1
|
Zhang P, Yang H, Ahmad MT, Zheng Q, Nie G, Ahmad A, Raza M, Raza S. Integrating Modified Fe 3O 4 Nanoparticles and Nisin with T4 Bacteriophage for Enhanced Biofilm Eradication. Curr Microbiol 2025; 82:237. [PMID: 40198373 DOI: 10.1007/s00284-025-04212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Biofilm formation presents significant challenges in healthcare, food processing, and water treatment, contributing to antibiotic resistance and persistent infections. Effective strategies to combat biofilm-associated infections are urgently needed. This study introduces a novel approach to biofilm removal by bio-functionalizing T4 bacteriophage with modified Fe3O4 nanoparticles (NPs) and Nisin, an antibacterial peptide, to form the Fe3O4-Phage-T4 + Nisin complex. The aim is to enhance antimicrobial efficacy and biofilm eradication. The Fe3O4-Phage-T4 + Nisin complex was synthesized by conjugating T4 bacteriophage with modified Fe3O4 NPs and Nisin. The antimicrobial and antibiofilm activity of the complex was evaluated against multidrug-resistant Pseudomonas aeruginosa strains (PA01 and PA14) using biofilm inhibition and eradication assays. Stability and efficacy were further tested across a pH range of 5 to 8. The Fe₃O₄-Phage-T4 + Nisin complex exhibited superior biofilm removal compared to its individual components. The integration of Nisin broadened the antibacterial spectrum, targeting both Gram-positive and Gram-negative bacteria, while the modified Fe₃O₄ NPs enhanced phage penetration and bacterial cell disruption. The complex demonstrated significant biofilm inhibition and eradication, addressing the challenge of biofilm-related antibiotic tolerance, which often necessitates high antibiotic doses. Additionally, it maintained stability and efficacy across varying pH conditions.
Collapse
Affiliation(s)
- Pei Zhang
- Faculty of Intelligent Welding Technology, Guangxi Technological College of Machinery and Electricity, Nanning, 530000, People's Republic of China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Huanggen Yang
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, People's Republic of China
| | - Malik Taj Ahmad
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qi Zheng
- Faculty of Intelligent Welding Technology, Guangxi Technological College of Machinery and Electricity, Nanning, 530000, People's Republic of China.
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China.
| | - Guochao Nie
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Ayesha Ahmad
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Muslim Raza
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Saleem Raza
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
2
|
Gao S, Guan X, Cao X, Bai Z, Wang C, Zhan Y, Yu H. Optimization of Decision Support Technology for Offshore Oil Condition Monitoring with Carbon Neutrality as the Goal in the Enterprise Development Process. PLoS One 2025; 20:e0319858. [PMID: 40131882 PMCID: PMC11936257 DOI: 10.1371/journal.pone.0319858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
This study aims to explore the integration of the Faster R-CNN (Region-based Convolutional Neural Network) algorithm from deep learning into the MobileNet v2 architecture, within the context of enterprises aiming for carbon neutrality in their development process. The experiment develops a marine oil condition monitoring and classification model based on the fusion of MobileNet v2 and Faster R-CNN algorithms. This model utilizes the MobileNet v2 network to extract rich feature information from input images and combines the Faster R-CNN algorithm to rapidly and accurately generate candidate regions for oil condition monitoring, followed by detailed feature fusion and classification of these regions. The performance of the model is evaluated through experimental assessments. The results demonstrate that the average loss value of the proposed model is approximately 0.45. Moreover, the recognition accuracy of the model for oil condition on the training and testing sets reaches 90.51% and 93.08%, respectively, while the accuracy of other algorithms remains below 90%. Thus, the model constructed in this study exhibits excellent performance in terms of loss value and recognition accuracy, providing reliable technical support for offshore oil monitoring and contributing to the promotion of sustainable utilization and conservation of marine resources.
