1
|
Wangchuk S, Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Numnuam A, Kanatharana P, Thavarungkul P, Limbut W. Cuprous oxide-functionalized activated porous carbon-modified screen-printed carbon electrode integrated with a smartphone for portable electrochemical nitrate detection. Talanta 2025; 287:127581. [PMID: 39837205 DOI: 10.1016/j.talanta.2025.127581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Nitrate (NO3-) is a widespread contaminant in drinking water. An electrochemical NO3- sensor was developed based on a first-time application of materials. Activated porous carbon (APC) was synthesized by carbonizing orange peel (OP) activated with KOH. Cuprous oxide crystals were uniformly decorated by electrodeposition on a screen-printed carbon electrode modified with the synthesized APC (Cu2O@APC/SPE). The modified electrode was integrated with a portable potentiostat interfaced with a smartphone to create a chronoamperometric nitrate sensor. The modified electrodes were structurally and morphologically characterized using conventional techniques, while electrochemical tests were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). The electrode material exhibited a highly porous structure, large accessible active surface areas, and excellent conductivity, which enhanced electrocatalytic performances. The developed NO3- sensor displayed a wide linear range (4-1000 μM) and a low limit of detection (LOD) of 1.2 μM. The sensor demonstrated good precision, selectivity, and reasonable recoveries. The real-world application of the NO3- sensor was validated using water samples. The sensor shows promise for applications in pharmaceuticals, agriculture, forensic investigations, and environmental monitoring.
Collapse
Affiliation(s)
- Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Physical Sciences, Sherubtse College, Royal University of Bhutan, Kanglung, 42002, Trashigang, Bhutan
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kritsada Samoson
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Apon Numnuam
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Bansal S, Tomer A, Jain P. Natural Product-Inspired Vanadium Pentoxide Nanoparticles Unlock Diabetic Therapeutic Potential: In Vitro and In Silico Evaluation. ACS APPLIED BIO MATERIALS 2025; 8:2027-2051. [PMID: 39948024 DOI: 10.1021/acsabm.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Mimicking the action of insulin and inhibition of specific enzymes involved in glucose metabolism by vanadium pentoxide (V2O5) make it a candidate for diabetes control, but its low absorption, unpredictable change of oxidation state in body passage, and inadequate ability to bond with the intended site limit its activity. Here, okra extract-capped V2O5 nanoparticles (ONPs) are fabricated, which exhibit significant absorptivity, mucoadhesion, and control release by producing vanadate ions as an intermediate. Further, they have been exploited for the antioxidant, anti-inflammatory, and antidiabetic studies. Characterization results demonstrated the presence of okra extract over the surface of nanoparticles. A capped V2O5 nanodrug exhibited enhanced electroactive rough surface area with groove-shaped pores. Fabricated ONPs were exploited for their antioxidant, anti-inflammatory, and antidiabetic properties. Results achieved from in vitro studies and molecular docking indicate its inhibition properties with 80.00 ± 1.73% and 69.93 ± 1.86% efficiency against α-amylase and α-glucosidase, respectively, without affecting the growth of probiotic Bifidobacterium adolescentis and Bifidobacterium bifidum present in the human gut. The cytotoxicity on the HacaT cell line and the glucose uptake assay on the HepG2 cell line make it a promising candidate as an antidiabetic drug.
Collapse
Affiliation(s)
- Smriti Bansal
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Erstwhile N.S.I.T Azad Hind Fauj Marg, Dwarka, Delhi 110078, India
| | - Archana Tomer
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Erstwhile N.S.I.T Azad Hind Fauj Marg, Dwarka, Delhi 110078, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Erstwhile N.S.I.T Azad Hind Fauj Marg, Dwarka, Delhi 110078, India
| |
Collapse
|
3
|
Atacan K, Güy N, Semerci AB, Özacar M. Development of immobilized peroxidase on amino-functionalized magnetic MgFe 2O 4 nanoparticles for antioxidant activity and decolorization. Biophys Chem 2025; 318:107366. [PMID: 39644714 DOI: 10.1016/j.bpc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
This investigation aims to immobilize peroxidase onto 3-aminopropyltriethoxysilane (APTES)-functionalized MgFe2O4 magnetic nanoparticles to increase enzyme stability, efficiency, and recyclability. The synthesized samples were analyzed using X-ray diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, Vibrating sample magnetometer, and Scanning electron microscopy. The free and immobilized peroxidase were examined against different pH and temperatures as well as storage time and reuse. The immobilized peroxidase maintained 52 % of its initial activity after 10 consecutive measurements thanks to easy magnetic separation. In addition, antioxidant activity was increased by immobilizing the peroxidase to the MgFe2O4 magnetic nanoparticles. Congo red dye removal for peroxidase immobilized MgFe2O4-APTES was found to be 98.6 % for 240 min. Also, it showed approximately two times more dye decolorization efficiency compared to MgFe2O4 and APTES modified MgFe2O4. Finally, the immobilized peroxidase was studied by a decolorization study of congo red. So, we believe that the immobilized peroxidase on magnetic nanoparticles reported in this study may be utilized in diverse biotechnology, industrial, and environmental practices.
