1
|
de Camargo MR, Frazon TF, Inacio KK, Smiderle FR, Amôr NG, Dionísio TJ, Santos CF, Rodini CO, Lara VS. Ganoderma lucidum polysaccharides inhibit in vitro tumorigenesis, cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114891. [PMID: 34910952 DOI: 10.1016/j.jep.2021.114891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polysaccharides of the millenary mushroom Ganoderma lucidum (GL) have been shown for decades to present anti-tumor activities, but few studies evaluated its importance on cancer stem cells and EMT process. Cancer stem cells (CSC) drive the development of carcinoma and are also involved in cancer treatment failure, being a good target for treatment success. Also, the process of epithelial-mesenchymal transition (EMT) is involved in metastasis and cancer relapse. Besides that, the increasing incidence worldwide of oral squamous cell carcinoma (OSCC) became a public health issue with a high rate of metastasis and poor quality of life for patients during and after treatment. AIM OF THE STUDY to evaluate G. lucidum polysaccharides (GLPS) in vitro effects on OSCC, focusing on hallmarks associated with tumorigenesis using the SCC-9, a squamous cells carcinoma lineage from the tongue. MATERIALS AND METHODS SCC-9 cells were treated in vitro for 72h with different GLPS concentrations. The controls cells were maintained with culture media only and cisplatin was used as treatment control. After the treatment period, the cells were evaluated. RESULTS GLPS treatment changed cell morphology and granularity, delayed migration, decreased colony, and impaired sphere formation, thereby leading to a non-invasive and less proliferative behavior of tumoral cells. Additionally, GLPS downregulated CSC, EMT, and drug sensitivity (ABC) markers. CONCLUSIONS These results show that the natural product GLPS has the potential to be an important ally for tongue squamous cell carcinoma treatment, bringing the millenary compound to modern therapy, providing a basis for future studies and the improvement of life quality for OSCC patients.
Collapse
Affiliation(s)
- Marcela Rodrigues de Camargo
- Department of Surgery, Stomatology, Pathology and Radiology. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Talita Fonseca Frazon
- Department of Surgery, Stomatology, Pathology and Radiology. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Kelly Karina Inacio
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
2
|
Li C, Cui Y, Lu J, Meng L, Ma C, Liu Z, Zhang Y, Kang W. Spectrum-effect relationship of immunologic activity of Ganoderma lucidum by UPLC-MS/MS and component knock-out method. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Ganoderma lucidum polysaccharide (GLP) enhances antitumor immune response by regulating differentiation and inhibition of MDSCs via a CARD9-NF-κB-IDO pathway. Biosci Rep 2021; 40:225254. [PMID: 32530032 PMCID: PMC7313449 DOI: 10.1042/bsr20201170] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
A homogeneous polysaccharide (GLP), with an average molecular weight of 4.44 × 104 Da, was isolated and purified from the fruiting bodies of Ganoderma lucidum. In this work, we examined the antitumor activities of GLP using a mouse Lewis lung cancer (LLC) model and explored possible molecular pathways involved in its immunomodulatory mechanism on tumor-host interaction. GLP administration (25 and 100 mg/kg) significantly inhibited tumor growth, as evidenced by the decreased tumor volume and tumor weight, as well as histological features of tumor tissues with concomitant down-regulation of proliferating cell nuclear antigen (PCNA) proliferative marker. Less myeloid-derived suppressor cells (MDSCs) were accumulated in both spleen and tumor tissues from GLP-treated mice. In contrast, the percentage of CD4+ and CD8+ T cells together with the production of Th1-type cytokines (IFN-γ and IL-12) was increased in the spleen of LLC-bearing mice following GLP administration. Furthermore, GLP administration reversed the attenuated expression of CARD9, p-Syk and p-p65, and increased indoleamine 2,3-dioxygenase (IDO) protein expression in MDSCs of LLC-bearing mice. Collectively, our data demonstrated the first time that GLP induced the differentiation of MDSCs and inhibited the accumulation of MDSCs via CARD9-NF-κB-IDO pathway, thus prevented lung cancer development.