Collapse
Affiliation(s)
- Shiya Gao
- School of Management, Wuhan Polytechnic University, Wuhan, China
| | - Xin Guan
- Guangzhou Xinhua University, Dongguan, China
| | - Xiaojing Cao
- Master of Business Administration, London Metropolitan University, London, United Kingdom
| | - Zhili Bai
- School of Electrical Engineering and Telecommunications, the University of New South Wales, Sydney, Australia
| | - Caimeng Wang
- School of Management, Guangzhou University, Guangzhou, China
| | - Yun Zhan
- School of Public Administration, Guangzhou University, Guangzhou, China
| | - Haiyang Yu
- Guangzhou Yi-Wu Vocational Training School, Guangzhou, China
| |
Collapse
|
3
|
Wang Y, Zeng Y, Tang Z, Qiu J, Wang X, Xie G, Wang X. One-Pot Synthesis of Multicentric DIL@PDIL Catalyst for Mild CO 2 Conversion to Cyclic Carbonates. Chemistry 2025; 31:e202404156. [PMID: 39714873 DOI: 10.1002/chem.202404156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Among the various studies on CO2 utilization, the sustainable and cost-effective fixation of CO2 into cyclic carbonates remains one of the most intriguing subjects. To this end, a novel type of composite dicationic ionic liquid material, DIL@PDIL, was developed. This composite consists of a dicationic ionic liquid (DIL), DMAP[TMGH]Br, supported on a polymeric dicationic ionic liquid (PDIL), P-DVB/Im[TMGH]Br. The multicentric high-ion-density material was prepared with exceptional efficiency from five readily available starting materials in one pot through simultaneous quaternization, neutralization and polymerization. The structure was characterized using FT-IR, XPS, SEM, TGA, ICP-MS and BET, as well as through stepwise synthesis verification. Evaluation of the catalytic performance revealed the ionic liquid composite delivered chloropropylene carbonate (CPC) in excellent yield and selectivity from either pure CO2 or simulated flue gas at 60 °C and relatively lower pressure. Additionally, the DIL@PDIL catalyst exhibited good recyclability and were applicable to a range of epoxide substrates. The high activity of the the catalyst could be attributed to the abundant [TMGH]+ hydrogen bonding donors and Br- anions, which synergistically catalyze the epoxide ring-opening, as well as the abundant -COO- groups and imidazole cations, which facilitate the adsorption and activation of CO2.
Collapse
Affiliation(s)
- Yeying Wang
- School of Pharmacy, Guangdong Pharmaceutical University (China), Guangzhou, Guangdong Province, China, 510006
- School of Environment and Civil Engineering, Dongguan University of Technology (China), Dongguan, Guangdong Province, China, 523808
| | - Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology (China), Dongguan, Guangdong Province, China, 523808
| | - Zhenzhu Tang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology (China), Dongguan, Guangdong Province, China, 523808
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology (China), Dongguan, Guangdong Province, China, 523808
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology (China), Dongguan, Guangdong Province, China, 523808
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology (China), Dongguan, Guangdong Province, China, 523808
| | - Xiufang Wang
- School of Pharmacy, Guangdong Pharmaceutical University (China), Guangzhou, Guangdong Province, China, 510006
| |
Collapse
|
4
|
Huang T, Wu YL, Sun ZP, Chen YY, Lei S, Pan Y, Zhu LW, Liu D, Cao X, Yan Z. Iron Doping of 2D Nickel-Based Metal-Organic Frameworks Enhances the Lattice Heterogeneous Interface Coupling Effect for Improved Electrocatalytic Oxygen Evolution. Inorg Chem 2024; 63:23450-23458. [PMID: 39601184 DOI: 10.1021/acs.inorgchem.4c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The coupling of lattice and heterostructure interfaces represents an effective strategy for disrupting the so-called scalar relationship and accelerating reactions involving multiple intermediates. In view of this, a lattice-heterostructure interfacial catalyst consisting of a crystalline Fe/Ni bimetallic MOF and amorphous Fe-MOF was designed in this paper for high-performance alkaline oxygen evolution reaction electrocatalysis. The strongly coupled lattice-heterostructure interface induces a unique synergistic effect that promotes electron transfer of the catalyst. The resulting catalyst exhibits exceptionally high catalytic activity for the oxygen evolution reaction in alkaline media, the Ni9Fe1-BDC-1@Fe-MOF coated on a glassy carbon electrode has an overpotential of 257 mV at a current density of 10 mA cm-2. Furthermore, this catalyst demonstrates a high electrochemical stability. These research results highlight the superiority of lattice-heterostructure interfaces in the development of advanced catalysts.
