1
|
Walls AB, Andersen JV, Waagepetersen HS, Bak LK. Fueling Brain Inhibition: Integrating GABAergic Neurotransmission and Energy Metabolism. Neurochem Res 2025; 50:136. [PMID: 40189668 DOI: 10.1007/s11064-025-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Despite decades of research in brain energy metabolism and to what extent different cell types utilize distinct substrates for their energy metabolism, this topic remains a vibrant area of neuroscience research. In this review, we focus on the substrates utilized by the inhibitory GABAergic neurons, which has been less explored than glutamatergic neurons. First, we discuss how GABAergic neurons may utilize both glucose, lactate, or ketone bodies under different functional conditions, and provide some preliminary data suggesting that unlike glutamatergic neurons, GABAergic neurons work well when substrate supply is restricted to lactate. We end by discussing the role of GABAergic neuron energy metabolism in pathologies where failure of inhibitory function play a central role, namely epilepsy, hepatic encephalopathy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Capital Region Hospital Pharmacy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse K Bak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Center (TRACE), Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
2
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
3
|
Özcan E, Yu KB, Dinh L, Lum GR, Lau K, Hsu J, Arino M, Paramo J, Lopez-Romero A, Hsiao EY. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. Nat Commun 2025; 16:987. [PMID: 39856104 PMCID: PMC11759687 DOI: 10.1038/s41467-025-56091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The gut microbiome modulates the anti-seizure effects of the ketogenic diet, but how specific dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that medical ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and differentially promote resistance to 6-Hz seizures in mice. Dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts in a model human infant microbial community. Addition of fiber to a fiber-deficient ketogenic formula restores seizure resistance, and supplementing protective formulas with excess fiber potentiates seizure resistance. By screening 13 fiber sources and types, we identify metagenomic responses in the model community that correspond with increased seizure resistance. Supplementing with seizure-protective fibers enriches microbial genes related to queuosine biosynthesis and preQ0 biosynthesis and decreases genes related to sucrose degradation and TCA cycle, which are also seen in seizure-protected mice that are fed fiber-containing ketogenic formulas. This study reveals that different formulations of ketogenic diets, and dietary fiber content in particular, differentially impact seizure outcome in mice, likely by modifying the gut microbiome. Understanding interactions between diet, microbiome, and host susceptibility to seizures could inform novel microbiome-guided approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Kristie B Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Lyna Dinh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Katie Lau
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jessie Hsu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Mariana Arino
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Chen S, Jiao Y, Han C, Li Y, Zou W, Liu J. Drug-Resistant Epilepsy and Gut-Brain Axis: an Overview of a New Strategy for Treatment. Mol Neurobiol 2024; 61:10023-10040. [PMID: 38087164 DOI: 10.1007/s12035-023-03757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2024]
Abstract
Drug-resistant epilepsy (DRE), also known as intractable epilepsy or refractory epilepsy, is a disease state with long-term poorly controlled seizures attack. Without effective treatment, patients are at an elevated risk of injury, premature death, mental disorders, and poor quality of life, increasing the need for a fresh perspective on the etiology and treatment of DRE. The gut is known to harbor a wide variety of microorganisms that can regulate the host's response to exogenous signals and participate in various physiological and pathological processes in the human body. Interestingly, emerging evidence has uncovered the changes in gut microbiota in patients with epilepsy, particularly those with DRE. In addition, both dietary interventions and specific antibiotic therapy have been proven to be effective in restoring the microecological environment and, more importantly, reducing seizures. Here, we reviewed recent studies on DRE and the involvement of gut microbiota in it, describing changes in the gut microflora composition in patients with DRE and corresponding animal models. Furthermore, the influence of the ketogenic diet, probiotics, fecal microbiota transplantation (FMT), and antibiotics as microbiome-related factors on seizure control and its possible mechanisms are broadly discussed. Finally, we highlighted the significance of gut microbiome in DRE, in order to provide a new prospect for early identification and individualized treatment of patients with DRE.
Collapse
Affiliation(s)
- Shuna Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Yang Jiao
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| |
Collapse
|
5
|
Dezfouli MA, Rashidi SK, Yazdanfar N, Khalili H, Goudarzi M, Saadi A, Kiani Deh Kiani A. The emerging roles of neuroactive components produced by gut microbiota. Mol Biol Rep 2024; 52:1. [PMID: 39570444 DOI: 10.1007/s11033-024-10097-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND As a multifunctional ecosystem, the human digestive system contains a complex network of microorganisms, collectively known as gut microbiota. This consortium composed of more than 1013 microorganisms and Firmicutes and Bacteroidetes are the dominant microbes. Gut microbiota is increasingly recognized for its critical role in physiological processes beyond digestion. Gut microbiota participates in a symbiotic relationship with the host and takes advantage of intestinal nutrients and mutually participates in the digestion of complex carbohydrates and maintaining intestinal functions. METHOD AND RESULT We reviewed the neuroactive components produced by gut microbiota. Interestingly, microbiota plays a crucial role in regulating the activity of the intestinal lymphatic system, regulation of the intestinal epithelial barrier, and maintaining the tolerance to food immunostimulating molecules. The gut-brain axis is a two-way communication pathway that links the gut microbiota to the central nervous system (CNS) and importantly is involved in neurodevelopment, cognition, emotion and synaptic transmissions. The connections between gut microbiota and CNS are via endocrine system, immune system and vagus nerve. CONCLUSION The gut microbiota produces common neurotransmitters and neuromodulators of the nervous system. These compounds play a role in neuronal functions, immune system regulation, gastrointestinal homeostasis, permeability of the blood brain barrier and other physiological processes. This review investigates the essential aspects of the neurotransmitters and neuromodulators produced by gut microbiota and their implications in health and disease.