Collapse
|
4
|
AYTAR EC, ÖZMEN A. Cytotoxic and Apoptotic Activities of Rhizopogon roseolus (Corda) Th.Fr. Extracts. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020; 7:54-62. [DOI: 10.21448/ijsm.675618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many species of mushrooms have been used since ancient times, especially in Asian countries, as a food supplement and in the medical field due to their different biological activities. Nowadays, especially in Japan, Korea and China, various mushroom extracts have been used as potential additives in chemotherapy and radiation treatments. In this study, anticancer activity and apoptotic effect of Rhizopogon roseolus were investigated. The methanol and water extracts of mushroom were tested against HL- 60 human cancer cell line. Antiproliferative effects of the extracts were evaluated by using MTT method and apoptosis and necrosis ratios of the cells treated with extracts were determined by using Hoechst/Propidium iodide (HO/PI) staining method. According to obtained data, antiprolifarative effect of the methanol extract was higher than water extract and this effect was a concentration depending manner. Both of the extracts were shown higher apoptotic effect than necrotic effect on the HL-60 cell line.
Collapse
|
5
|
Zhou H, Peng X, Hou T, Zhao N, Qiu M, Zhang X, Liang X. Identification of novel phytocannabinoids from Ganoderma by label-free dynamic mass redistribution assay. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112218. [PMID: 31494202 DOI: 10.1016/j.jep.2019.112218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Located throughout the body, cannabinoid receptors (CB1 and CB2) are therapeutic targets for obesity/metabolic diseases, neurological/mental disorders, and immune modulation. Phytocannabinoids are greatly important for the development of new medicines with high efficacy and/or minor side effects. Plants and fungi are used in traditional medicine for beneficial effects to mental and immune system. The current research studied five fungi from the genus Ganoderma and five plants: Ganoderma hainanense J.D. Zhao, L.W. Hsu & X.Q. Zhang; Ganoderma capense (Lloyd) Teng, Zhong Guo De Zhen Jun; Ganoderma cochlear (Blume & T. Nees) Bres., Hedwigia; Ganoderma resinaceum Boud.; Ganoderma applanatum (Pers.) Pat.; Carthamus tinctorius L. (Compositae); Cynanchum otophyllum C. K. Schneid. (Asclepiadaceae); Coffea arabica L. (Rubiaceae); Prinsepia utilis Royle (Rosaceae); Lepidium meyenii Walp. (Brassicaceae). They show immunoregulation, promotion of longevity and maintenance of vitality, stimulant effects on the central nervous system, hormone balance and other beneficial effects. However, it remains unclear whether cannabinoid receptors are involved in these effects. AIM OF THE STUDY This work aimed to identify components working on CB1 and CB2 from the above plants and fungi, as novel phytocannabinoids, and to investigate mechanisms of how these compounds affected the cells. By analyzing the structure-activity relationship, we could identify the core structure for future development. MATERIALS AND METHODS Eighty-two natural compounds were screened on stably transfected Chinese hamster ovary (CHO) cell lines, CHO-CB1 and CHO-CB2, with application of a label-free dynamic mass redistribution (DMR) technology that measured cellular responses to compounds. CP55,940 and WIN55,212-2 were agonist probe molecules, and SR141716A and SR144528 were antagonist probes. Pertussis toxin, cholera toxin, LY294002 and U73122 were signaling pathway inhibitors. The DMR data were acquired by Epic Imager software (Corning, NY), processed by Imager Beta 3.7 (Corning), and analyzed by GraphPad Prism 6 (GraphPad Software, San Diego, CA). RESULTS Transfected CHO-CB1 and CHO-CB2 cell lines were established and characterized. Seven compounds induced responses/activities in the cells. Among the seven compounds, four were purified from two Ganoderma species with potencies between 20 and 35 μM. Three antagonists: Kfb68 antagonized both receptors with a better desensitizing effect on CB2 to WIN55,212-2 over CP55,940. Kga1 and Kfb28 were antagonists selective to CB1 and CB2, respectively. Kfb77 was a special agonist and it stimulated CB1 in a mechanism different from that of CP55,940. Another three active compounds, derived from the Lepidium meyenii Walp. (Brassicaceae), were also identified but their effects were mediated through mechanisms much related to the signaling transduction pathways, especially through the stimulatory Gs protein. CONCLUSIONS We identified four natural cannabinoids that exhibited structural and functional diversities. Our work confirms the presence of active ingredients in the Ganoderma species to CB1 and CB2, and this finding establishes connections between the fungi and the cannabinoid receptors, which will serve as a starting point to connect their beneficial effects to the endocannabinoid system. This research will also enrich the inventory of cannabinoids and phytocannabinoids from fungi. Yet due to some limitations, further structure-activity relationship studies and mechanism investigation are warranted in future.