Collapse
Affiliation(s)
- Ting Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Ya-Ling Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zhao-Peng Sun
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Ying-Ying Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Sen Lei
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yangdan Pan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lian-Wen Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Dan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zheng Yan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
5
|
Li H, Deng G. Analysis of influence mechanism of CO 2-water coupling fracturing sandstone. Heliyon 2024; 10:e35377. [PMID: 39170201 PMCID: PMC11336594 DOI: 10.1016/j.heliyon.2024.e35377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
The existence of hard rock layers has a serious impact on coal seam mining, in order to explore the acidification and crushing mechanism of hard sandstone rock layers, this paper adopts the self-developed CO2-water-rock coupling test device to carry out the testing of mechanical properties and internal structural characteristics of rock samples before and after the coupling action of the three sandstones, and analyzes the influencing factors of sandstone CO2 coupling crushing. The study shows that: the lower the temperature of CO2-water-rock coupling, the higher the pore pressure, the higher the volume fraction of CO2 in the coupling fracturing fluid, and the longer the coupling time, the greater the decrease in the mechanical strength of the rock samples, and the more complicated the splitting damage pattern is, and the CO2-water-rock coupling makes the pore and fracture volume fraction and fractal dimension of three kinds of sandstone samples increase to varying degrees, whereas the volume fraction of minerals and the fractal dimension decrease, and the CO2-water-rock coupling results in a decrease in the volume fraction of minerals and fractal dimension, and a decrease in the volume fraction of minerals and fractal dimension. The pore volume fraction and fractal dimension of the three sandstone samples increased to different degrees, while the mineral volume fraction and fractal dimension decreased, and the pore volume fraction and fractal dimension of the three sandstone samples decreased. The damage pattern of sandstone samples after coupling is affected by both chemical and mechanical damages. When using coupling fracturing fluid with 8 % CO2, the degree of mineral dissolution and dissolution is the largest, and the dissolution effect is larger than the precipitation effect, which has the most significant effect on the morphology type and connectivity of microscopic pore cracks, and the study in this paper has certain theoretical and practical value for the chemical softening of sandstone.
Collapse
Affiliation(s)
- Hongjian Li
- Key Laboratory of Western Mine Exploitation and Hazard Prevention Ministry of Education, Xi'an University of Science and Technology, Xi'an, 710054, Shanxi Province, China
- School of Energy Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shanxi Province, China
| | - Guangzhe Deng
- Key Laboratory of Western Mine Exploitation and Hazard Prevention Ministry of Education, Xi'an University of Science and Technology, Xi'an, 710054, Shanxi Province, China
- School of Energy Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shanxi Province, China
| |
Collapse
|
6
|
Tsai WT, Tsai CH. Analysis of changes in greenhouse gas emissions and technological approaches for achieving carbon neutrality by 2050 in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41552-41562. [PMID: 37966639 DOI: 10.1007/s11356-023-31014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Over the past two decades, the Taiwan government promulgated some regulatory measures and promotional actions on energy efficiency promotion and renewable energy development. In March 2022, the "Taiwan's Pathway to Net-Zero Emissions in 2050" was announced to respond to the Paris Agreement. In order to achieve the goal, the Climate Change Response Act (CCRA) was passed on February 15, 2023, requiring the de-carbonization measures and adaptation strategies. The main aim of this paper was to analyze the changes in GHG emissions and renewable energy supply by using the updated data from the official statistics in connection with the trends of environmental and energy sustainability since 2000. The findings showed that total installed capacity of renewable power (especially in solar power and wind power) showed an amazing increase over the past decade, leading to the inclined GHG emissions and thus supporting the environmental and energy sustainability toward a low-carbon society. Furthermore, this paper summarized the development history and main differences concerning the carbon neutrality policy and legislation in Japan and South Korea. For achieving the staged targets of GHG emissions by 2030 and 2050, this paper finally addressed the technological approaches for achieving carbon neutrality by 2050 in Taiwan, focusing on the transformation of energy and industry, and the policy implications by all levels of government.
Collapse
Affiliation(s)
- Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Chi-Hung Tsai
- Department of Resources Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
7
|
Udumulla D, Ginigaddara T, Jayasinghe T, Mendis P, Baduge S. Effect of Graphene Oxide Nanomaterials on the Durability of Concrete: A Review on Mechanisms, Provisions, Challenges, and Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2411. [PMID: 38793476 PMCID: PMC11123155 DOI: 10.3390/ma17102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
This review focuses on recent advances in concrete durability using graphene oxide (GO) as a nanomaterial additive, with a goal to fill the gap between concrete technology, chemical interactions, and concrete durability, whilst providing insights for the adaptation of GO as an additive in concrete construction. An overview of concrete durability applications, key durability failure mechanisms of concrete, transportation mechanisms, chemical reactions involved in compromising durability, and the chemical alterations within a concrete system are discussed to understand how they impact the overall durability of concrete. The existing literature on the durability and chemical resistance of GO-reinforced concrete and mortar was reviewed and summarized. The impacts of nano-additives on the durability of concrete and its mechanisms are thoroughly discussed, particularly focusing on GO as the primary nanomaterial and its impact on durability. Finally, research gaps, future recommendations, and challenges related to the durability of mass-scale GO applications are presented.
