1
|
Liu L, Zhang Y, Huang Y, Jiang T, Yu Q, Yang J, Yuan H. Characterization of a multifunctional enzyme from Trichoderma harzianum and its application in enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2025; 415:131701. [PMID: 39490601 DOI: 10.1016/j.biortech.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Efficient saccharification of lignocellulose to fermentable sugars is crucial for bioconversion, yet the process is often hindered by insufficient β-glucosidase, β-xylosidase, and α-L-arabinofuranosidase activities in enzyme cocktails from Trichoderma reesei. This study addresses this gap by identifying BX1, a multifunctional enzyme from the underexplored fungus Trichoderma harzianum EM0925, which demonstrates a triad of activities targeting hemicellulose-derived oligosaccharides preferentially. We used structural analysis, molecular docking, and mutation studies to elucidate the roles of specific residues (Asp389, Glu589, Gln185, Cys390, Tyr354, and Tyr526) in BX1's multifunctionality. The enzyme showed synergistic effects with cellulase and xylanase, leading to a 90.23% increase in fermentable sugar yields at 2% (w/v) solid substrate loads and a 22.14% improvement at 15% (w/v) loads when added to Celluclast 1.5L. These findings highlight BX1's potential to enhance lignocellulosic bioconversion efficiency and reduce associated costs, paving the way for more cost-effective saccharification processes and future enzyme engineering advancements.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qijun Yu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Lu Z, Kvammen A, Li H, Hao M, Inman AR, Bulone V, McKee LS. A polysaccharide utilization locus from Chitinophaga pinensis simultaneously targets chitin and β-glucans found in fungal cell walls. mSphere 2023; 8:e0024423. [PMID: 37493618 PMCID: PMC10449523 DOI: 10.1128/msphere.00244-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
In nature, complex carbohydrates are rarely found as pure isolated polysaccharides. Instead, bacteria in competitive environments are presented with glycans embedded in heterogeneous matrices such as plant or microbial cell walls. Members of the Bacteroidota phylum thrive in such ecosystems because they are efficient at extracting nutrients from complex substrates, secreting consortia of synergistic enzymes to release metabolizable sugars. Carbohydrate-binding modules (CBMs) are used to target enzymes to substrates, enhancing reaction rate and product release. Additionally, genome organizational tools like polysaccharide utilization loci (PULs) ensure that the appropriate set of enzymes is produced when needed. In this study, we show that the soil bacterium Chitinophaga pinensis uses a PUL and several CBMs to coordinate the activities of enzymes targeting two distinct polysaccharides found in fungal cell walls. We describe the enzymatic activities and carbohydrate-binding behaviors of components of the fungal cell wall utilization locus (FCWUL), which uses multiple chitinases and one β-1,3-glucanase to hydrolyze two different substrates. Unusually, one of the chitinases is appended to a β-glucan-binding CBM, implying targeting to a bulk cell wall substrate rather than to the specific polysaccharide being hydrolyzed. Based on our characterization of the PUL's outer membrane sensor protein, we suggest that the FCWUL is activated by β-1,3-glucans, even though most of its enzymes are chitin-degrading. Our data showcase the complexity of polysaccharide deconstruction in nature and highlight an elegant solution for how multiple different glycans can be accessed using one enzymatic cascade. IMPORTANCE We report that the genome of the soil bacterium Chitinophaga pinensis encodes three multi-modular carbohydrate-active enzymes that work together to hydrolyze the major polysaccharide components found in fungal cell walls (FCWs). The enzymes are all encoded by one polysaccharide utilization locus and are co-expressed, potentially induced in the presence of β-1,3-glucans. We present biochemical characterization of each enzyme, including the appended carbohydrate-binding modules that likely tether the enzymes to a FCW substrate. Finally, we propose a model for how this so-called fungal cell wall utilization locus might enable C. pinensis to metabolize both chitin and β-1,3-glucans found in complex biomass in the soil.