Collapse
Affiliation(s)
- Keziban Atacan
- Sakarya University of Applied Sciences, Faculty of Technology, Department of Engineering Fundamental Sciences, 54050 Sakarya, Türkiye.
| | - Nuray Güy
- Sakarya University, Faculty of Science, Department of Chemistry, 54187 Sakarya, Türkiye
| | - Alican Bahadir Semerci
- Sakarya University, Faculty of Science, Department of Biology, 54187 Sakarya, Türkiye; Necmettin Erbakan University, Ereğli Vocational School of Health Services, 42310, Konya, Türkiye
| | - Mahmut Özacar
- Sakarya University, Faculty of Science, Department of Chemistry, 54187 Sakarya, Türkiye
| |
Collapse
|
4
|
Li QJ, Xing F, Wu WT, Zhe M, Zhang WQ, Qin L, Huang LP, Zhao LM, Wang R, Fan MH, Zou CY, Duan WQ, Li-Ling J, Xie HQ. Multifunctional metal-organic frameworks as promising nanomaterials for antimicrobial strategies. BURNS & TRAUMA 2025; 13:tkaf008. [PMID: 40276581 PMCID: PMC12018305 DOI: 10.1093/burnst/tkaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/26/2025]
Abstract
Bacterial infections pose a serious threat to human health. While antibiotics have been effective in treating bacterial infectious diseases, antibiotic resistance significantly reduces their effectiveness. Therefore, it is crucial to develop new and effective antimicrobial strategies. Metal-organic frameworks (MOFs) have become ideal nanomaterials for various antimicrobial applications due to their crystalline porous structure, tunable size, good mechanical stability, large surface area, and chemical stability. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Pure MOFs can release metal ions to modulate cellular behaviors and kill various microorganisms. Additionally, MOFs can act as carriers for delivering antimicrobial agents in a desired manner. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Furthermore, certain types of MOFs can be combined with traditional photothermal or other physical stimuli to achieve broad-spectrum antimicrobial activity. Recently an increasing number of researchers have conducted many studies on applying various MOFs for diseases caused by bacterial infections. Based on this, we perform this study to report the current status of MOF-based antimicrobial strategy. In addition, we also discussed some challenges that MOFs currently face in biomedical applications, such as biocompatibility and controlled release capabilities. Although these challenges currently limit their widespread use, we believe that with further research and development, new MOFs with higher biocompatibility and targeting capabilities can provide diversified treatment strategies for various diseases caused by bacterial infections.
Collapse
Affiliation(s)
- Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Wen-Ting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Wen-Qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Qin
- Integrated Care Management Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiang Duan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| |
Collapse
|
5
|
Khedr AI, Ali MHH. Eco-friendly fabrication of copper oxide nanoparticles using peel extract of Citrus aurantium for the efficient degradation of methylene blue dye. Sci Rep 2024; 14:29156. [PMID: 39587156 PMCID: PMC11589848 DOI: 10.1038/s41598-024-79589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
This study presents a simple, sustainable, eco-friendly approach for synthesizing copper oxide (CuO) nanoparticles using Citrus aurantium peel extract as a natural reducing and stabilizing agent. The synthesized CuO and CuO-OP were characterized using various techniques, including surface area measurement (SBET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), and high resolution transmission electron microscope (HRTEM). DRS analysis determines band gap energy (Eg) of 1.7 eV for CuO and 1.6 eV for CuO-OP. FTIR confirmed the presence of Cu-O bond groups. The XRD and HRTEM results revealed monoclinic and spherical nanostructures, with average particle sizes ranging from 53.25 to 68.02 nm, as determined via Scherer's equation. EDX analysis indicated incorporation of carbon (1.6%) and nitrogen (0.3%) from the peel extract. The synthesized CuO and CuO-OP NPs exhibited excellent photocatalytic efficiencies for methylene blue dye under UV irradiation, reaching 95.34 and 97.5%, respectively, under optimal conditions; the initial dye concentration was 100 mg/L, the pH was 10, the catalyst dosage was 1 g/L, and the contact time was 120 min. Isothermal studies showed that the adsorption of MB onto the nanoparticles followed the Freundlich isotherm model (R2 = 0.97 and 0.96). Kinetic studies indicated that the degradation followed pseudo-first-order kinetics, with rate constants (K1) of 0.0255 min-1 for CuO and 0.033 min-1 for CuO-OP. The sorption capacities were calculated as 98.19 mg/g for CuO and 123.1 mg/g for CuO-OP. The energy values obtained from the Dubinin-Radushkevich isotherm were 707.11 and 912.87 KJ mol-1, suggesting that chemisorption was the dominant mechanism.