Collapse
Affiliation(s)
- Han Zhou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Tao Hou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Nan Zhao
- Pharmacology Department, University College London, London, WC1E 6BT, UK.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
6
|
Martínez-Montemayor MM, Ling T, Suárez-Arroyo IJ, Ortiz-Soto G, Santiago-Negrón CL, Lacourt-Ventura MY, Valentín-Acevedo A, Lang WH, Rivas F. Identification of Biologically Active Ganoderma lucidum Compounds and Synthesis of Improved Derivatives That Confer Anti-cancer Activities in vitro. Front Pharmacol 2019; 10:115. [PMID: 30837881 PMCID: PMC6389703 DOI: 10.3389/fphar.2019.00115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
We previously reported that Ganoderma lucidum extract (GLE) demonstrate significant anti-cancer activity against triple negative inflammatory breast cancer models. Herein, we aimed to elucidate the bioactive compounds of GLE responsible for this anti-cancer activity. We performed NMR, X-ray crystallography and analog derivatization as well as anti-cancer activity studies to elucidate and test the compounds. We report the structures of the seven most abundant GLE compounds and their selective efficacy against triple negative (TNBC) and inflammatory breast cancers (IBC) and other human cancer cell types (solid and blood malignancies) to illustrate their potential as anti-cancer agents. Three of the seven compounds (ergosterol, 5,6-dehydroergosterol and ergosterol peroxide) exhibited significant in vitro anti-cancer activities, while we report for the first time the structure elucidation of 5,6-dehydroergosterol from Ganoderma lucidum. We also show for the first time in TNBC/IBC cells that ergosterol peroxide (EP) displays anti-proliferative effects through G1 phase cell cycle arrest, apoptosis induction via caspase 3/7 activation, and PARP cleavage. EP decreased migratory and invasive effects of cancer cells while inhibiting the expression of total AKT1, AKT2, BCL-XL, Cyclin D1 and c-Myc in the tested IBC cells. Our investigation also indicates that these compounds induce reactive oxygen species, compromising cell fate. Furthermore, we generated a superior derivative, ergosterol peroxide sulfonamide, with improved potency in IBC cells and ample therapeutic index (TI > 10) compared to normal cells. The combined studies indicate that EP from Ganoderma lucidum extract is a promising molecular scaffold for further exploration as an anti-cancer agent.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ivette J. Suárez-Arroyo
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Gabriela Ortiz-Soto
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | - Mercedes Y. Lacourt-Ventura
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Anibal Valentín-Acevedo
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Walter H. Lang
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Fatima Rivas
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
7
|
Zhao C, Zhang C, Xing Z, Ahmad Z, Li JS, Chang MW. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int J Biol Macromol 2019; 121:1160-1178. [DOI: 10.1016/j.ijbiomac.2018.10.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
|
8
|
Researches and Application of Ganoderma Spores Powder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:157-186. [PMID: 31677143 DOI: 10.1007/978-981-13-9867-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ganoderma lucidum spores (GLS) are the mature germ cells of Ganoderma lucidum. They have all the genetic substances and similar active components of Ganoderma lucidum. Similar to the fruiting body of Ganoderma lucidum, ganoderma spores powder has the effect of regulating immunity, antitumor, antioxidation, and protecting cells and so on. In recent decades, with the development of the technology of breaking the wall of Ganoderma lucidum spores and the technology of extracting and preparing, the researches and application of Ganoderma lucidum spores powder have made great progress.
