1
|
Jia M, Shao L, Jiang J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. Crit Rev Biotechnol 2024:1-13. [PMID: 39647989 DOI: 10.1080/07388551.2024.2430476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Lei Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
2
|
Liu SH, Chen GY, Lin CW. Optimized microbial fuel cell-powered electro-Fenton processes to enhance electricity and bisphenol A removal by varying external resistance and electrolyte concentrations. Bioelectrochemistry 2024; 160:108782. [PMID: 39053177 DOI: 10.1016/j.bioelechem.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
This study is the first to investigate the effects of external resistance and electrolyte concentration on the performance of a bioelectro-Fenton (BEF) system, involving measurements of power density, H2O2 generation, and bisphenol A (BPA) removal efficiency. With optimized operating conditions (external resistance of 1.12 kΩ and cathodic NaCl concentration of 1,657 mg/L), the BEF system achieved a maximum power density of 38.59 mW/m2, which is about 3.5 times higher than with 1 kΩ external resistance and no NaCl. This system featured a 71.7 % reduction in total internal resistance. The optimized BEF also accelerated the oxygen reduction reaction rate, increasing H2O2 generation by 4.4 times compared to the unoptimized system. Moreover, it exhibited superior BPA degradation performance, removing over 99 % of BPA within 14 hs, representing a 1.1 to 3.3-fold improvement over the unoptimized BEF. By the fifth cycle (70 h), the optimized BEF still removed 70 % of BPA. Optimizing the operating conditions significantly increased the abundance of electrochemically active bacteria (Pseudomonadaceae) from 2.2 % to 20 %, facilitating rapid acclimation. The study demonstrates the strong potential of an optimized BEF system for removing persistent pollutants.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Guan-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC; Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC.
| |
Collapse
|
3
|
Xue J, Wang Y, Jing Y, Li X, Chen S, Xu Y, Song RB. Recent advances in microbial fuel cell-based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem 2024; 416:4649-4662. [PMID: 38457006 DOI: 10.1007/s00216-024-05230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell-based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.
Collapse
Affiliation(s)
- Junjun Xue
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jing
- Henan Joint International Research Laboratory of Intelligent Water Treatment System, Qingshuiyuan Technology Co., Ltd., Jiyuan, China
| | - Xiaoxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Suping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Ying Xu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Yao H, Xiao J, Tang X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering (Basel) 2023; 10:886. [PMID: 37627771 PMCID: PMC10451650 DOI: 10.3390/bioengineering10080886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Wastewater contains a significant quantity of organic matter, continuously causing environmental pollution. Timely and accurate detection of organic content in water can facilitate improved wastewater treatment and better protect the environment. Microbial fuel cells (MFCs) are increasingly recognized as valuable biological monitoring systems, due to their ability to swiftly detect organic indicators such as biological oxygen demand (BOD) and chemical oxygen demand (COD) in water quality. Different types of MFC sensors are used for BOD and COD detection, each with unique features and benefits. This review focuses on different types of MFC sensors used for BOD and COD detection, discussing their benefits and structural optimization, as well as the influencing factors of MFC-based biomonitoring systems. Additionally, the challenges and prospects associated with the development of reliable MFC sensing systems are discussed.