Collapse
Affiliation(s)
- Zijia Lu
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alma Kvammen
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - He Li
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mengshu Hao
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annie R. Inman
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vincent Bulone
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Lauren S. McKee
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Luo S, Li W, Li Q, Zhang M, Wang X, Wu S, Li Y. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1160993. [PMID: 37305424 PMCID: PMC10248501 DOI: 10.3389/fcimb.2023.1160993] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The oral cavity and the gut tract are interconnected, and both contain abundant natural microbiota. Gut microbiota may interact with oral flora and participate in the development of periodontitis. However, the specific role of certain gut microbiota taxa for periodontitis has not been investigated. Mendelian Randomization is an ideal method to explore causal relationships avoiding reverse causality and potential confounding factors. Thus, we conducted a two-sample Mendelian Randomization study to comprehensively reveal the potential genetic causal effect of gut microbiota on periodontitis. Methods SNPs strongly associated with 196 gut microbiota taxa (18,340 individuals) were selected as instrument variables, and periodontitis (17,353 periodontitis cases and 28,210 controls) was used as the outcome. The causal effect was analyzed via random effect inverse variance-weighted, weighted median, and MR-Egger. The sensitivity analyses were conducted using Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. Results Nine gut microbiota taxa (Prevotella 7, Lachnospiraceae UCG-008, Enterobacteriales, Pasteurellales, Enterobacteriaceae, Pasteurellaceae, Bacteroidales S24.7 group, Alistipes, and Eisenbergiella) are predicted to play a causal role in enhancing the risk of periodontitis (p< 0.05). Besides, two gut microbiota taxa (Butyricicoccus and Ruminiclostridium 6) have potentially inhibitive causal effects on the risk of periodontitis (p< 0.05). No significant estimation of heterogeneity or pleiotropy is detected. Conclusion Our study demonstrates the genetic causal effect of 196 gut microbiota taxa on periodontitis and provides guidance for the clinical intervention of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuyi Wu
- *Correspondence: Shuyi Wu, ; Yan Li,
| | - Yan Li
- *Correspondence: Shuyi Wu, ; Yan Li,
| |
Collapse
|
4
|
Wang R, Zhang Y, Liu L, Yang J, Yuan H. Discovery of a bifunctional xylanolytic enzyme with arabinoxylan arabinofuranohydrolase-d3 and endo-xylanase activities and its application in the hydrolysis of cereal arabinoxylans. Microb Biotechnol 2023. [PMID: 37096984 DOI: 10.1111/1751-7915.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Xylanolytic enzymes, with both endo-xylanase and arabinoxylan arabinofuranohydrolase (AXH) activities, are attractive for the economically feasible conversion of recalcitrant arabinoxylan. However, their characterization and utilization of these enzymes in biotechnological applications have been limited. Here, we characterize a novel bifunctional enzyme, rAbf43A, cloned from a bacterial consortium that exhibits AXH and endo-xylanase activities. Hydrolytic pattern analyses revealed that the AXH activity belongs to AXHd3 because it attacked only the C(O)-3-linked arabinofuranosyl residues of double-substituted xylopyranosyl units of arabinoxylan and arabinoxylan-derived oligosaccharides, which are usually resistant to hydrolysis. The enzyme rAbf43A also liberated a series of xylo-oligosaccharides (XOSs) from beechwood xylan, xylohexaose and xylopentaose, indicating that rAbf43A exhibited endo-xylanase activity. Homology modelling based on AlphaFold2 and site-directed mutagenesis identified three non-catalytic residues (H161, A270 and L505) located in the substrate-binding pocket essential for its dual-functionality, while the mutation of A117 located in the -1 subsite to the proline residue only affected its endo-xylanase activity. Additionally, rAbf43A showed significant synergistic action with the bifunctional xylanase/feruloyl esterase rXyn10A/Fae1A from the same bacterial consortium on insoluble wheat arabinoxylan and de-starched wheat bran degradation. When rXyn10A/Fae1A was added to the rAbf43A pre-hydrolyzed reactions, the amount of released reducing sugars, xylose and ferulic acid increased by 9.43% and 25.16%, 189.37% and 93.54%, 31.39% and 32.30%, respectively, in comparison with the sum of hydrolysis products released by each enzyme alone. The unique characteristics of rAbf43A position it as a promising candidate not only for designing high-performance enzyme cocktails but also for investigating the structure-function relationship of GH43 multifunctional enzymes.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
