relationship between thyroid disease, thyroid stimulating hormone (TSH) concentrations, free tetraiodothyronine (FT4) concentrations and cognitive function. Methods This study utilized cognitive function and thyroid data from the 2011-2012 National Health and Nutrition Examination Survey (NHANES) to assess the relationship between different groups of TSH and FT4 concentrations and cognitive function using weighted logistic regression and restricted cubic spline (RCS), and then used two-sample Mendelian Randomization (MR) to assess the causal relationship between hyperthyroidism, hypothyroidism, TSH and FT4 concentrations with dementia. Results Our analysis of the 2011-2012 NHANES data showed that the individuals with low TSH concentrations had higher Alzheimer's Disease Word List Registry Consortium1 (CERAD1) and CERAD.delay.recall scores than individuals with high TSH concentrations, and individuals with low FT4 concentrations had higher CERAD3 and Animal Fluency Test scores than individuals with high FT4 concentrations. Our results also showed a non-linear relationship between serum TSH and FT4 concentrations and the Animal Fluency Test. The TSH concentrations within the range of 1.703 to 3.145 mIU/L exhibit a positive correlation with Animal Fluency Test, whereas concentrations outside this range are negatively correlated with Animal Fluency Test. The FT4 concentrations exhibited a positive correlation with Animal Fluency Test to the left of the FT4 concentrations inflection point (0.849 ng/L), whereas to the right of this inflection point, correlation was negative. MR analysis results further indicate that genetic predisposition to hyperthyroidism may be associated with a reduced risk of dementia and vascular dementia(VaD). Conversely, genetic predisposition to hypothyroidism appears to be linked with an increased risk of dementia and VaD. Additionally, genetic predisposition to elevated TSH concentrations may be correlated with a heightened risk of risk of Alzheimer's disease (AD). Conclusion This study provides evidence of a nonlinear relationship between TSH and FT4 concentrations and cognitive function, with hyperthyroidism decreasing the risk of dementia and VaD, hypothyroidism increasing the risk of dementia and VaD, and elevated serum TSH concentrations increasing the risk of AD. Furthermore, prioritizing early detection, diagnosis, and treatment through the assessment of thyroid function in individuals at high risk for developing dementia is of paramount importance. This strategy has the potential to significantly contribute to the prevention and deceleration of dementia progression.
Collapse
Affiliation(s)
- Xixi Sheng
- Department of Neurology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jixiang Gao
- Department of Neurology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Kunfei Chen
- Department of Neurology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xuzhen Zhu
- Department of Neurology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yu Wang
- Department of Acupuncture Rehabilitation, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
15
|
Marić Đ, Baralić K, Vukelić D, Milošević I, Nikolić A, Antonijević B, Đukić-Ćosić D, Bulat Z, Aschner M, Djordjevic AB. Thyroid under siege: Unravelling the toxic impact of real-life metal mixture exposures in Wistar rats. CHEMOSPHERE 2024; 360:142441. [PMID: 38797200 DOI: 10.1016/j.chemosphere.2024.142441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study explored the effect of a toxic metal(oid) mixture (cadmium, lead, arsenic, mercury, chromium, and nickel) on thyroid function in Wistar rats exposed for 28 or 90 days. Dose levels were determined based on prior human-biomonitoring investigation. The experiment included control (male/female rats, 28 and 90 days) and treated groups, reflecting the lower confidence limit of the Benchmark Dose (BMDL) for hormone levels (M1/F1, 28 and 90 days), median concentrations (M2/F2, 28 and 90 days), 95th percentile concentrations (M3/F3, 28 and 90 days) measured in a human study, and reference values for individual metals extracted from the literature (M4/F4, 28 days only). Blood and thyroid gland samples were collected at the experimental termination. Serum TSH, fT3, fT4, T3, and T4 levels were measured, and SPINA-GT and SPINA-GD parameters were calculated. In silico analysis, employing the Comparative Toxicogenomic Database and ToppGene Suite portal, aimed to reveal molecular mechanisms underlying the observed effects. Results showed greater sensitivity in the female rats, with significant effects observed at lower doses. Subacute exposure increased TSH, fT3, and T3 levels in females, while subchronic exposure in males decreased TSH and fT3 levels and increased fT4. Subacute exposure induced changes even at allegedly safe doses, emphasizing potential health risks. Histological abnormalities were observed in all the treated groups. In silico findings suggested that toxic metal exposure contributes to thyroid disorders via oxidative stress, disruption of micronutrients, interference with hormone synthesis, and gene expression dysregulation. These results indicate that seemingly safe doses in single-substance research can adversely affect thyroid structure and function when administered as a mixture. These findings highlight the complex impact of toxic metal exposure on thyroid health, emphasizing that adhering to accepted safety limits for single-substance research fails to account for adverse effects on thyroid structure and function upon exposures to metal mixtures.