Collapse
|
9
|
Xia YG, Sun HM, Wang TL, Liang J, Yang BY, Kuang HX. A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates. Molecules 2018; 23:E1284. [PMID: 29861482 PMCID: PMC6099794 DOI: 10.3390/molecules23061284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
A modified GC-MS analytical procedure based on trimethylsilyl-dithioacetal (TMSD) derivatization has been established for a simultaneous determination of thirteen carbohydrates. Different from previous approaches, the current GC-MS method was featured by a powerful practicability for simultaneous detection of aldoses, uronic acids, ketoses, and amino sugars; simplifying GC-MS chromatograms and producing a single peak for each derivatized sugar, as well as high resolution, sensitivity, and repeatability. An additional liquid-liquid extraction from derivatization mixtures was performed not only to increase the detection sensitivity of amino sugars but also to decrease the by-products of derivatization. Contrarily, three amino sugars were detected at a very low intensity or not detected at all. The effect of time on monosaccharide- mercaptalated reaction was systematically investigated. The effect of trimethylsilylation on the formation of TMSD was also optimized. The established GC-MS based on TMSD derivatization was suitable for complex carbohydrate analysis and has been successfully applied for the detection of free carbohydrates in water extracts of Anemarrhena asphodeloides roots and determination of monosaccharides in Glossy ganoderma polysaccharides.
Collapse
Affiliation(s)
- Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Hui-Min Sun
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Tian-Long Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Li X, Wu Q, Bu M, Hu L, Du WW, Jiao C, Pan H, Sdiri M, Wu N, Xie Y, Yang BB. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget 2017; 7:33948-59. [PMID: 27058618 PMCID: PMC5085130 DOI: 10.18632/oncotarget.8608] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Sterols are the important active ingredients of fungal secondary metabolites to induce death of tumor cells. In our previous study, we found that ergosterol peroxide (5α, 8α-epidioxiergosta-6, 22-dien-3β-ol), purified from Ganoderma lucidum, induced human cancer cell death. Since the amount of purified ergosterol peroxide is not sufficient to perform in vivo experiments or apply clinically, we developed an approach to synthesize ergosterol peroxide chemically. After confirming the production of ergosterol peroxide, we examined the biological functions of the synthetic ergosterol peroxide. The results showed that ergosterol peroxide induced cell death and inhibited cell migration, cell cycle progression, and colony growth of human hepatocellular carcinoma cells. We further examined the mechanism associated with this effect and found that treatment with ergosterol peroxide increased the expression of Foxo3 mRNA and protein in HepG2 cells. The upstream signal proteins pAKT and c-Myc, which can inhibit Foxo3 functions, were clearly decreased in HepG2 cells treated with ergosterol peroxide. The levels of Puma and Bax, pro-apoptotic proteins, were effectively enhanced. Our results suggest that ergosterol peroxide stimulated Foxo3 activity by inhibiting pAKT and c-Myc and activating pro-apoptotic protein Puma and Bax to induce cancer cell death.