6
|
Yuan Y, Liu S, Ding X, Li Y, Zhang X, Song H, Qi X, Zhang Z, Guo K, Sun T. Early intestinal microbiota changes in aged and adult mice with sepsis. Front Cell Infect Microbiol 2022; 12:1061444. [PMID: 36636721 PMCID: PMC9831679 DOI: 10.3389/fcimb.2022.1061444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mortality rate associated with sepsis in elderly individuals is higher than that in younger individuals. The intestinal microbiota has been demonstrated to play an important role in the occurrence and development of sepsis. The purpose of this study was to investigate the differences in the intestinal microbiota between aged and adult mice with sepsis. METHODS Thirty male C57BL mice were randomly divided into two groups: 15 in the adult group (AD group) and 15 in the age group (Age group). All the mice underwent caecal ligation and puncture to induce sepsis. Mice faeces were collected, and analysed using 16S rRNA sequencing. The liver and colon tissues were collected. RESULTS There were significant differences in intestinal microbiota composition between the two groups. Compared with adult sepsis mice, the diversity of intestinal microbiota in the aged group was significantly reduced and the structure of dominant intestinal microbiota was changed. In the Age group, the microbiota associated with inflammatory factors increased, and the microbiota associated with the production of SCFAs (Ruminiclostridium, Prevotellaceae_UCG-001, Rikenella, Parabacteroides, Oscillibacter, Odoribacter, Muribaculum, Lachnoclostridium, Intestinimonas, Faecalibaculum, Anaerotruncus, Alloprevotella and Absiella) decreased. The metabolic pathways related to the microbiota also changed. Moreover, the proportion of inflammatory factors in Age group was higher than that in AD group. CONCLUSION Our results showed that there were significant differences in the abundance and structure of microbiota between aged and adult sepsis mice, Aged sepsis mice have more severe intestinal microbiota destruction and liver tissue inflammation than adult sepsis mice.
Collapse
Affiliation(s)
- Yangyang Yuan
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Ying Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Zhang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Heng Song
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyan Qi
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Zihao Zhang
- Sanquan College Of Xinxiang Medical University, Xinxiang, China
| | - Kaiyuan Guo
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| |
Collapse
|
7
|
Naumoff DG, Kulichevskaya IS, Dedysh SN. Genetic Determinants of Xylan Utilization in Humisphaera borealis M1803T, a Planctomycete of the Class Phycisphaerae. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172230004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
Planctomycetes of the class Phycisphaerae are aerobic and anaerobic heterotrophic bacteria that colonize a wide range of marine and terrestrial habitats. Their functional roles in the environment, however, are still poorly understood. Humisphaera borealis M1803T is one of the very few characterized planctomycetes of this class. It is also the first described representative of the previously uncultured group WD2101, which is commonly detected in soils and peatlands. This work analyzed the genetic determinants that define the ability of Humisphaera borealis M1803T to grow on xylan, one of the plant cell wall polymers. The whole genome sequence analysis of this planctomycete resulted in identification of five genes encoding the proteins homologous to previously described endo-β-xylanases. For two of these proteins, evolutionarily closer experimentally characterized homologs with other substrate specificities were found. In a member of the GH10 family of glycoside hydrolases, the active center of the enzyme was destroyed. We consider two proteins from GH62 and GH141 families as the most likely candidates for the role of β-xylanase responsible for xylan utilization. Phylogenetic analysis of proteins of GH10, GH62, and GH141 families was carried out. The role of lateral transfers in the evolution of the genes for glycoside hydrolases and their close homologs is discussed.