Collapse
Affiliation(s)
- Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Ivan Milošević
- University of Belgrade, Faculty of Veterinary Medicine, Department of Histology and Embryology, Bulevar oslobođenja 18, Belgrade, Serbia
| | - Anja Nikolić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Histology and Embryology, Bulevar oslobođenja 18, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
16
|
Guo Q, Cai J, Qu Q, Cheang I, Shi J, Pang H, Li X. Association of Blood Trace Elements Levels with Cardiovascular Disease in US Adults: a Cross-Sectional Study from the National Health and Nutrition Examination Survey 2011-2016. Biol Trace Elem Res 2024; 202:3037-3050. [PMID: 37891364 DOI: 10.1007/s12011-023-03913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
We aimed to explore the overall association between trace elements and cardiovascular disease (CVD) and its types in humans. A total of 5101 participants' blood samples from the 2011-2016 National Health and Nutrition Examination Survey were included. Biochemical data were collected from laboratory tests conducted at mobile screening centers. After assessing linearity, weighted logistic regression estimated the association between trace elements and various CVD types. Weighted quantile sum (WQS) regression and quantile-based g-computation (Qgcomp) evaluated the overall relationship between biological trace elements and CVD types. After fully adjusting for confounding factors, the odds ratios of overall CVD morbidity corresponding to the second, third, and fourth quartiles of higher selenium (Se) concentration were 0.711 (95% CI, 0.529-0.956, p = 0.024), 0.734 (95% CI, 0.546-0.987, p = 0.041), and 0.738 (95% CI, 0.554-0.983, p = 0.038), respectively. Moreover, an increase in the concentration of copper (Cu) was associated with an increased risk of stroke (95% CI, 1.012-1.094, p = 0.01), heart failure (95% CI, 1.001-1.095, p = 0.046), and heart attack (95% CI, 1.001-1.083, p = 0.046). As the concentration of trace elements in the body increased, there was a significant positive association between Cu and CVD prevalence. On the other hand, Se and zinc were negatively associated with CVD prevalence. A nonlinear relationship between Se and CVD was found, and an appropriate Se intake may reduce the risk of CVD. Cu levels positively correlated with CVD risk. However, prospective cohort studies are warranted to confirm the causal effects of the micronutrients on CVD and its types.
Collapse
Affiliation(s)
- Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jingshan Cai
- Department of Cardiology, Suzhou University Clinical Testing Center, Affiliated First People's Hospital, Suzhou, China
| | - Qiang Qu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jinjin Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Hui Pang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China.
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China.
| |
Collapse
|
17
|
Wen Y, Wang Y, Chen R, Guo Y, Pu J, Li J, Jia H, Wu Z. Association between exposure to a mixture of organochlorine pesticides and hyperuricemia in U.S. adults: A comparison of four statistical models. ECO-ENVIRONMENT & HEALTH 2024; 3:192-201. [PMID: 38646098 PMCID: PMC11031731 DOI: 10.1016/j.eehl.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 04/23/2024]
Abstract
The association between the exposure of organochlorine pesticides (OCPs) and serum uric acid (UA) levels remained uncertain. In this study, to investigate the combined effects of OCP mixtures on hyperuricemia, we analyzed serum OCPs and UA levels in adults from the National Health and Nutrition Examination Survey (2005-2016). Four statistical models including weighted logistic regression, weighted quantile sum (WQS), quantile g-computation (QGC), and bayesian kernel machine regression (BKMR) were used to assess the relationship between mixed chemical exposures and hyperuricemia. Subgroup analyses were conducted to explore potential modifiers. Among 6,529 participants, the prevalence of hyperuricemia was 21.15%. Logistic regression revealed a significant association between both hexachlorobenzene (HCB) and trans-nonachlor and hyperuricemia in the fifth quintile (OR: 1.54, 95% CI: 1.08-2.19; OR: 1.58, 95% CI: 1.05-2.39, respectively), utilizing the first quintile as a reference. WQS and QGC analyses showed significant overall effects of OCPs on hyperuricemia, with an OR of 1.25 (95% CI: 1.09-1.44) and 1.20 (95% CI: 1.06-1.37), respectively. BKMR indicated a positive trend between mixed OCPs and hyperuricemia, with HCB having the largest weight in all three mixture analyses. Subgroup analyses revealed that females, individuals aged 50 years and above, and those with a low income were more vulnerable to mixed OCP exposure. These results highlight the urgent need to protect vulnerable populations from OCPs and to properly evaluate the health effects of multiple exposures on hyperuricemia using mutual validation approaches.