Collapse
Affiliation(s)
| | | | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430062, China
| |
Collapse
|
5
|
Schneider G, Pásztor D, Szabó P, Kőrösi L, Kishan NS, Raju PARK, Calay RK. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms 2023; 11:781. [PMID: 36985354 PMCID: PMC10058994 DOI: 10.3390/microorganisms11030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
To develop efficient microbial fuel cell systems for green energy production using different waste products, establishing characterised bacterial consortia is necessary. In this study, bacteria with electrogenic potentials were isolated from mud samples and examined to determine biofilm-formation capacities and macromolecule degradation. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identifications have revealed that isolates represented 18 known and 4 unknown genuses. They all had the capacities to reduce the Reactive Black 5 stain in the agar medium, and 48 of them were positive in the wolfram nanorod reduction assay. The isolates formed biofilm to different extents on the surfaces of both adhesive and non-adhesive 96-well polystyrene plates and glass. Scanning electron microscopy images revealed the different adhesion potentials of isolates to the surface of carbon tissue fibres. Eight of them (15%) were able to form massive amounts of biofilm in three days at 23 °C. A total of 70% of the isolates produced proteases, while lipase and amylase production was lower, at 38% and 27% respectively. All of the macromolecule-degrading enzymes were produced by 11 isolates, and two isolates of them had the capacity to form a strong biofilm on the carbon tissue one of the most used anodic materials in MFC systems. This study discusses the potential of the isolates for future MFC development applications.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Dorina Pásztor
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Péter Szabó
- Department of Geology and Meteorology, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pázmány P. u. 4, H-7634 Pécs, Hungary
| | - Nandyala Siva Kishan
- Centre for Research and Development, SRKR Engineering College, SRKR Marg, China Amiram, Bhimavaram 534204, India
| | | | - Rajnish Kaur Calay
- Institute for Building Energy and Materials Technology, Narvik Campus, UiT Norway’s Arctic University, 8514 Narvik, Norway
| |
Collapse
|
6
|
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:641. [PMID: 36679438 PMCID: PMC9866333 DOI: 10.3390/s23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel materials have been used extensively in microbial electrochemical technology (MET) and sensor development due to their high biocompatibility and low toxicity. With an increasing demand for sensors across different sectors, it is crucial to understand the current state within the sectors of hydrogel METs and sensors. Surprisingly, a systematic review examining the application of hydrogel-based METs to sensor technologies has not yet been conducted. This review aimed to identify the current research progress surrounding the incorporation of hydrogels within METs and sensors development, with a specific focus on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The manufacturing process/cost, operational performance, analysis accuracy and stability of typical hydrogel materials in METs and sensors were summarised and analysed. The current challenges facing the technology as well as potential direction for future research were also discussed. This review will substantially promote the understanding of hydrogel materials used in METs and benefit the development of electrochemical biosensors using hydrogel-based METs.
Collapse
Affiliation(s)
- Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Saviour I. Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yanqi Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
7
|
Qiu S, Wang L, Zhang Y, Yu Y. Microbial Fuel Cell-Based Biosensor for Simultaneous Test of Sodium Acetate and Glucose in a Mixed Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12297. [PMID: 36231599 PMCID: PMC9566141 DOI: 10.3390/ijerph191912297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Most microbial fuel cell (MFC) sensors only focus on the detection of mixed solutions with respect to the chemical oxygen demand (COD) or toxicity; however, the concentrations of the individual analytes in a mixed solution have rarely been studied. Herein, we developed two types of MFC sensors, adapted with sodium acetate (MFC-A) and glucose (MFC-B) as organic substrates in the startup period. An evident difference in the sensor sensitivities (the slope value of the linear-regression curve) was observed between MFC-A and MFC-B. MFC-A exhibited a superior performance compared with MFC-B in the detection of sodium acetate (4868.9 vs. 2202 mV/(g/L), respectively) and glucose (3895.5 vs. 3192.9 mV/(g/L), respectively). To further compare these two MFC sensors, the electrochemical performances were evaluated, and MFC-A exhibited a higher output voltage and power density (593.76 mV and 129.81 ± 4.10 mW/m2, respectively) than MFC-B (484.08 mV and 116.21 ± 1.81 mW/m2, respectively). Confocal laser scanning microscopy (CLSM) and microbial-community analysis were also performed, and the results showed a richer anode biomass of MFC-A in comparison with MFC-B. By utilizing the different sensitivities of the two MFC sensors towards sodium acetate and glucose, we proposed and verified a novel method for a simultaneous test on the individual concentrations of sodium acetate and glucose in a mixed solution. Linear equations of the two variables (concentrations of sodium acetate and glucose) were formulated. The linear equations were solved according to the output voltages of the two MFC sensors, and the solutions showed a satisfactory accuracy with regard to sodium acetate and glucose (relative error less than 20%).