Collapse
Affiliation(s)
| | | | | | | | - Shanaka Baduge
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; (D.U.); (T.G.); (T.J.); (P.M.)
| |
Collapse
|
8
|
Ahn K, Park K, Sadeghi K, Seo J. New Surface Modification of Hydrophilic Polyvinyl Alcohol via Predrying and Electrospinning of Hydrophobic Polycaprolactone Nanofibers. Foods 2024; 13:1385. [PMID: 38731754 PMCID: PMC11083550 DOI: 10.3390/foods13091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the excellent oxygen barrier and biodegradability of polyvinyl alcohol (PVA), its poor physical properties owing to its inherent hydrophilicity limit its application. In this paper, we report a novel surface modification technique for PVA films, involving the control of the predrying conditions (i.e., amount of residual solvent) of the coated PVA film and adjusting the electrospinning process of hydrophobic polycaprolactone (PCL) nanofibers onto the PVA films. The residual solvent of the coated PVA film was varied by changing the predrying time. A shorter predrying time increased the residual solvent content significantly (p < 0.05) and the flexibility of the coated PVA film. Moreover, scanning electron microscopy depicted the improved physical binding of hydrophobic PCL nanofibers to the hydrophilic PVA surface with increased penetration depth to the PVA film with shorter drying times. The PVA/PCL composite films with different predrying times and electrospun PCL nanofibers exhibited an apparent increase in the contact angle from 8.3° to 95.1°. The tensile strength of the pure PVA film increased significantly (p < 0.05) from 7.5 MPa to 77.4 MPa and its oxygen permeability decreased from 5.5 to 1.9 cc/m2·day. Therefore, our newly developed technique is cost-effective for modifying the surface and physical properties of hydrophilic polymers, broadening their industrial applications.
Collapse
Affiliation(s)
- Kihyeon Ahn
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon-do, Republic of Korea; (K.A.); (K.P.)
| | - Kitae Park
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon-do, Republic of Korea; (K.A.); (K.P.)
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ 85287, USA;
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon-do, Republic of Korea; (K.A.); (K.P.)
| |
Collapse
|
9
|
Wu C, Lu R, Zhang P, Dai E. Multilevel ecological compensation policy design based on ecosystem service flow: A case study of carbon sequestration services in the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171093. [PMID: 38387589 DOI: 10.1016/j.scitotenv.2024.171093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Ecological compensation is an effective means to reconcile the imbalance of eco-social development between regions and promote enthusiasm for ecological environmental protection. There is some conformity between the theory of ecosystem service flow and ecological compensation, which provides new technical support for the formulation of ecological compensation policy. This study took the Qinghai-Tibet Plateau as the research area, adopted the breaking point model to obtain the spatial characteristics of carbon sequestration flow, and formulated a multilevel ecological compensation policy with Tibet as the design object. The results showed that most of the Qinghai-Tibet Plateau has a carbon sequestration surplus; the central and eastern Qinghai-Tibet Plateau, western Sichuan are successively carbon sequestration supply areas; the Chengdu Plain and Xinjiang were listed as carbon sequestration benefit areas; and the carbon sequestration tended to flow more closely between supply and benefit areas in proximity to each other. Nyingchi, Chamdo, Naqu and Shannan in Tibet need to receive a total ecological compensation of 393.21 million USD, of which 93.71 % is from the national level, 6.02 % is from carbon sequestration benefit areas in other provinces; furthermore, Lhasa and Shigatse in Tibet need to provide the remaining ecological compensation. This study offers innovations for the formulation of ecological compensation policies and provide a new theory for ecological environment management.