Collapse
Affiliation(s)
- Yu Wen
- School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Yi Guo
- School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Jialu Pu
- School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Jianwen Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Huixun Jia
- School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Ophthalmic Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Zhenyu Wu
- School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Liu H, Liu M, Qiao L, Yang Z, He Y, Bao M, Lin X, Han J. Association of blood cadmium levels and all-cause mortality among adults with rheumatoid arthritis: The NHANES cohort study. J Trace Elem Med Biol 2024; 83:127406. [PMID: 38308912 DOI: 10.1016/j.jtemb.2024.127406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The potential impact of environmental cadmium exposure on the prognosis of patients with rheumatoid arthritis (RA) remains unclear, despite its known association with various adverse health outcomes. METHODS In this study, a total of 1285 RA patients were included in the National Health and Nutrition Examination Survey (NHANES) conducted between 2003 and 2016. The Cox regression model was employed to investigate the relationship between blood cadmium levels and the risk of all-cause mortality in RA patients. RESULTS During a mean follow-up duration of 105.9 months, 341 patient deaths were recorded. After adjusting for multiple factors, elevated blood cadmium was strongly correlated with an increased risk of all-cause mortality in patients with RA. With one unit rise in natural logarithm-transformed blood cadmium concentrations, the risk of patient death increased by 107%. The adjusted hazard ratios for each quartile of blood cadmium demonstrated a significant upward trend (P < 0.001). A linear dose-response relationship of blood cadmium concentrations with all-cause mortality was also distinctive (P < 0.001). Consistent findings were ascertained when conducting stratified analyses by age, gender, race, education level, body mass index, smoking status, and drinking status. CONCLUSIONS Elevated blood cadmium levels may serve as a risk factor for increased death risk in RA patients.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mian Liu
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhihao Yang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
19
|
Nan Y, Yang J, Yang J, Wei L, Bai Y. Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older. Biol Trace Elem Res 2024; 202:850-865. [PMID: 37291467 DOI: 10.1007/s12011-023-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The effects of metal exposure on kidney function have been reported in previous literature. There is limited and inconsistent information on the associations between individual and combined exposures to metals and kidney function among the middle-aged and older population. The aim of this study was to clarify the associations of exposure to individual metals with kidney function while accounting for potential coexposure to metal mixtures and to evaluate the joint and interactive associations of blood metals with kidney function. A total of 1669 adults aged 40 years and older were enrolled in the present cross-sectional study using the 2015-2016 National Health and Nutrition Examination Survey (NHANES). Single-metal and multimetal multivariable logistic regression models, quantile G-computation, and Bayesian kernel machine regression models (BKMR) were fitted to explore the individual and joint associations of whole blood metals [lead (Pb), cadmium (Cd), mercury (Hg), cobalt (Co), manganese (Mn), and selenium (Se)] with the odds of decreased estimated glomerular filtration rate (eGFR) and albuminuria. A decreased eGFR was defined as an eGFR ≤ 60 mL/min per 1.73 m2, and albuminuria was categorized as a urinary albumin-creatinine ratio (UACR) of ≥ 30.0 mg/g. The results from quantile G-computation and BKMR indicated positive associations between exposure to the metal mixture and the prevalence of decreased eGFR and albuminuria (all P values < 0.05). These positive associations were mainly driven by blood Co, Cd, and Pb. Furthermore, blood Mn was identified as an influential element contributing to an inverse correlation with kidney dysfunction within metal mixtures. Increasing blood Se levels were negatively associated with the prevalence of decreased eGFR and positively associated with albuminuria. In addition, a potential pairwise interaction between Mn-Co on decreased eGFR was identified by BKMR analysis. Findings from our study suggested a positive association between exposure to the whole blood metal mixture and decreased kidney function, with blood Co, Pb, and Cd being the main contributors to this association, while Mn demonstrated an inverse relationship with renal dysfunction. However, as our study was cross-sectional in nature, further prospective studies are warranted to better understand the individual and combined effects of metals on kidney function.