Collapse
Affiliation(s)
- Alaa I Khedr
- National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | - Mohamed H H Ali
- National Institute of Oceanography and Fisheries, Cairo, Egypt
| |
Collapse
|
6
|
Arora A, Lashani E, Turner RJ. Bacterial synthesis of metal nanoparticles as antimicrobials. Microb Biotechnol 2024; 17:e14549. [PMID: 39150434 PMCID: PMC11328525 DOI: 10.1111/1751-7915.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoscience, a pivotal field spanning multiple industries, including healthcare, focuses on nanomaterials characterized by their dimensions. These materials are synthesized through conventional chemical and physical methods, often involving costly and energy-intensive processes. Alternatively, biogenic synthesis using bacteria, fungi, or plant extracts offers a potentially sustainable and non-toxic approach for producing metal-based nanoparticles (NP). This eco-friendly synthesis approach not only reduces environmental impact but also enhances features of NP production due to the unique biochemistry of the biological systems. Recent advancements have shown that along with chemically synthesized NPs, biogenic NPs possess significant antimicrobial properties. The inherent biochemistry of bacteria enables the efficient conversion of metal salts into NPs through reduction processes, which are further stabilized by biomolecular capping layers that improve biocompatibility and functional properties. This mini review explores the use of bacteria to produce NPs with antimicrobial activities. Microbial technologies to produce NP antimicrobials have considerable potential to help address the antimicrobial resistance crisis, thus addressing critical health issues aligned with the United Nations Sustainability Goal #3 of good health and well-being.
Collapse
Affiliation(s)
- Anika Arora
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Elham Lashani
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
7
|
Lama S, Choi HS, Ramesh S, Lee YJ, Kim JH. Synthesis and characterization of nitrogen-doped-MWCNT@cobalt oxide for nerve agent simulant detection. Sci Rep 2024; 14:11605. [PMID: 38773127 PMCID: PMC11109131 DOI: 10.1038/s41598-024-56354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
Organophosphorus nerve agents are toxic compounds that disrupt neuromuscular transmission by inhibiting the neurotransmitter enzyme, acetylcholinesterase, leading to rapid death. A hybrid composite was synthesized using a hydrothermal process for the early detection of dimethyl methyl phosphonate (DMMP), a simulant of the G-series nerve agent, sarin. Quartz crystal microbalance (QCM) and surface acoustic wave (SAW) sensors were used as detectors. Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs), cobalt oxide (Co3O4), and N-MWCNT@Co3O4 were compared to detect DMMP concentrations of 25-150 ppm. At 25 ppm, the differential frequencies (Δf) of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors were 5.8, 2.3, and 99.5 Hz, respectively. The selectivity results revealed a preference for the DMMP rather than potential interference. The coefficients of determination (R2) of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors for detecting 25-150 ppm DMMP were 0.983, 0.986, and 0.999, respectively. The response times of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors for detecting 100 ppm DMMP were 25, 27, and 34 s, respectively, while the corresponding recovery times were 85, 105, and 181 s. The repeatability results revealed the reversible adsorption and desorption phenomena for the fixed DMMP concentration of 100 ppm. These unique findings show that synthesized materials can be used to detect organophosphorus nerve agents.