Collapse
Affiliation(s)
- Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China
| | - Ming Bu
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan, Chaoyang, Beijing, China
| | - Liming Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan, Chaoyang, Beijing, China
| | - William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chunwei Jiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, China
| | - Honghui Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China
| | - Mouna Sdiri
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, China
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym 2017; 183:91-101. [PMID: 29352896 DOI: 10.1016/j.carbpol.2017.12.009] [Citation(s) in RCA: 878] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. As biological macromolecules, polysaccharide together with protein and polynucleotide, are extremely important biomacromoleules which play important roles in the growth and development of living organism. Polysaccharide is important component of higher plants, membrane of the animal cell and the cell wall of microbes. It is also closely related to the physiological functions. Recently, increasing attention has been paid on polysaccharides as an important class of bioactive natural products. Numerous researches have demonstrated the bioactivities of natural polysaccharides, which lead to the application of polysaccharides in the treatment of disease. In this paper, the various aspects of the investigation results of the bioactivities of polysaccharides were summarized, including its diversity pharmacological applications, such as immunoregulatory, anti-tumor, anti-virus, antioxidation, and hypoglycemic activity, and their application of polysaccharides in the treatment of disease are also discussed. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of polysaccharides.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qianqian Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
12
|
Pan H, Han Y, Huang J, Yu X, Jiao C, Yang X, Dhaliwal P, Xie Y, Yang BB. Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth. Oncotarget 2016. [PMID: 26219260 PMCID: PMC4627345 DOI: 10.18632/oncotarget.4397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Medicinal mushrooms in recent years have been the subject of many experiments searching for anticancer properties. We previously screened thirteen mushrooms for their potential in inhibiting tumor growth, and found that the water extract of Amauroderma rude exerted the highest activity. Previous studies have shown that the polysaccharides contained in the water extract were responsible for the anticancer properties. This study was designed to explore the potential effects of the polysaccharides on immune regulation and tumor growth. Using the crude Amauroderma rude extract, in vitro experiments showed that the capacities of spleen lymphocytes, macrophages, and natural killer cells were all increased. In vivo experiments showed that the extract increased macrophage metabolism, lymphocyte proliferation, and antibody production. In addition, the partially purified product stimulated the secretion of cytokines in vitro, and in vivo. Overall, the extract decreased tumor growth rates. Lastly, the active compound was purified and identified as polysaccharide F212. Most importantly, the purified polysaccharide had the highest activity in increasing lymphocyte proliferation. In summary, this molecule may serve as a lead compound for drug development.
Collapse
Affiliation(s)
- Honghui Pan
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Yuanyuan Han
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Jiguo Huang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Xiongtao Yu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Chunwei Jiao
- Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Xiaobing Yang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Preet Dhaliwal
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yizhen Xie
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 2016; 6:17832-46. [PMID: 26098777 PMCID: PMC4627349 DOI: 10.18632/oncotarget.4026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
We have previously screened thirteen medicinal mushrooms for their potential anti-cancer activities in eleven different cell lines and found that the extract of Amauroderma rude exerted the highest capacity in inducing cancer cell death. The current study aimed to purify molecules mediating the anti-cancer cell activity. The extract of Amauroderma rude was subject to fractionation, silica gel chromatography, and HPLC. We purified a compound and identified it as ergosterol by EI-MS and NMR, which was expressed at the highest level in Amauroderma rude compared with other medicinal mushrooms tested. We found that ergosterol induced cancer cell death, which was time and concentration dependent. In the in vivo experiment, normal mice were injected with murine cancer cell line B16 that is very aggressive and caused mouse death severely. We found that treatment with ergosterol prolonged mouse survival. We found that ergosterol-mediated suppression of breast cancer cell viability occurred through apoptosis and that ergosterol up-regulated expression of the tumor suppressor Foxo3. In addition, the Foxo3 down-stream signaling molecules Fas, FasL, BimL, and BimS were up-regulated leading to apoptosis in human breast cancer cells MDA-MB-231. Our results suggest that ergosterol is the main anti-cancer ingredient in Amauroderma rude, which activated the apoptotic signal pathway. Ergosterol may serve as a potential lead for cancer therapy.