Collapse
Affiliation(s)
- Yaxing Nan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jinyu Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Lili Wei
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China.
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
20
|
Iamandii I, De Pasquale L, Giannone ME, Veneri F, Generali L, Consolo U, Birnbaum LS, Castenmiller J, Halldorsson TI, Filippini T, Vinceti M. Does fluoride exposure affect thyroid function? A systematic review and dose-response meta-analysis. ENVIRONMENTAL RESEARCH 2024; 242:117759. [PMID: 38029816 DOI: 10.1016/j.envres.2023.117759] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Fluoride exposure may have various adverse health effects, including affecting thyroid function and disease risk, but the pattern of such relation is still uncertain. METHODS We systematically searched human studies assessing the relation between fluoride exposure and thyroid function and disease. We compared the highest versus the lowest fluoride category across these studies, and we performed a one-stage dose-response meta-analysis for aggregated data to explore the shape of the association. RESULTS Most retrieved studies (27 of which with a cross-sectional design) were conducted in Asia and in children, assessing fluoride exposure through its concentrations in drinking water, urine, serum, or dietary intake. Twenty-four studies reported data on thyroid function by measuring thyroid-related hormones in blood (mainly thyroid-stimulating-hormone - TSH), 9 reported data on thyroid disease, and 4 on thyroid volume. By comparing the highest versus the lowest fluoride categories, overall mean TSH difference was 1.05 μIU/mL. Dose-response curve showed no change in TSH concentrations in the lowest water fluoride exposure range, while the hormone levels started to linearly increase around 2.5 mg/L, also dependending on the risk of bias of the included studies. The association between biomarkers of fluoride exposure and TSH was also positive, with little evidence of a threshold. Evidence for an association between fluoride exposure and blood concentrations of thyroid hormones was less evident, though there was an indication of inverse association with triiodothyronine. For thyroid disease, the few available studies suggested a positive association with goiter and with hypothyroidism in both children and adults. CONCLUSIONS Overall, exposure to high-fluoride drinking water appears to non-linearly affect thyroid function and increase TSH release in children, starting above a threshold of exposure, and to increase the risk of some thyroid diseases.
Collapse
Affiliation(s)
- Inga Iamandii
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lisa De Pasquale
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Edvige Giannone
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy; PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jacqueline Castenmiller
- Office for Risk Assessment & Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Thorhallur I Halldorsson
- Department of Epidemiology Research, Centre for Fetal Programming, Copenhagen, Denmark; Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
21
|
Sijko-Szpańska M, Kozłowska L. Analysis of Relationships between Metabolic Changes and Selected Nutrient Intake in Women Environmentally Exposed to Arsenic. Metabolites 2024; 14:75. [PMID: 38276310 PMCID: PMC10820439 DOI: 10.3390/metabo14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Nutrients involved in the metabolism of inorganic arsenic (iAs) may play a crucial role in mitigating the adverse health effects associated with such exposure. Consequently, the objective of this study was to analyze the association between the intake levels of nutrients involved in iAs metabolism and alterations in the metabolic profile during arsenic exposure. The study cohort comprised environmentally exposed women: WL (lower total urinary arsenic (As), n = 73) and WH (higher As, n = 73). The analysis included urinary untargeted metabolomics (conducted via liquid chromatography-mass spectrometry) and the assessment of nutrient intake involved in iAs metabolism, specifically methionine, vitamins B2, B6, and B12, folate, and zinc (based on 3-day dietary records of food and beverages). In the WL group, the intake of all analyzed nutrients exhibited a negative correlation with 5 metabolites (argininosuccinic acid, 5-hydroxy-L-tryptophan, 11-trans-LTE4, mevalonic acid, aminoadipic acid), while in the WH group, it correlated with 10 metabolites (5-hydroxy-L-tryptophan, dihyroxy-1H-indole glucuronide I, 11-trans-LTE4, isovalerylglucuronide, 18-oxocortisol, 3-hydroxydecanedioic acid, S-3-oxodecanoyl cysteamine, L-arginine, p-cresol glucuronide, thromboxane B2). Furthermore, nutrient intake demonstrated a positive association with 3 metabolites in the WL group (inosine, deoxyuridine, glutamine) and the WH group (inosine, N-acetyl-L-aspartic acid, tetrahydrodeoxycorticosterone). Altering the intake of nutrients involved in iAs metabolism could be a pivotal factor in reducing the negative impact of arsenic exposure on the human body. This study underscores the significance of maintaining adequate nutrient intake, particularly in populations exposed to arsenic.