Collapse
Affiliation(s)
- Sanjeeb Lama
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea
| | - Hyeong-Seon Choi
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea
| | - Sivalingam Ramesh
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, South Korea
| | - Young Jun Lee
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea.
| | - Joo Hyung Kim
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
8
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
9
|
Song SN, Zhao XL, Yang XC, Ding Y, Ren FD, Pang XY, Li B, Hu JY, Chen YZ, Gao WW. Nanoarchitectonics of Bimetallic Cu-/Co-Doped Nitrogen-Carbon Nanozyme-Functionalized Hydrogel with NIR-Responsive Phototherapy for Synergistic Mitigation of Drug-Resistant Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16011-16028. [PMID: 38529951 DOI: 10.1021/acsami.4c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Superbug infections and transmission have become major challenges in the contemporary medical field. The development of novel antibacterial strategies to efficiently treat bacterial infections and conquer the problem of antimicrobial resistance (AMR) is extremely important. In this paper, a bimetallic CuCo-doped nitrogen-carbon nanozyme-functionalized hydrogel (CuCo/NC-HG) has been successfully constructed. It exhibits photoresponsive-enhanced enzymatic effects under near-infrared (NIR) irradiation (808 nm) with strong peroxidase (POD)-like and oxidase (OXD)-like activities. Upon NIR irradiation, CuCo/NC-HG possesses photodynamic activity for producing singlet oxygen(1O2), and it also has a high photothermal conversion effect, which not only facilitates the elimination of bacteria but also improves the efficiency of reactive oxygen species (ROS) production and accelerates the consumption of GSH. CuCo/NC-HG shows a lower hemolytic rate and better cytocompatibility than CuCo/NC and possesses a positive charge and macroporous skeleton for restricting negatively charged bacteria in the range of ROS destruction, strengthening the antibacterial efficiency. Comparatively, CuCo/NC and CuCo/NC-HG have stronger bactericidal ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AmprE. coli) through destroying the cell membranes with a negligible occurrence of AMR. More importantly, CuCo/NC-HG plus NIR irradiation can exhibit satisfactory bactericidal performance in the absence of H2O2, avoiding the toxicity from high-concentration H2O2. In vivo evaluation has been conducted using a mouse wound infection model and histological analyses, and the results show that CuCo/NC-HG upon NIR irradiation can efficiently suppress bacterial infections and promote wound healing, without causing inflammation and tissue adhesions.
Collapse
Affiliation(s)
- Sheng-Nan Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xin-Liu Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiao-Chan Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Ding
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng-Di Ren
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Xue-Yao Pang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ji-Yuan Hu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu-Zhen Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. BIOLOGY 2023; 12:1335. [PMID: 37887045 PMCID: PMC10604320 DOI: 10.3390/biology12101335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
11
|
Prakash A, Sur S, Dave V, Sharma P, Das S, Roy P, Hegde G. Green synthesized cobalt nanoparticles from Trianthema portulacastrum L. as a novel antimicrobials and antioxidants. Prep Biochem Biotechnol 2023; 54:328-342. [PMID: 37493403 DOI: 10.1080/10826068.2023.2238306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Trianthema portulacastrum is a dietary and medicinal plant that has gained substantial importance due to its pharmacological properties. This plant was used for its various healing properties since the ancient period in ayurvedic system of medicine. The green synthesis technique is an eco-friendly as well as cost effective technique which can produce more biocompatible nanoparticles when compared with those fabricated by physio-chemical methods. Therefore, nanoparticles produced by green synthesis are credible alternatives to those which are produced by conventional synthesis techniques. This research mainly aims to produce nanoparticles with the methanolic leaf extract of T. portulacastrum. The optimized nanoparticles were further analyzed for anti-fungal, anti-bacterial and antioxidant properties. Disk diffusion assay was used for the determination of the antimicrobial property and on the other hand, DPPH radical scavenging assay as well as hydrogen peroxide scavenging activity proved the antioxidant property of the formulation. The study revealed that Escherichia coli (gram negative strain) shows greater zone of inhibition when compared with Bacillus subtilis (gram positive bacteria). The nanoparticles have also been reported to show significant anti-fungal activity against the strains of Aspergillus niger and Fusarium oxysporum which proves its desirability for its further use against both bacterial as well as fungal infections. The novel formulation can be explored dually as antimicrobial and antioxidant agent.