Collapse
Affiliation(s)
- Song Qiu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luyang Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Zhang K, Wang T, Chen J, Guo J, Luo H, Chen W, Mo Y, Wei Z, Huang X. The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103981. [PMID: 35247696 DOI: 10.1016/j.jconhyd.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The fate and removal efficiency of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in livestock wastewater by microbial fuel cell (MFC) was evaluated by High-throughput quantitative PCR. The results showed that 137 ARGs and 9 MGEs were detected in untreated livestock wastewater. The ARG number of macrolide-lincosamide-streptogramin group B (MLSB), tetracycline and sulfonamide were relatively higher. Throughout the treatment process, the number and abundance of ARGs and MGEs significantly decreased. The relative abundance of tetracycline, sulfonamide and chloramphenicol resistance genes showed the most obvious decreasing trend, and the relative abundance of MGEs decreased by 75% (from 0.012 copies/16S rRNA copies to 0.003 copies/16S rRNA copies). However, the absolute abundance of beta-lactamase resistance genes slightly increased. The operation process of MFC produces selective pressure on microorganisms, and Actinobacteria were predominant and had the ability to decompose antibiotics. The COD removal rate and TN removal rate of livestock wastewater were 67.81% and 62.09%, and the maximum power density and coulomb efficiency (CE) reached 11.49% and 38.40% respectively. This study demonstrated that although the removal of COD and TN by MFC was limited, MFC was quite effective in reducing the risk of antibiotic toxicity and horizontal gene transfer.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Tingting Wang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China.
| | - Jingyue Guo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - You Mo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Zhaolan Wei
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Xiuzhong Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| |
Collapse
|
9
|
Xing F, Xi H, Yu Y, Zhou Y. Anode biofilm influence on the toxic response of microbial fuel cells under different operating conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145048. [PMID: 33631591 DOI: 10.1016/j.scitotenv.2021.145048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The response of microorganisms in microbial fuel cells (MFCs) to toxic compounds under different operating conditions, such as flow rate and culture time, was investigated herein. While it has been reported that MFCs can detect some toxic substances, it is unclear if operating conditions affect MFCs toxicity response. In this study, the toxic response time of MFCs decreased when the flow rate increased from 0.5 mL/min to 2 mL/min and then increased with 5 mL/min. The inhibition rates at 0.5 mL/min, 2 mL/min, and 5 mL/min were 8.4% ± 1.6%, 45.1% ± 5.3%, and 4.9% ± 0.3%, respectively. With the increase of culture time from 7 days to 90 days, the toxic response time of MFCs gradually increased. The inhibition rates at culture times of 7 days, 45 days, and 90 days were 45.1% ± 5.3%, 32.6% ± 6.6%, and 23.2% ± 1.3%, respectively. Increasing the culture time will reduce the sensitivity of MFC. The results showed that MFCs can respond quickly at a flow rate of 2 mL/min after cultivation for 7 days. Under these conditions, the power density can reach 1137.0 ± 65.5 mW/m2, the relative content of Geobacter sp. is 57%, and the ORP of the multilayers changed from -159.2 ± 1.6 mV to -269.9 ± 1.7 mV within 200 μm biofilm thickness. These findings show that increasing the flow rate and shortening the culture time are conducive for the toxicity response of MFCs, which will increase the sensitivity of MFCs in practical applications.
Collapse
Affiliation(s)
- Fei Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
10
|
Shi Y, Huang K, Pan X, Liu G, Cai Y, Zaidi AA, Zhang K. Substrate degradation, biodiesel production, and microbial community of two electro-fermentation systems on treating oleaginous microalgae Nannochloropsis sp. BIORESOURCE TECHNOLOGY 2021; 329:124932. [PMID: 33713901 DOI: 10.1016/j.biortech.2021.124932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Electro-fermentation system (EFS) emerges its effectiveness on treating microalgae for biodiesel production, but much is unknown about biodegradation behaviors, biodiesel characteristics, and microbial community. Compared with conventional fermentation system (CFS), microbial electrolysis cell-based EFS (MEC-EFS) and microbial fuel cell-based EFS (MFC-EFS) were investigated for the performance while treating microalgae Nannochloropsis sp. Results indicated that MEC-EFS presented much higher first-order decomposition rate coefficients of carbohydrates and proteins (1.212/d and 0.951/d) than those of CFS (0.615/d and 0.794/d) and MFC-EFS (0.518/d and 0.415/d). Compared with MFC-EFS, MEC-EFS showed better electrochemical performance (2.17 A/m3vs. 0.95 A/m3). Moreover, MEC-EFS reached the highest extracted lipid to biomass ratio (43.3%), followed by MFC-EFS (32.3%) and CFS (27.7%). By strengthened microbial biohydrogenation, MEC-EFS and MFC-EFS had higher saturated fatty acids ratio (78.8% and 70.6%) than that of CFS (56.1%). For MEC-EFS, enriched Ruminococcus and Geobacter in anodic biofilm might contribute to favorable biohydrogenation and electrochemical performance.
