1
|
Noble BA, Jiudice SS, Jones JD, Timbrook TT. Reemergence of Bordetella parapertussis, United States, 2019-2023. Emerg Infect Dis 2024; 30:1058-1060. [PMID: 38666607 PMCID: PMC11060467 DOI: 10.3201/eid3005.231278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
To determine changes in Bordetella pertussis and B. parapertussis detection rates, we analyzed 1.43 million respiratory multiplex PCR test results from US facilities from 2019 through mid-2023. From mid-2022 through mid-2023, Bordetella spp. detection increased 8.5-fold; 95% of detections were B. parapertussis. While B. parapertussis rates increased, B. pertussis rates decreased.
Collapse
|
2
|
Zhao X, Li M, Haihambo N, Wang X, Wang B, Sun M, Guo M, Han C. Periodic Characteristics of Hepatitis Virus Infections From 2013 to 2020 and Their Association With Meteorological Factors in Guangdong, China: Surveillance Study. JMIR Public Health Surveill 2023; 9:e45199. [PMID: 37318858 PMCID: PMC10337419 DOI: 10.2196/45199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND In the past few decades, liver disease has gradually become one of the major causes of death and illness worldwide. Hepatitis is one of the most common liver diseases in China. There have been intermittent and epidemic outbreaks of hepatitis worldwide, with a tendency toward cyclical recurrences. This periodicity poses challenges to epidemic prevention and control. OBJECTIVE In this study, we aimed to investigate the relationship between the periodic characteristics of the hepatitis epidemic and local meteorological elements in Guangdong, China, which is a representative province with the largest population and gross domestic product in China. METHODS Time series data sets from January 2013 to December 2020 for 4 notifiable infectious diseases caused by hepatitis viruses (ie, hepatitis A, B, C, and E viruses) and monthly data of meteorological elements (ie, temperature, precipitation, and humidity) were used in this study. Power spectrum analysis was conducted on time series data, and correlation and regression analyses were performed to assess the relationship between the epidemics and meteorological elements. RESULTS The 4 hepatitis epidemics showed clear periodic phenomena in the 8-year data set in connection with meteorological elements. Based on the correlation analysis, temperature demonstrated the strongest correlation with hepatitis A, B, and C epidemics, while humidity was most significantly associated with the hepatitis E epidemic. Regression analysis revealed a positive and significant coefficient between temperature and hepatitis A, B, and C epidemics in Guangdong, while humidity had a strong and significant association with the hepatitis E epidemic, and its relationship with temperature was relatively weak. CONCLUSIONS These findings provide a better understanding of the mechanisms underlying different hepatitis epidemics and their connection to meteorological factors. This understanding can help guide local governments in predicting and preparing for future epidemics based on weather patterns and potentially aid in the development of effective prevention measures and policies.
Collapse
Affiliation(s)
- Xixi Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium
| | - Xinni Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Bin Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meirong Sun
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mingrou Guo
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanliang Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
3
|
Cao Y, Li M, Haihambo N, Zhu Y, Zeng Y, Jin J, Qiu J, Li Z, Liu J, Teng J, Li S, Zhao Y, Zhao X, Wang X, Li Y, Feng X, Han C. Oscillatory properties of class C notifiable infectious diseases in China from 2009 to 2021. Front Public Health 2022; 10:903025. [PMID: 36033737 PMCID: PMC9402928 DOI: 10.3389/fpubh.2022.903025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 01/22/2023] Open
Abstract
Background Epidemics of infectious diseases have a great negative impact on people's daily life. How it changes over time and what kind of laws it obeys are important questions that researchers are always interested in. Among the characteristics of infectious diseases, the phenomenon of recrudescence is undoubtedly of great concern. Understanding the mechanisms of the outbreak cycle of infectious diseases could be conducive for public health policies to the government. Method In this study, we collected time-series data for nine class C notifiable infectious diseases from 2009 to 2021 using public datasets from the National Health Commission of China. Oscillatory power of each infectious disease was captured using the method of the power spectrum analysis. Results We found that all the nine class C diseases have strong oscillations, which could be divided into three categories according to their oscillatory frequencies each year. Then, we calculated the oscillation power and the average number of infected cases of all nine diseases in the first 6 years (2009-2015) and the next 6 years (2015-2021) since the update of the surveillance system. The change of oscillation power is positively correlated to the change in the number of infected cases. Moreover, the diseases that break out in summer are more selective than those in winter. Conclusion Our results enable us to better understand the oscillation characteristics of class C infectious diseases and provide guidance and suggestions for the government's prevention and control policies.