Collapse
Affiliation(s)
- Monika Sijko-Szpańska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02776 Warsaw, Poland
| | - Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02776 Warsaw, Poland
| |
Collapse
|
22
|
Ran Z, Wang B, Zhang SY. Associations of exposure to metals with total and allergen-specific IgE: An NHANES analysis (2005-2006). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167385. [PMID: 37777136 DOI: 10.1016/j.scitotenv.2023.167385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Immunoglobulin E (IgE) is a diagnostic biomarker for allergic diseases. While some metal exposure has been found to be associated with allergic diseases, there are still a lot of knowledge gaps regarding the relationship between metal exposure and allergen-specific IgE antibodies, particularly in adults. METHODS We included a total of 1433 adult participants from the 2005-2006 National Health and Nutrition Examination Survey (NHANES), all of whom had concentrations of 10 metals (including Barium (Ba), Cadmium (Cd), Cobalt (Co), Cesium (Cs), Molybdenum (Mo), Lead (Pb), Antimony (Sb), Thallium (Tl), Tungsten (Tu), and Uranium (Ur)) in urine, as well as measurements of 19 allergen-specific IgE and total IgE antibodies. Linear regression, logistic regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to estimate associations between metals and total and allergen-specific IgE. RESULTS Linear regression models revealed a positive correlation between Pb and Cd levels and the total IgE levels. Furthermore, the WQS and BKMR models suggested a positive association between mixed metals and total IgE levels, with the WQS model highlighting Pb and Cd as the major contributors. Logistic regression models showed positive correlations between Pb and food sensitization, Ur and plant sensitization, negative correlations between Cs and plant sensitization, Co and dust mite and pet sensitization, Mo and dust mite and cockroach sensitization, and Tl and mold sensitization. Moreover, the BKMR results indicated a statistically significant negative correlation between mixed metals and mold sensitization. CONCLUSION According to the research findings, exposure to metals is associated with total and allergen-specific IgE in American adults. Further assessment of these relationships is necessary in representative populations of other countries.
Collapse
Affiliation(s)
- Zhujie Ran
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ben Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
23
|
Cheng F, Chen X, Fan J, Qiao J, Jia H. Sex-specific association of exposure to a mixture of phenols, parabens, and phthalates with thyroid hormone and antibody levels in US adolescents and adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121207-121223. [PMID: 37950782 DOI: 10.1007/s11356-023-30739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/25/2023] [Indexed: 11/13/2023]
Abstract
Individuals are exposed to multiple phenols, parabens, and phthalates simultaneously since they are important endocrine-disrupting compounds (EDCs) and share common exposure pathways. It is necessary to assess the effects of the co-exposure of these EDCs on thyroid hormones (THs). In this study, data included 704 adolescents and 2911 adults from the 2007-2012 National Health and Nutrition Examination Survey (NHANES). Serum THs measured total triiodothyronine (T3), total thyroxine (T4), free forms of T3 (FT3) and T4 (FT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb). And 16 EDCs (3 phenols, 2 parabens, and 11 phthalates) were measured from urine. The relationship between single EDCs and single THs was analyzed using generalized linear regression. And results showed that several EDCs were positively associated with serum T3 and FT3 levels in boys but negatively associated with serum T4 and FT4 levels in girls. And in adults, five EDCs were negatively associated with T3, T4, or FT4. The effects of co-exposure to 16 EDCs on THs were calculated using Bayesian kernel machine regression and quantile-based g-computational modeling, confirmed that co-exposure was related to the increase of T3 in adolescents and the decrease of T4 in both adolescents and adults. Besides, nonlinear and linear relationships were identified between co-exposure and the risk of positive TPOAb and TgAb in girls and adult females, respectively. In conclusion, phenols, parabens, and phthalates as a mixture might interfere the concentrations of THs and thyroid autoantibodies, and the interfering effect varies significantly by sex as well as by age. Further prospective research is warranted to investigate the causal effects and underlying mechanisms of co-exposure on thyroid dysfunction.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Xueyu Chen
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Jiaxu Fan
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Junpeng Qiao
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Hongying Jia
- Shenzhen Research Institute of Shandong University, Shandong University, Shenzhen, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China.