Collapse
|
8
|
A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan. Appl Environ Microbiol 2021; 87:e0173021. [PMID: 34613758 DOI: 10.1128/aem.01730-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PcAxy43B is a modular protein comprising a catalytic domain of glycoside hydrolase family 43 (GH43), a family 6 carbohydrate-binding module (CBM6), and a family 36 carbohydrate-binding module (CBM36) and found to be a novel multifunctional xylanolytic enzyme from Paenibacillus curdlanolyticus B-6. This enzyme exhibited α-l-arabinofuranosidase, endoxylanase, and β-d-xylosidase activities. The α-l-arabinofuranosidase activity of PcAxy43B revealed a new property of GH43, via the release of both long-chain cereal arabinoxylan and short-chain arabinoxylooligosaccharide (AXOS), as well as release from both the C(O)2 and C(O)3 positions of AXOS, which is different from what has been seen for other arabinofuranosidases. PcAxy43B liberated a series of xylooligosaccharides (XOSs) from birchwood xylan and xylohexaose, indicating that PcAxy43B exhibited endoxylanase activity. PcAxy43B produced xylose from xylobiose and reacted with p-nitrophenyl-β-d-xylopyranoside as a result of β-xylosidase activity. PcAxy43B effectively released arabinose together with XOSs and xylose from the highly arabinosyl-substituted rye arabinoxylan. Moreover, PcAxy43B showed significant synergistic action with the trifunctional endoxylanase/β-xylosidase/α-l-arabinofuranosidase PcAxy43A and the endoxylanase Xyn10C from strain B-6, in which almost all products produced from rye arabinoxylan by these combined enzymes were arabinose and xylose. In addition, the presence of CBM36 was found to be necessary for the endoxylanase property of PcAxy43B. PcAxy43B is capable of hydrolyzing untreated cereal biomass, corn hull, and rice straw into XOSs and xylose. Hence, PcAxy43B, a significant accessory multifunctional xylanolytic enzyme, is a potential candidate for application in the saccharification of cereal biomass. IMPORTANCE Enzymatic saccharification of cereal biomass is a strategy for the production of fermented sugars from low-price raw materials. In the present study, PcAxy43B from P. curdlanolyticus B-6 was found to be a novel multifunctional α-l-arabinofuranosidase/endoxylanase/β-d-xylosidase enzyme of glycoside hydrolase family 43. It is effective in releasing arabinose, xylose, and XOSs from the highly arabinosyl-substituted rye arabinoxylan, which is usually resistant to hydrolysis by xylanolytic enzymes. Moreover, almost all products produced from rye arabinoxylan by the combination of PcAxy43B with the trifunctional xylanolytic enzyme PcAxy43A and the endoxylanase Xyn10C from strain B-6 were arabinose and xylose, which can be used to produce several value-added products. In addition, PcAxy43B is capable of hydrolyzing untreated cereal biomass into XOSs and xylose. Thus, PcAxy43B is an important multifunctional xylanolytic enzyme with high potential in biotechnology.
Collapse
|
9
|
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Appl Environ Microbiol 2020; 86:AEM.01505-20. [PMID: 32948521 DOI: 10.1128/aem.01505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.
Collapse
|
10
|
Significance of a family-6 carbohydrate-binding module in a modular feruloyl esterase for removing ferulic acid from insoluble wheat arabinoxylan. Enzyme Microb Technol 2020; 138:109546. [DOI: 10.1016/j.enzmictec.2020.109546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022]
|
11
|
Xiao S, Liu C, Chen M, Zou J, Zhang Z, Cui X, Jiang S, Shang E, Qian D, Duan J. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol 2019; 104:303-317. [DOI: 10.1007/s00253-019-10174-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
|
12
|
Mroueh M, Aruanno M, Borne R, de Philip P, Fierobe HP, Tardif C, Pagès S. The xyl- doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:144. [PMID: 31198441 PMCID: PMC6556953 DOI: 10.1186/s13068-019-1483-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The α-l-arabinofuranosidases (α-l-ABFs) are exoenzymes involved in the hydrolysis of α-l-arabinosyl linkages in plant cell wall polysaccharides. They play a crucial role in the degradation of arabinoxylan and arabinan and they are used in many biotechnological applications. Analysis of the genome of R. cellulolyticum showed that putative cellulosomal α-l-ABFs are exclusively encoded by the xyl-doc