Collapse
Affiliation(s)
- Yanxiang Cao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yuyao Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jianhua Jin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyi Qiu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhirui Li
- Baoding First Central Hospital, Baoding, China
| | - Jiaxin Liu
- Department of Psychology, University of Washington, Washington, SA, United States
| | - Jiayi Teng
- School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Sixiao Li
- Faculty of Arts, Humanities and Cultures, School of Music, University of Leeds, Leeds, United Kingdom
| | - Yanan Zhao
- China Academy of Chinese Medical Sciences, Institute of Acupuncture and Moxibustion, Beijing, China
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xuemei Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yaqiong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
4
|
Burton L, Weerasinghe DP, Joffe D, Saunders J, Falk GL, Van der Wall H. A putative link between pertussis and new onset of gastroesophageal reflux. An observational study. Multidiscip Respir Med 2022; 17:832. [PMID: 35865347 PMCID: PMC9295390 DOI: 10.4081/mrm.2022.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pertussis is an infectious disease of the respiratory tract with a changing epidemiology. An increasing incidence has been found in the adult population with recurrent infections possibly related to changes in the current vaccine. Is there an association between pertussis infection, refractory cough and atypical gastro-oesophageal reflux (GORD)? Does this magnify and compound respiratory complications? Methods Observational study which compares post-pertussis (n=103) with non-pertussis patients (n=105) with established GORD. Patients were assessed for laryngopharyngeal reflux and aspiration of refluxate by a novel scintigraphic study. Results Both groups showed severe GORD in association with high rates of laryngopharyngeal reflux (LPR) and pulmonary aspiration and lung disease. High rates of hiatus hernia and clinical diagnosis of “atypical” asthma showed correlations with pulmonary aspiration. Conclusions A high level of new onset LPR and lung aspiration has been shown in patients with chronic cough after recent pertussis infection by a novel scintigraphic technique with fused hybrid x-ray computed tomography (SPECT/CT).
Collapse
|
5
|
Zhao X, Li M, Haihambo N, Jin J, Zeng Y, Qiu J, Guo M, Zhu Y, Li Z, Liu J, Teng J, Li S, Zhao YN, Cao Y, Wang X, Li Y, Gao M, Feng X, Han C. Changes in temporal properties for epidemics of notifiable infectious diseases in China during the COVID-19 epidemic: population-based surveillance study. JMIR Public Health Surveill 2022; 8:e35343. [PMID: 35649394 PMCID: PMC9231598 DOI: 10.2196/35343] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The COVID-19 was first reported in 2019, and the Chinese government immediately carried out stringent and effective control measures in response to the epidemics. OBJECTIVE These non-pharmaceutical interventions may have impacted incidences of other infectious diseases as well. Potential explanations underlying this reduction, however, are not clear. Hence, in this study, we aimed to study the influence of the COVID-19 prevention policies on other infectious diseases (mainly class B infectious diseases) in China. METHODS The time-series datasets between 2017 and 2021 for 23 notifiable infectious diseases were extracted from public datasets from the National Health Commission of China. Several indices (peak and trough amplitude, infection selectivity, preferred time to outbreak, oscillatory strength) of each infectious disease were calculated before and after the COVID-19 outbreak. RESULTS We found that the prevention and control policies for COVID-19 had a strong significant reduction effect on outbreaks of other infectious diseases. A clear event-related trough (ERT) was observed after the outbreak of COVID-19 under the strict control policies, and its decreasing amplitude is related to the infection selectivity and preferred outbreak time of the disease before the COVID-19. We also calculated the oscillatory strength before and after the COVID-19 outbreak and found that it is significantly stronger before the COVID-19 outbreak, and does not correlate with the trough amplitude. CONCLUSIONS Our results directly demonstrate that prevention policies for the COVID-19 have immediate additional benefits for controlling most class B infectious diseases, and several factors (infection selectivity, preferred outbreak time) may have contributed to the reduction of outbreaks. This study may guide the implementation of non-pharmaceutical interventions to control a wider range of infectious diseases. CLINICALTRIAL
Collapse
Affiliation(s)
- Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, CN.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, CN
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, BE
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, BE
| | - Jianhua Jin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CN
| | - Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal Univeristy, Beijing, CN
| | - Jinyi Qiu
- School of Artificial Intelligence, Beijing Normal University, Beijing, CN
| | - Mingrou Guo
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, CN.,Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, Shenzhen, CN
| | - Yuyao Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, CN
| | - Zhirui Li
- Baoding First Central Hospital, Baoding, CN
| | - Jiaxin Liu
- Department of Psychology, University of Washington, Seattle, Seattle, US
| | - Jiayi Teng
- School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, GB
| | - Sixiao Li
- School of music, Faculty of Arts, University of Leeds, Leeds, GB
| | - Ya-Nan Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, CN
| | - Yanxiang Cao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, CN.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, CN
| | - Xuemei Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, CN.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, CN
| | - Yaqiong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, CN.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, CN
| | | | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, CN
| | - Chuanliang Han
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen, China 518055, Shenzhen, CN.,Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, Shenzhen, CN
| |
Collapse
|
6
|
Han C, Li M, Haihambo N, Cao Y, Zhao X. Enlightenment on oscillatory properties of 23 class B notifiable infectious diseases in the mainland of China from 2004 to 2020. PLoS One 2021; 16:e0252803. [PMID: 34106977 PMCID: PMC8189525 DOI: 10.1371/journal.pone.0252803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