Collapse
Affiliation(s)
- Chunsheng Wu
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Lu
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erfu Dai
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Zhang P, Raza S, Cheng Y, Claudine U, Hayat A, Bashir T, Ali T, Ghasali E, Orooji Y. Fabrication of maleic anhydride-acrylamide copolymer based sodium alginate hydrogel for elimination of metals ions and dyes contaminants from polluted water. Int J Biol Macromol 2024; 261:129146. [PMID: 38176489 DOI: 10.1016/j.ijbiomac.2023.129146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The study explores the synergy of biobased polymers and hydrogels for water purification. Polymer nanomaterial's, synthesized by combining acrylamide copolymer with maleic anhydride, were integrated into sodium alginate biopolymer using an eco-friendly approach. Crosslinking agents, calcium chloride and glutaraladehyde, facilitated seamless integration, ensuring non-toxicity, high adsorption performance, and controlled capacity. This innovative combination presents a promising solution for clean and healthy water supplies, addressing the critical need for sustainable environmental practices in water purification. In addition, the polymer sodium alginate hydrogel (MAH@AA-P/SA/H) underwent characterization via the use of several analytical procedures, such as FTIR, XPS, SEM, EDX and XRD. Adsorption studies were conducted on metals and dyes in water, and pollutant removal methods were explored. We investigated several variables (such as pH, starting concentration, duration, and absorbent quantity) affect a material's capacity to be adsorbed. Moreover, the maximum adsorption towards Cu2+ is 754 mg/g while for Cr6+ metal ions are 738 mg/g, while the adsorption towards Congo Red and Methylene Blue dye are 685 mg/g and 653 mg/g correspondingly, within 240 min. Adsorption results were further analyzed using kinetic and isothermal models, which showed that MAH@AA-P/SA/H adsorption is governed by a chemisorption process. Hence, the polymer prepared from sodium alginate hydrogel (MAH@AA-P/SA/H) has remarkable properties as a versatile material for the significantly elimination of harmful contaminants from dirty water.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Saleem Raza
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| | - Ye Cheng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Umuhoza Claudine
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Asif Hayat
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Tariq Bashir
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Tariq Ali
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| |
Collapse
|
11
|
Villora-Picó JJ, González-Arias J, Pastor-Pérez L, Odriozola JA, Reina TR. A review on high-pressure heterogeneous catalytic processes for gas-phase CO 2 valorization. ENVIRONMENTAL RESEARCH 2024; 240:117520. [PMID: 37923108 DOI: 10.1016/j.envres.2023.117520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
This review discusses the importance of mitigating CO2 emissions by valorizing CO2 through high-pressure catalytic processes. It focuses on various key processes, including CO2 methanation, reverse water-gas shift, methane dry reforming, methanol, and dimethyl ether synthesis, emphasizing pros and cons of high-pressure operation. CO2 methanation, methanol synthesis, and dimethyl ether synthesis reactions are thermodynamically favored under high-pressure conditions. However, in the case of methane dry reforming and reverse water-gas shift, applying high pressure, results in decreased selectivity toward desired products and an increase in coke production, which can be detrimental to both the catalyst and the reaction system. Nevertheless, high-pressure utilization proves industrially advantageous for cost reduction when these processes are integrated with Fischer-Tropsch or methanol synthesis units. This review also compiles recent advances in heterogeneous catalysts design for high-pressure applications. By examining the impact of pressure on CO2 valorization and the state of the art, this work contributes to improving scientific understanding and optimizing these processes for sustainable CO2 management, as well as addressing challenges in high-pressure CO2 valorization that are crucial for industrial scaling-up. This includes the development of cost-effective and robust reactor materials and the development of low-cost catalysts that yield improved selectivity and long-term stability under realistic working environments.
Collapse
Affiliation(s)
- J J Villora-Picó
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain.
| | - J González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - L Pastor-Pérez
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - J A Odriozola
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - T R Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| |
Collapse
|
12
|
Xin L, Li S, Rene ER, Lun X, Zhang P, Ma W. Prediction of carbon emissions peak and carbon neutrality based on life cycle CO 2 emissions in megacity building sector: Dynamic scenario simulations of Beijing. ENVIRONMENTAL RESEARCH 2023; 238:117160. [PMID: 37717801 DOI: 10.1016/j.envres.2023.117160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
In order to design an optimal carbon peak and carbon neutralization pathway for the high-density building sector, a dynamic prediction model is established using system-dynamics coupled building life cycle carbon emission model (SD-BLCA) with consideration of future evolutionary trajectory and time constraints. The model is applied in Beijing using the SD-BLCA combined with scenario analysis and Monte Carlo methods to explore optimal trajectory for its building sector under 30-year timeframe. The results indicate that by increasing the proportion of renewable energy generation by 7% and retrofitting 60 million m2 of existing buildings, these two mature measures can offset the growth of carbon emissions and achieve the peak target by 2025. However, achieving carbon neutrality necessitates a shift from isolated technologies to a comprehensive net-zero emissions strategy. The study proposes a time roadmap that integrates a zero-carbon energy supply system and the carbon reduction measures of the whole life cycle. This strategy primarily relies on renewable sources to provide heat, power, and hydrogen, resulting in estimated reductions of 29.8 Mt, 28.1 Mt, and 0.7 Mt, respectively. Zero energy buildings, green buildings, and renovated buildings can reduce carbon emissions through their own energy-saving measures by 8.4, 18.2, and 11.8 kg/m2, respectively.