Collapse
|
14
|
Wang F, Zhou Z, Ren X, Wang Y, Yang R, Luo J, Strappe P. Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats. Lipids Health Dis 2015; 14:49. [PMID: 25994182 PMCID: PMC4443549 DOI: 10.1186/s12944-015-0045-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The fruiting body of Ganoderma lucidum has been used as a traditional herbal medicine for many years. However, to the date, there is no detailed study for describing the effect of G. lucidum spores on oxidative stress, blood glucose level and lipid compositions in animal models of type 2 diabetic rats, in particular the effect on the gene expression profiles associated with glucose and lipid metabolisms. METHODS G. lucidum spores powder (GLSP) with a shell-broken rate >99.9 % was used. Adult male Sprague-Dawley rats were randomly divided into three groups (n = 8/group). Group 1: Normal control, normal rats with ordinary feed; Group 2: Model control, diabetic rats with ordinary feed without intervention; Group 3: GLSP, diabetic rats with ordinary feed, an intervention group utilizing GLSP of 1 g per day by oral gavages for 4 consecutive weeks. Type 2 diabetic rats were obtained by streptozocin (STZ) injection. The changes in the levels of glucose, triglycerides, total cholesterol and HDL-cholesterol in blood samples were analyzed after GLSP intervention. Meanwhile, gene expressions associated with the possible molecular mechanism of GLSP regulation were also investigated using a quantitative RT-PCR. RESULTS The reduction of blood glucose level occurred within the first 2 weeks of GLSP intervention and the lipid synthesis in the diabetic rats of GLSP group was significantly decreased at 4 weeks compared to the model control group. Furthermore, it was also found that GLSP intervention greatly attenuated the level of oxidative stress in the diabetic rats. Quantitative RT-PCR analysis showed up-regulation of lipid metabolism related genes (Acox1, ACC, Insig-1 and Insig-2) and glycogen synthesis related genes (GS2 and GYG1) in GLSP group compared to model control group. Additionally, there were no significant changes in the expression of other genes, such as SREBP-1, Acly, Fas, Fads1, Gpam, Dgat1, PEPCK and G6PC1. CONCLUSION This study might indicate that GLSP consumption could provide a beneficial effect in terms of lowering the blood glucose levels by promoting glycogen synthesis and inhibiting gluconeogenesis. Meanwhile, GLSP treatment was also associated with the improvement of blood lipid compositions through the regulation of cholesterol homeostasis in the type 2 diabetic rats.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Cholesterol/blood
- Cholesterol, HDL/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Gene Expression/drug effects
- Glucose/metabolism
- Insulin/blood
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Male
- Medicine, Chinese Traditional/methods
- Oxidative Stress/drug effects
- Rats
- Rats, Sprague-Dawley
- Reishi/metabolism
- Spores, Fungal/metabolism
- Triglycerides/blood
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xiaochong Ren
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yuyang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Rui Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jinhua Luo
- Chongqing Biotechnology Research Institute, Chongqing, 401121, China.
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
15
|
Zhao D, Chang MW, Li JS, Suen W, Huang J. Investigation of Ice-Assisted Sonication on the Microstructure and Chemical Quality ofGanoderma lucidumSpores. J Food Sci 2014; 79:E2253-65. [DOI: 10.1111/1750-3841.12681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/20/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Ding Zhao
- of Mechanical Engineering; Univ. College London; London WC1E 7JE UK
- College of Biomedical Engineering & Instrument Science; Zhejiang Univ; Hang Zhou 310027 P.R. China
| | - Ming-Wei Chang
- College of Biomedical Engineering & Instrument Science; Zhejiang Univ; Hang Zhou 310027 P.R. China
| | - Jing-Song Li
- College of Biomedical Engineering & Instrument Science; Zhejiang Univ; Hang Zhou 310027 P.R. China
| | - William Suen
- of Mechanical Engineering; Univ. College London; London WC1E 7JE UK
| | - Jie Huang
- of Mechanical Engineering; Univ. College London; London WC1E 7JE UK
| |
Collapse
|
16
|
Shi M, Yang Y, Hu X, Zhang Z. Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue. Food Chem 2014; 155:50-6. [PMID: 24594153 DOI: 10.1016/j.foodchem.2014.01.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 12/18/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022]
Abstract
A crude Ganoderma lucidum polysaccharide (GLPL) was extracted from fermented soybean curd residue by ultrasonic assisted extraction. The optimal extraction conditions were 30 min at 80 °C with 80 W and water to solid ratio of 10, and with this method 115.47 ± 2.95 mg/g of GLPL yield was obtained. Additionally, the antioxidant and immunomodulatory activities of GLPL were investigated. The results showed that GLPL exhibited strong antioxidant effects, which included scavenging activities against DPPH radicals, hydrogen oxide and ABTS radicals with IC50 values of 0.23, 0.48 and 0.69 mg/mL, respectively. For immunomodulatory activities, GLPL was shown to strongly stimulate the proliferation of macrophages (158.02 ± 13.12%), the production of nitric oxide and phagocytosis (21.16 ± 1.65 μM), and, at 40.00 μg/mL, protected macrophage from Doxorubicin (DOX) (0.16 ± 0.003).