| |
Collapse
|
24
|
Xu X, Lyu J, Long P, Liu K, Wang H, Wang X, Yin Y, Yang H, Zhang X, Guo H, He M, Wu T, Yuan Y. Associations of multiple plasma metals with osteoporosis: findings from the Dongfeng-Tongji cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120903-120914. [PMID: 37945958 DOI: 10.1007/s11356-023-30816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
With the aging population, osteoporosis has become a more prevalent public health issue. Existing researches have indicated significant relations of single metal exposure with osteoporosis (e.g., lead, copper, and zinc), whereas the evidence regarding the joint association of metal mixtures with osteoporosis remain limited and inconclusive. A total of 4924 participants from the Dongfeng-Tongji cohort were included in the present study. Plasma levels of 23 metals were determined by inductively coupled plasma mass spectrometry, and the presence of osteoporosis was defined as a bone mineral density T-score ≤ - 2.5. We applied stepwise regression, plasma metal score, and quantile g-computation model to evaluate the association between plasma metal mixtures and osteoporosis risk. Of the 4924 participants, the prevalence of osteoporosis was 10.9% (N = 265) in males and 27.5% (N = 684) in females. In the multiple-metals model, arsenic was positively associated with osteoporosis in males, while zinc was positively associated with osteoporosis in females. Comparing extreme quartiles, the multivariate-adjusted ORs of osteoporosis were 2.20 (95% CI, 1.29, 3.79; P-trend = 0.006) for arsenic in males and 2.16 (95% CI, 1.44, 3.23; P-trend < 0.001) for zinc in females. The plasma metal score was significantly and positively associated with a higher risk of osteoporosis, with ORs (95% CI) comparing extreme quartiles were 5.00 (95% CI, 3.36, 7.65; P-trend < 0.001) in males and 1.76 (95% CI, 1.35, 2.29; P-trend < 0.001) in females. Furthermore, the results of quantile g-computation revealed a consistent positive trend of metal mixtures with risk of osteoporosis and suggested the dominant role of arsenic in males and zinc in females, respectively. Our findings highlighted the importance of controlling metal mixtures exposure for the prevention of osteoporosis in the middle-aged and elder population. Further prospective studies in larger populations are warranted to confirm our findings.
Collapse
Affiliation(s)
- Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junrui Lyu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yin
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Ge X, He J, Lin S, Bao Y, Zheng Y, Cheng H, Cai H, Feng X, Yang W, Hu S, Wang L, Liao Q, Wang F, Liu C, Chen X, Zou Y, Yang X. Associations of metal mixtures with thyroid function and potential interactions with iodine status: results from a cross-sectional study in MEWHC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105665-105674. [PMID: 37715904 DOI: 10.1007/s11356-023-29682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Few studies are available on associations between metal mixture exposures and disrupted thyroid hormone homeostasis; particularly, the role of iodine status was ignored. Here, we aimed to explore the cross-sectional relationship of blood cell metals with thyroid homeostasis and explore the potential modifying effect of iodine status. Among 328 workers from the manganese-exposed workers healthy cohort (MEWHC), we detected thyroid function parameters: thyroid stimulating hormone (TSH), total triiodothyronine (TT3), free triiodothyronine (FT3), total tetraiodothyronine (TT4), free tetraiodothyronine (FT4) as well as calculated sum activity of peripheral deiodinases (GD) and thyroid's secretory capacity (GT). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure 22 metal concentrations in blood cells. Based on the consistent results of least absolute shrinkage and selection operator (LASSO) and Bayesian kernel machine regression (BKMR) analyses, there were significant positive associations between copper and TSH (β = 2.016), iron and FT4 (β = 0.403), titanium and GD (β = 0.142), nickel and GD (β = 0.057), and negative associations between copper and FT4 (β = - 0.226), selenium and GD (β = - 0.332), among the participants. Interestingly, we observed an inverted-U shape relationship between magnesium and FT4. Furthermore, we found a synergistic effect between arsenic and copper on the TSH level, while antagonistic effects between nickel and copper as well as nickel and selenium on the TSH level. We observed a modified effect of iodine status on association between strontium and GD (Pinteraction = 0.026). It suggests metal mixture exposures can alter thyroid homeostasis among the occupational population, and deiodinase activity had a modified effect on association between strontium and GD. Validation of these associations and elucidation of underlying mechanisms require further researches in the future.