A variety of infectious diseases occur in mainland China every year. Cyclic oscillation is a widespread attribute of most viral human infections. Understanding the outbreak cycle of infectious diseases can be conducive for public health management and disease surveillance. In this study, we collected time-series data for 23 class B notifiable infectious diseases from 2004 to 2020 using public datasets from the National Health Commission of China. Oscillatory properties were explored using power spectrum analysis. We found that the 23 class B diseases from the dataset have obvious oscillatory patterns (seasonal or sporadic), which could be divided into three categories according to their oscillatory power in different frequencies each year. These diseases were found to have different preferred outbreak months and infection selectivity. Diseases that break out in autumn and winter are more selective. Furthermore, we calculated the oscillation power and the average number of infected cases of all 23 diseases in the first eight years (2004 to 2012) and the next eight years (2012 to 2020) since the update of the surveillance system. A strong positive correlation was found between the change of oscillation power and the change in the number of infected cases, which was consistent with the simulation results using a conceptual hybrid model. The establishment of reliable and effective analytical methods contributes to a better understanding of infectious diseases’ oscillation cycle characteristics. Our research has certain guiding significance for the effective prevention and control of class B infectious diseases.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- * E-mail: (XZ); (CH)
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yu Cao
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xixi Zhao
- Beijing Anding Hospital, Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- * E-mail: (XZ); (CH)
| |
Collapse
|
7
|
Brand SP, Munywoki P, Walumbe D, Keeling MJ, Nokes DJ. Reducing respiratory syncytial virus (RSV) hospitalization in a lower-income country by vaccinating mothers-to-be and their households. eLife 2020; 9:47003. [PMID: 32216871 PMCID: PMC7556875 DOI: 10.7554/elife.47003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
Respiratory syncytial virus is the leading cause of lower respiratory tract infection among infants. RSV is a priority for vaccine development. In this study, we investigate the potential effectiveness of a two-vaccine strategy aimed at mothers-to-be, thereby boosting maternally acquired antibodies of infants, and their household cohabitants, further cocooning infants against infection. We use a dynamic RSV transmission model which captures transmission both within households and communities, adapted to the changing demographics and RSV seasonality of a low-income country. Model parameters were inferred from past RSV hospitalisations, and forecasts made over a 10-year horizon. We find that a 50% reduction in RSV hospitalisations is possible if the maternal vaccine effectiveness can achieve 75 days of additional protection for newborns combined with a 75% coverage of their birth household co-inhabitants (~7.5% population coverage).
Collapse
Affiliation(s)
- Samuel Pc Brand
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Warwick, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Patrick Munywoki
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - David Walumbe
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matthew J Keeling
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Warwick, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - David James Nokes
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Warwick, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
8
|
Weigand MR, Peng Y, Batra D, Burroughs M, Davis JK, Knipe K, Loparev VN, Johnson T, Juieng P, Rowe LA, Sheth M, Tang K, Unoarumhi Y, Williams MM, Tondella ML. Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens. mSystems 2019; 4:e00702-19. [PMID: 31744907 PMCID: PMC6867878 DOI: 10.1128/msystems.00702-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.
Collapse
Affiliation(s)
- Michael R Weigand
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jamie K Davis
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vladimir N Loparev
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taccara Johnson
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Phalasy Juieng
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yvette Unoarumhi
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M Williams
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Lucia Tondella
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Noori N, Rohani P. Quantifying the consequences of measles-induced immune modulation for whooping cough epidemiology. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180270. [PMID: 31056052 PMCID: PMC6553609 DOI: 10.1098/rstb.2018.0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
Measles, an acute viral disease, continues to be an important cause of childhood mortality worldwide. Infection with the measles virus is thought to be associated with a transient but profound period of immune suppression. Recently, it has been claimed that measles-induced immune manipulation lasts for about 30 months and results in increased susceptibility to other co-circulating infectious diseases and more severe disease outcomes upon infection. We tested this hypothesis using model-based inference applied to parallel historical records of measles and whooping cough mortality and morbidity. Specifically, we used maximum likelihood to fit a mechanistic transmission model to incidence data from three different eras, spanning mortality records from 1904 to 1912 and 1922 to 1932 and morbidity records from 1946 to 1956. Our aim was to quantify the timing, severity and pathogenesis impacts of measles-induced immune modulation and their consequences for whooping cough epidemiology across a temporal gradient of measles transmission. We identified an increase in susceptibility to whooping cough following recent measles infection by approximately 85-, 10- and 36-fold for the three eras, respectively, although the duration of this effect was variable. Overall, while the immune impacts of measles may be strong and clearly evident at the individual level, their epidemiological signature in these data appears both modest and inconsistent. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Navideh Noori
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|