Collapse
Affiliation(s)
- Yue Shi
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Kaiguo Huang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xinxiang Pan
- Maritime College, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China; Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Guobing Liu
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuhang Cai
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Asad A Zaidi
- Department of Engineering Sciences, Pakistan Navy Engineering College, National University of Sciences and Technology, Karachi 75350, Pakistan
| | - Kun Zhang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
11
|
Xu M, Li J, Liu B, Yang C, Hou H, Hu J, Yang J, Xiao K, Liang S, Wang D. The evaluation of long term performance of microbial fuel cell based Pb toxicity shock sensor. CHEMOSPHERE 2021; 270:129455. [PMID: 33401074 DOI: 10.1016/j.chemosphere.2020.129455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Microbial fuel cell (MFC) sensor exhibits attractive prospects for online monitoring of water toxicity as an early warning device. However, the accumulation of dead cells in anode biofilm might decrease the sensing sensitivity of MFC during long term operation. In addition, with repeated exposure to toxins, the microbial community of anode biofilm would also adjust to build up higher endurance to environmental toxicity. In this study, the long term sensing sensitivity of MFC sensor and the microbial community changes were characterized with Pb2+ as the target toxin. The results show that newly formed biofilm with higher live/dead cell ratio exhibited higher sensitivity than mature biofilm. Modification of anodic biofilm via high current stimulation was applied to increase the ratio of live cells, which led to enhanced sensing sensitivity of MFC with mature anode biofilm. However, the enhancement was relatively limited for biofilm that was previously exposed to repeated Pb2+ shocks. Microbial community analysis revealed that the proportions of microbial species possessing higher environmental robustness, such as Hyphomicrobiaceae and Cloacibacillus, significantly increased in the anode biofilm after long term repeated Pb2+ shocks.
Collapse
Affiliation(s)
- Min Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Jianfeng Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China.
| | - Changzhu Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Dongliang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| |
Collapse
|
12
|
Lu H, Wang T, Lu S, Liu H, Wang H, Li C, Liu X, Guo X, Zhao X, Liu F. Performance and bacterial community dynamics of hydroponically grown Iris pseudacorus L. during the treatment of antibiotic-enriched wastewater at low/normal temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:111997. [PMID: 33582416 DOI: 10.1016/j.ecoenv.2021.111997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics are widely detected in the water environment, posing a serious threat to the health of humans and animals. The effect of levofloxacin (LOFL) on pollutant removal and the difference in the influence mechanisms at normal and low temperatures in constructed wetlands are worth discussing. A hydroponic culture experiment was designed with Iris pseudacorus L. at low and normal temperatures. LOFL (0-100 µg/L) was added to the systems. The results indicated that the removal of pollutants was affected most by temperature, followed by LOFL concentration. At the same concentration of LOFL, the pollutant removal rate was significantly higher at normal temperature than at low temperature. Low concentrations of LOFL promoted the degradation of pollutants except TN under normal-temperature conditions. Compared with the results at low temperature, the bacterial community richness was higher and the diversity of bacterial communities was lower under normal-temperature conditions. The genera and the function of bacteria were greatly affected by antibiotic concentration, temperature and test time. A series of microorganisms resistant to antibiotics and low temperature were identified in this study. The results will provide valuable information and a reference for our understanding of the ecological effects of LOFL.
Collapse
Affiliation(s)
- Hongbin Lu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tao Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Huaqing Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Huanhua Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Chaojun Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoliang Zhao
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Fuchun Liu
- College of Life Science, Cangzhou Normal University, Cangzhou 061001, PR China
| |
Collapse
|