Collapse
Affiliation(s)
- Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Sencai Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wenjun Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Sihan Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lin Wang
- School of Science, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Qijing Liao
- School of Science, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Cahoqun Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yunfeng Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
26
|
Tang P, Liao Q, Tang Y, Yao X, Du C, Wang Y, Song F, Deng S, Wang Y, Qiu X, Yang F. Independent and combined associations of urinary metals exposure with markers of liver injury: Results from the NHANES 2013-2016. CHEMOSPHERE 2023; 338:139455. [PMID: 37429383 DOI: 10.1016/j.chemosphere.2023.139455] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Heavy metals entering the human body could cause damage to a variety of organs. However, the combined harmful effects of exposure to various metals on liver function are not well understood. The purpose of the study was to investigate the independent and joint relationships between heavy metal exposure and liver function in adults. METHODS The study involved 3589 adults from the National Health and Nutrition Examination Survey. Concentrations of urinary metals, including arsenic (As), cadmium (Cd), lead (Pb), antimony (Sb), barium (Ba), thallium (Tl), tungsten (W), uranium (U), were determined in urine using inductively coupled plasma mass spectrometry. Data for liver function biomarkers included alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transaminase (GGT), and alkaline phosphatase (ALP). Survey-weighted linear regression and quantile g-computation (qgcomp) were employed to evaluate the relationship of urinary metals with the markers of liver injury. RESULTS Cd, U and Ba were found to have positive correlations with ALT, AST, GGT, and ALP in the survey-weighted linear regression analyses. According to the qgcomp analyses, the total metal mixture was positively correlated with ALT (percent change: 8.15; 95% CI: 3.84, 12.64), AST (percent change: 5.55; 95% CI: 2.39, 8.82), GGT (percent change: 14.30; 95% CI: 7.81, 21.18), and ALP (percent change: 5.59; 95% CI: 2.65, 8.62), and Cd, U, and Ba were the main contributors to the combined effects. Positive joint effects were observed between Cd and U on ALT, AST, GGT and ALP, and U and Ba had positive joint effects on ALT, AST and GGT. CONCLUSION Exposures to Cd, U, and Ba were individually associated with multiple markers of liver injury. Mixed metal exposure might be adversely correlated with markers of liver function. The findings indicated the potential harmful effect of metal exposure on liver function.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xueqiong Yao
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yangcan Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
27
|
Zhao G, Wang Z, Ji J, Cui R. Effect of coffee consumption on thyroid function: NHANES 2007-2012 and Mendelian randomization. Front Endocrinol (Lausanne) 2023; 14:1188547. [PMID: 37351106 PMCID: PMC10282749 DOI: 10.3389/fendo.2023.1188547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background Coffee is one of the most consumed beverages worldwide, but the effects on the thyroid are unknown. This study aims to examine the association between coffee and thyroid function. Methods Participant data (≥ 20 years, n = 6578) for the observational study were obtained from NHANES 2007-2012. Analysis was performed using weighted linear regression models and multiple logistic regression models. Genetic datasets for Hyperthyroidism and Hypothyroidism were obtained from the IEU database and contained 462,933 European samples. Mendelian randomization (MR) was used for the analysis, inverse variance weighting (IVW) was the main method of analysis. Results In the model adjusted for other covariates, participants who drank 2-4 cups of coffee per day had significantly lower TSH concentrations compared to non-coffee drinkers (b=-0.23, 95% CI: -0.30, -0.16), but no statistically significant changes in TT4, FT4, TT3 and FT3. In addition, participants who drank <2 cups of coffee per day showed a low risk of developing subclinical hypothyroidism. (OR=0.60, 95% CI: 0.41, 0.88) Observational studies and MR studies have demonstrated both that coffee consumption has no effect on the risk of hyperthyroidism and hypothyroidism. Conclusions Our study showed that drinking <2 cups of coffee per day reduced the risk of subclinical hypothyroidism and drinking 2-4 cups of coffee reduced serum TSH concentrations. In addition, coffee consumption was not associated with the risk of hyperthyroidism and hypothyroidism.