Collapse
Affiliation(s)
- Min Shi
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Xuansheng Hu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
17
|
Two-stage extraction of antitumor, antioxidant and antiacetylcholinesterase compounds from Ganoderma lucidum fruiting body. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Hahne JC, Meyer SR, Dietl J, Honig A. The effect of Cordyceps extract and a mixture of Ganoderma lucidum/Agaricus Blazi Murill extract on human endometrial cancer cell lines in vitro. Int J Oncol 2014; 45:373-82. [PMID: 24805296 DOI: 10.3892/ijo.2014.2414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
Endometrial carcinoma is the most common gynaecological malignancy. Nevertheless there is a lack of curative therapies, especially for patients diagnosed with late stage, recurrent or aggressive disease, who have a poor prognosis. Cordyceps Sinensis, Ganoderma lucidum and Agaricus Blazi Murill are three fungi widely used in traditional Chinese medicine, and effects as adjuvants in tumour therapy have been demonstrated. However, the function and effects of these fungi in regard to endometrial cancer are not known. Three endometrial cancer cell lines, Ishikawa, Hec-1A and AN3-CA (derived from endometrial cancers grade I, II and III, respectively), were used to determine the effect of the fungi extracts on endometrial cancer cell function and to analyze the molecular mechanism. All fungi extracts had an inhibitory effect on cell viability and proliferation most probably exerted through induction of autophagy. Our data suggest that these fungi extracts may be used as adjuvants in endometrial tumour therapy.
Collapse
Affiliation(s)
- Jens C Hahne
- Department of Gynecology, Medical University of Würzburg, D-97080 Würzburg, Germany
| | - Susanne R Meyer
- Department of Gynecology, Medical University of Würzburg, D-97080 Würzburg, Germany
| | - Johannes Dietl
- Department of Gynecology, Medical University of Würzburg, D-97080 Würzburg, Germany
| | - Arnd Honig
- Department of Gynecology, Medical University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
19
|
Yan B, Meng X, Shi J, Qin Z, Wei P, Lao L. Ganoderma lucidum spore induced CA72-4 elevation in gastrointestinal cancer: a five-case report. Integr Cancer Ther 2014; 13:161-166. [PMID: 24282100 DOI: 10.1177/1534735413510022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
spore (GLS), an over-the-counter herbal supplement, is widely used by cancer patients in China. Although preclinical studies have shown it to be safe, complete safety data on GLS is still lacking. In this article, we report 5 cases of gastrointestinal cancer that were treated with GLS plus multiple strategies between 2010 and 2011. These patients presented with increased levels of the serum tumor marker CA72-4, one of the most valuable markers for monitoring therapeutic response in patients receiving gastrointestinal cancer treatment, after oral ingestion of GLS twice a day for 1 or 2 months. Interestingly, CA72-4 rapidly returned to normal levels when the patients discontinued the supplement and no change in clinical symptoms accompanied the CA72-4 surge. Taking into consideration that the underlying mechanism of this reaction is obscure, we suggest that additional studies are urgently needed and GLS be used with caution in cancer patients.