gene cluster, a large 32-kb gene cluster. Indeed, among the 14 Xyl-Doc enzymes encoded by this gene cluster, 6 are predicted to be α-l-ABFs belonging to the CAZyme families GH43 and GH62. RESULTS The biochemical characterization of these six Xyl-Doc enzymes revealed that four of them are α-l-ABFs. GH4316-1229 (RcAbf43A) which belongs to the subfamily 16 of the GH43, encoded by the gene at locus Ccel_1229, has a low specific activity on natural substrates and can cleave off arabinose decorations located at arabinoxylan chain extremities. GH4310-1233 (RcAbf43Ad2,3), the product of the gene at locus Ccel_1233, belonging to subfamily 10 of the GH43, can convert the double arabinose decorations present on arabinoxylan into single O2- or O3-linked decorations with high velocity (k cat = 16.6 ± 0.6 s-1). This enzyme acts in synergy with GH62-1234 (RcAbf62Am2,3), the product of the gene at locus Ccel_1234, a GH62 α-l-ABF which hydrolyzes α-(1 → 3) or α-(1 → 2)-arabinosyl linkages present on polysaccharides and arabinoxylooligosaccharides monodecorated. Finally, a bifunctional enzyme, GH62-CE6-1240 (RcAbf62Bm2,3Axe6), encoded by the gene at locus Ccel_1240, which contains a GH62-α-l-ABF module and a carbohydrate esterase (CE6) module, catalyzes deacylation of plant cell wall polymers and cleavage of arabinosyl mono-substitutions. These enzymes are also active on arabinan, a component of the type I rhamnogalacturonan, showing their involvement in pectin degradation. CONCLUSION Arabinofuranosyl decorations on arabinoxylan and pectin strongly inhibit the action of xylan-degrading enzymes and pectinases. α-l-ABFs encoded by the xyl-doc gene cluster of R. cellulolyticum can remove all the decorations present in the backbone of arabinoxylan and arabinan, act synergistically, and, thus, play a crucial role in the degradation of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Mohamed Mroueh
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Marion Aruanno
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Romain Borne
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Pascale de Philip
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Henri-Pierre Fierobe
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Chantal Tardif
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Sandrine Pagès
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
13
|
The modular arabinanolytic enzyme Abf43A-Abf43B-Abf43C from Ruminiclostridium josui consists of three GH43 modules classified in different subfamilies. Enzyme Microb Technol 2019; 124:23-31. [PMID: 30797476 DOI: 10.1016/j.enzmictec.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
Abstract
The abnA gene from Ruminiclostridium josui encodes the large modular arabinanolytic enzyme, Abf43A-Abf43B-Abf43C, consisting of an N-terminal signal peptide, a Laminin_G_3 module, a GH43_22 module, a Laminin_G_3 module, a Big_4 module, a GH43_26 module, a GH43_34 module and a dockerin module in order with a calculated molecular weight of 204,108. Three truncated enzymes were recombinantly produced in Escherichia coli and biochemically characterized, RjAbf43A consisting of the first Laminin_G_3 module and GH43_22 module, RjAbf43B consisting of the second Laminin_G_3 module, Big_4 module and GH43_26 module, and RjAbf43C consisting of the GH43_34 module. RjAbf43A showed a strong α-l-arabinofuranosidase activity toward sugar beet arabinan, highly branched arabinan but not linear arabinan, thus it acted in the removal of arabinose side chains from sugar beet arabinan. By contrast, RjAbf43B showed a strong exo-α-1,5-l-arabinofuranosidase activity toward linear arabinan and arabinooligosaccharides whereas RjAbf43C showed low activity toward these substrates. Although RjAbf43B was activated by the presence of some metal ions such as Zn2+, Mg2+ and Ni2+, RjAbf43A was inhibited by these ions. RjAbf43A and RjAbf43B attacked sugar beet arabinan in a synergistic manner. By comparison, RjAbf43A-Abf43B containing both GH43_22 and GH43_26 modules showed lower hydrolytic activity toward sugar beet arabinan but higher activity toward sugar beet fiber than the sum of the individual activities of RjAbf43A and RjAbf43B, suggesting that the coexistence of two distinct GH43 modules in a single polypeptide is important for the efficient hydrolysis of an insoluble and natural polysaccharide but not a soluble substrate.
Collapse
|