Collapse
Affiliation(s)
- Guoxu Zhao
- Mudanjiang Medical University, Mudanjiang, China
| | - Zhao Wang
- Chungnam National University School of Medicine, Daejeon Gwangyeoksi, Republic of Korea
| | - Jinli Ji
- Mudanjiang Medical University, Mudanjiang, China
| | - Rongjun Cui
- Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
28
|
Ye Y, Li Y, Ma Q, Li Y, Zeng H, Luo Y, Liang Y, Liu L, Liu L, Lin X, Yu G, Song C, Wan H, Shen J. Association of multiple blood metals with thyroid function in general adults: A cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1134208. [PMID: 37051196 PMCID: PMC10083359 DOI: 10.3389/fendo.2023.1134208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
INTRODUCTION Thyroid function has a large impact on humans' metabolism and is affected by iodine levels, but there is a scarcity of studies that elucidate the association between thyroid function and other elements. METHODS We performed a cross-sectional study on 1,067 adults to evaluate the associations of the common essential metals with thyroid function in adults living in an iodine-adequate area of China. Serum free thyroxine (FT4), free triiodothyronine (FT3), thyroid stimulating hormone (TSH), and blood metals (zinc, iron, copper, magnesium, manganese, and calcium) were measured. Further, the thyroid hormone sensitivity indexes, FT3:FT4 ratio, and thyrotropin T4 resistance index (TT4RI) were calculated. Linear regression, quantile g-computation, and Bayesian kernel machine regression methods were used to explore the association of metals with thyroid function. RESULTS We found that the TSH levels correlated with copper (negative) and zinc (positive). Iron and copper were positively associated with FT3 and FT4 levels, respectively. Iron (positive) and copper (negative) were correlated with the FT3:FT4 ratio. Furthermore, we found that manganese was inversely correlated with TT4RI, while zinc was positively correlated. DISCUSSION Our findings suggest that manganese, iron, copper, and zinc levels were strongly correlated with thyroid function, and patients with thyroid disorders are recommended to measure those metals levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Heng Wan
- *Correspondence: Jie Shen, ; Heng Wan,
| | - Jie Shen
- *Correspondence: Jie Shen, ; Heng Wan,
| |
Collapse
|
29
|
Abstract
Trace elements, such as iodine and selenium (Se), are vital to human health and play an essential role in metabolism. They are also important to thyroid metabolism and function, and correlate with thyroid autoimmunity and tumors. Other minerals such as iron (Ir), lithium (Li), copper (Co), zinc (Zn), manganese (Mn), magnesium (Mg), cadmium (Cd), and molybdenum (Mo), may related to thyroid function and disease. Normal thyroid function depends on a variety of trace elements for thyroid hormone synthesis and metabolism. These trace elements interact with each other and are in a dynamic balance. However, this balance may be disturbed by the excess or deficiency of one or more elements, leading to abnormal thyroid function and the promotion of autoimmune thyroid diseases and thyroid tumors.The relationship between trace elements and thyroid disorders is still unclear, and further research is needed to clarify this issue and improve our understanding of how trace elements mediate thyroid function and metabolism. This paper systematically reviewed recently published literature on the relationship between various trace elements and thyroid function to provide a preliminary theoretical basis for future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
- *Correspondence: Shuai Xue, ; Guang Chen,
| | - Li Zhang
- Department of Nephrology, The Hospital of Jilin University, Changchun, China
| | - Guang Chen
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
- *Correspondence: Shuai Xue, ; Guang Chen,
| |
Collapse
|