Collapse
Affiliation(s)
- Li Xin
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sinuo Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Eldon R Rene
- IHE-Delft, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, the Netherlands
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Šupić S, Malešev M, Pantić V, Lukić I, Radonjanin V, Ognjanović M, Broćeta G. Environmentally Friendly Masonry Mortar Blended with Fly Ash, Corn Cob Ash or Ceramic Waste Powder. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6725. [PMID: 37895706 PMCID: PMC10608085 DOI: 10.3390/ma16206725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Implementing a circular approach through waste valorization in mortar production with environmentally efficient mix design is a viable pathway for relieving the ecological burden of greenhouse gas emissions, resource depletion and waste management. The main objective of this paper is to evaluate the feasibility of using fly ash (FA), corn cob ash (CCA), and ceramic waste powder (CWP) as supplementary cementitious materials (SCM) in cement-lime masonry mortars. As part of an extensive experimental study, twelve mortar mixtures were made: three reference and nine blended, with mixing ratios of 1:1:5, 1:0.7:4.2, and 1:1:4 ((cement + SCM)/lime/sand), by volume. The examined properties include workability, compressive and flexural strengths, dry bulk density, capillary water absorption, adhesive bond strength, and water vapor permeability. The compressive and flexural strengths of tested mortars were notably impaired, with reductions of up to 60%, while the capillary water absorption coefficient rose by 100% compared to the reference values. The adhesive bond strength of some blended mortars exceeded the strength of the reference mortars. Nevertheless, all blended mortars fulfilled the requirements for general-purpose mortars, while the majority met the criteria for structural masonry applications. In addition, a performance-based index and weighting triangle were used for the comparison and ranking of all analyzed mortar mixtures. The findings of this study may herald a novel use of FA, CCA, and CWP as more eco-friendly binding materials in contemporary construction leading to the reduction in the process's carbon footprint, the improvement in cost efficiency, and the mitigation of the detrimental environmental impact of waste disposal.
Collapse
Affiliation(s)
- Slobodan Šupić
- Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Š.); (M.M.); (V.P.); (V.R.)
| | - Mirjana Malešev
- Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Š.); (M.M.); (V.P.); (V.R.)
| | - Vladan Pantić
- Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Š.); (M.M.); (V.P.); (V.R.)
| | - Ivan Lukić
- Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Š.); (M.M.); (V.P.); (V.R.)
| | - Vlastimir Radonjanin
- Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Š.); (M.M.); (V.P.); (V.R.)
| | - Miloš Ognjanović
- Vinča, Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gordana Broćeta
- Faculty of Architecture, Civil Engineering and Geodesy, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| |
Collapse
|
14
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
15
|
Cheng Y, Li Z, Liu Y, Shi Y, Zhu M. Advances in the synthesis and modification of two-dimensional antimonene. Phys Chem Chem Phys 2023; 25:21773-21786. [PMID: 37577758 DOI: 10.1039/d3cp00892d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Antimonene with a honeycomb layered structure has great application prospects in a wide spectrum of domains due to its high carrier mobility, high thermal conductivity, and layer-dependent electrical properties. Since the first successful synthesis of antimonene by epitaxy in 2015, various fabrication methods have been proposed successively. Herein, several representative synthetic methods are described in detail, including mechanical exfoliation, epitaxial growth, liquid-phase exfoliation, electrochemical exfoliation, etc. In addition, band engineering via modification strategies of antimonene, particularly intercalation and doping, is discussed based on available theoretical studies. By comparing the achieved structure characteristics and performances of these different synthesis and modification strategies, we present promising future developments and critical challenges for antimonene.
Collapse
Affiliation(s)
- Yanjie Cheng
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
- Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Zhe Li
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
- Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Ye Liu
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
- Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yunhui Shi
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
- Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin, 300130, People's Republic of China
- Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Tianjin, 300130, China
- Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China
| | - Mengya Zhu
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
- Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|