Collapse
Affiliation(s)
- Anand Prakash
- Department of Bio-science and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Srija Sur
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, India
| | - Vivek Dave
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, India
| | - Prashansa Sharma
- Department of Home Science, Mahila Mahavidhyala, Banaras Hindu University, India
| | - Suvadra Das
- Department of Chemistry, University of Engineering and Management, Kolkata, India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University), Bengaluru, India
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, India
| |
Collapse
|
12
|
Crivello G, Orlandini G, Morena AG, Torchio A, Mattu C, Boffito M, Tzanov T, Ciardelli G. Lignin-Cobalt Nano-Enabled Poly(pseudo)rotaxane Supramolecular Hydrogel for Treating Chronic Wounds. Pharmaceutics 2023; 15:1717. [PMID: 37376166 DOI: 10.3390/pharmaceutics15061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.
Collapse
Affiliation(s)
- Giulia Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giuliana Orlandini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Angela Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
13
|
Gautam S, Das DK, Kaur J, Kumar A, Ubaidullah M, Hasan M, Yadav KK, Gupta RK. Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects. DISCOVER NANO 2023; 18:84. [PMID: 37382784 DOI: 10.1186/s11671-023-03861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Bacterial transmission is considered one of the potential risks for communicable diseases, requiring promising antibiotics. Traditional drugs possess a limited spectrum of effectiveness, and their frequent administration reduces effectiveness and develops resistivity. In such a situation, we are left with the option of developing novel antibiotics with higher efficiency. In this regard, nanoparticles (NPs) may play a pivotal role in managing such medical situations due to their distinct physiochemical characteristics and impressive biocompatibility. Metallic NPs are found to possess extraordinary antibacterial effects that are useful in vitro as well as in vivo as self-modified therapeutic agents. Due to their wide range of antibacterial efficacy, they have potential therapeutic applications via diverse antibacterial routes. NPs not only restrict the development of bacterial resistance, but they also broaden the scope of antibacterial action without binding the bacterial cell directly to a particular receptor with promising effectiveness against both Gram-positive and Gram-negative microbes. This review aimed at exploring the most relevant types of metal NPs employed as antimicrobial agents, particularly those based on Mn, Fe, Co, Cu, and Zn metals, and their antimicrobial mechanisms. Further, the challenges and future prospects of NPs in biological applications are also discussed.
Collapse
Affiliation(s)
- Sonali Gautam
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Dipak Kumar Das
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Jasvinder Kaur
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Uttar Pradesh, Mathura, 281406, India.
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Ram K Gupta
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS, 66762, USA
| |
Collapse
|
14
|
Junejo B, Solangi QA, Thani ASB, Palabiyik IM, Ghumro T, Bano N, Solangi AR, Taqvi SIH. Physical properties and pharmacological applications of Co 3O 4, CuO, NiO and ZnO nanoparticles. World J Microbiol Biotechnol 2023; 39:220. [PMID: 37269437 DOI: 10.1007/s11274-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Nano materials have found developing interest in biogenic approaches in the present times. In this study, metal oxide nanoparticles (NPs) such as cobalt oxide (Co3O4), copper oxide (CuO), nickel oxide (NiO) and zinc oxide (ZnO), were synthesized using a convenient and rapid method. The structural features of synthesized metal oxide NPs were studied using various microscopic and spectroscopic techniques like SEM, TEM, XRD, FTIR and EDX. The characterization results confirmed that the prepared NPs possess highly pure, unique and crystalline geometry with size ranging between 10 and 20 nm. The synthesized nanoparticles were successfully employed for pharmacological applications. Enzyme inhibition potential of NPs was evaluated against the urease and tyrosinase enzymes. The percent inhibition for the urease enzyme was observed as 80 to 90% by using Co3O4, CuO, NiO and ZnO NPs while ZnO NPs were found to have best anti-urease and anti-tyrosinase activities. Moreover, effective inhibition was observed in the case of ZnO NPs at IC50 values of 0.0833 and 0.1732 for urease and tyrosinase enzymes which were comparable to reference drugs thiourea and kojic acid. The lower the IC50 value, higher the free radical scavenging power. Antioxidant activity by DPPH free radical scavenging method was found moderately high for the synthesized metal oxide NPs while best results were obtained for Co3O4 and ZnO NPs as compared to the standard ascorbic acid. Antimicrobial potential was also evaluated via the disc diffusion and well diffusion methods. CuO NPs show a better zone of inhibition at 20 and 27 mm by using both methods. This study proves that the novel metal oxide NPs can compete with the standard materials used in the pharmacological studies nowadays.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Qamar A Solangi
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ali Salman B Thani
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Nadia Bano
- Institute of Microbiology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University Hyderabad, Hyderabad, Sindh, Pakistan
| |
Collapse
|