Collapse
Affiliation(s)
- Bing Yan
- Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Khan MS, Zhang X, You L, Fu X, Abbasi AM. Structure and Bioactivities of Fungal Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_28-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Jiao C, Xie YZ, Yang X, Li H, Li XM, Pan HH, Cai MH, Zhong HM, Yang BB. Anticancer activity of Amauroderma rude. PLoS One 2013; 8:e66504. [PMID: 23840494 PMCID: PMC3688780 DOI: 10.1371/journal.pone.0066504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Institute of Microbiology, Guangzhou, China
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Yi-Zhen Xie
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiangling Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Haoran Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Xiang-Min Li
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Hong-Hui Pan
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Mian-Hua Cai
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Hua-Mei Zhong
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Burton B. Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
22
|
Gao P, Hirano T, Chen Z, Yasuhara T, Nakata Y, Sugimoto A. Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom). Fitoterapia 2011; 83:490-9. [PMID: 22230194 DOI: 10.1016/j.fitote.2011.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
We previously showed that ethanolic extracts of spores of Ganoderma lucidum inhibit tumor cell proliferation and induce apoptosis of HL-60 cells. The active constituents appeared to be long-chain fatty acids, particularly carbon-19 (C-19) fatty acids which have not been reported in spores of Ganoderma lucidum. In the present study, two of these C-19 fatty acids which are key compounds in the activities, were identified as their 2-naphthyl ester derivatives after esterification of a mixture of fatty acids obtained from the spores. The active compounds were determines as nonadecanoic acid and cis-9-nonadecenoic acid. The location of the double bond of cis-9-nonadecenoic acid was demonstrated by GC-MS analysis, based on the fragmentation pattern of the adduct prepared from the fatty acid and dimethyl disulfide.
Collapse
Affiliation(s)
- Pei Gao
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062 Japan
| | | | | | | | | | | |
Collapse
|
23
|
Calviño E, Manjón JL, Sancho P, Tejedor MC, Herráez A, Diez JC. Ganoderma lucidum induced apoptosis in NB4 human leukemia cells: involvement of Akt and Erk. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:71-78. [PMID: 20036724 DOI: 10.1016/j.jep.2009.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/07/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY The final goal of this work was to study the toxic and apoptosis effects induced by fractions from Ganoderma lucidum [Ganoderma lucidum (Curtis) P. Karst.; Ganodermataceae Donk] on NB4 human leukemia cells. MATERIALS AND METHODS Two aqueous extracts and a methanol-extracted column-chromatography semipurified fraction were obtained from Ganoderma lucidum fruiting body. Flow cytometry analyses were used to measure cell viability, cell cycle and DNA fragmentation and to quantify apoptosis. Western-blot analyses were used to quantify changes in apoptosis proteins and intracellular kinases. RESULTS Aqueous extracts slightly reduce cell viability and induce DNA fragmentation in NB4 cells. Methanol-extracted semipurified fraction at dilutions down to 15% or 40% of the initial fraction concentration reduced significantly the viability of these leukemia cells (treated for 19h) with induction of DNA fragmentation and induction of apoptosis. Overmore, the dilution down to 15% of the initial E3 concentration induced a reduction of p53 levels, of the Bcl2/Bax relationship as well as reduced levels of both unphosphorylated and phosphorylated Akt (Protein kinase Akt, protein kinase B) and Erk (Erk1 and 2). CONCLUSIONS Induction of apoptosis and alterations in signal transduction kinases (Akt and Erk) are produced by active fractions from Ganoderma lucidum on human leukemia cells. These data could be of important relevance from the viewpoint of antitumor actions of compounds from Ganoderma lucidum. Eventual therapy applications in leukemia cells might be developed.
Collapse
Affiliation(s)
- Eva Calviño
- Departamento de Bioquímica y Biología Molecular, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Fu YJ, Liu W, Zu YG, Shi XG, Liu ZG, Schwarz G, Efferth T. Breaking the spores of the fungus Ganoderma lucidum by supercritical CO2. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Fukuzawa M, Yamaguchi R, Hide I, Chen Z, Hirai Y, Sugimoto A, Yasuhara T, Nakata Y. Possible Involvement of Long Chain Fatty Acids in the Spores of Ganoderma lucidum (Reishi Houshi) to Its Anti-tumor Activity. Biol Pharm Bull 2008; 31:1933-7. [DOI: 10.1248/bpb.31.1933] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masataka Fukuzawa
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University
| | - Rie Yamaguchi
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University
| | - Izumi Hide
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University
| | | | - Yuko Hirai
- Department of Genetics, Radiation Effects Research Foundation
| | - Akiko Sugimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | | | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|