Collapse
Affiliation(s)
- Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nada Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Kiani Deh Kiani
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Ciancarelli I, Morone G, Iosa M, Cerasa A, Calabrò RS, Tozzi Ciancarelli MG. Neuronutrition and Its Impact on Post-Stroke Neurorehabilitation: Modulating Plasticity Through Diet. Nutrients 2024; 16:3705. [PMID: 39519537 PMCID: PMC11547614 DOI: 10.3390/nu16213705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The recovery of neurological deficits after ischemic stroke largely depends on the brain's ability to reorganize its undamaged neuronal circuits and neuronal plasticity phenomena. The consolidated evidence highlights the involvement of the patient's impaired nutritional conditions in post-stroke recovery and unsatisfying rehabilitative outcomes. Standardized nutritional protocols usually applied in hospitalized patients in a rehabilitation setting aim mainly to improve the general health conditions of patients, do not consider the high inter-individual variability in neurorehabilitation outcomes, and are not sufficiently modifiable to provide neuroprotective and restorative dietary patterns that could promote neuronal plasticity and functional recovery during neurorehabilitation. Neuronutrition, an emergent scientific field of neuroscience, represents a valid model of a personalized nutritional approach, assuring, for each patient, nutrients having antioxidant and anti-inflammatory properties, ensuring a balanced microbiota composition, and providing adequate neurotrophic support, essential for improving neuronal plasticity, brain functional recovery, and rehabilitative outcomes. In the present narrative review, we provide an overview of the current knowledge on neuronutrition as an adjuvant strategy of a personalized nutritional approach potentially effective in improving post-stroke neuroplasticity and neurorehabilitation by counteracting or at least limiting post-stroke oxidative/nitrosative stress, neuroinflammation, and gut-brain axis disturbance.
Collapse
Affiliation(s)
- Irene Ciancarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.C.); (M.G.T.C.)
- ASL 1 Abruzzo (Avezzano-Sulmona-L’Aquila), 67100 L’Aquila, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.C.); (M.G.T.C.)
- San Raffaele Institute of Sulmona, 67039 Sulmona, Italy
| | - Marco Iosa
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonio Cerasa
- Institute of BioImaging and Complex Biological Systems (IBSBC-CNR), Via T. Campanella, 88100 Catanzaro, Italy;
- S. Anna Institute, 88900 Crotone, Italy
| | | | | |
Collapse
|
7
|
Cherednichenko AS, Mozdor PV, Oleynikova TK, Khatam PA, Nastueva FM, Kovalenkov KO, Serdinova AS, Osmaeva AK, Rovchak AI, Esikova YY, Shogenova MK, Akhmedov KI, Amirgamzaev MR, Batyrshina ER. A relationship between intestinal microbiome and epilepsy: potential treatment options for drug-resistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:250-265. [DOI: 10.17749/2077-8333/epi.par.con.2024.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy. Almost 1/3 of patients are diagnosed with drug-resistant epilepsy (DRE). A relationship between intestinal microbiome (IM) and the central nervous system carried out throughout life via bidirectional dynamic network exists. It has been evidenced that IM profile becomes altered in patients with DRE.Objective: to summarize the current literature data on the role for microbiome-gut-brain axis in DRE, as well as to assess an importance of IM composition changes as a prognostic marker for developing DRE.Material and methods. The authors conducted a search for publications in the electronic databases PubMed/MEDLINE and eLibrary, as well as Google Scholar search engine. The evaluation of the articles was carried out in accordance with the PRISMA recommendations. Based on the search, 4,158 publications were retrieved from PubMed/MEDLINE database, 173 – from eLibrary, and 1,100 publications found with Google Scholar. After the selection procedure, 121 studies were included in the review.Results. The review provides convincing evidence about a correlation between IM and DRE demonstrating overt differences in IM composition found in patients with epilepsy related to drug sensitivity. IM dysbiosis can be corrected by exogenous interventions such as ketogenic diet, probiotic treatment and fecal microbiota transplantation subsequently resulting in altered brain neurochemical signaling and, therefore, alleviating epileptic activity.Conclusion. A ketogenic diet, probiotics and antibiotics may have some potential to affect epilepsy by correcting IM dysbiosis, but the current studies provide no proper level of evidence. Future clinical multicenter trials should use standardized protocols and a larger-scale patient sample to provide more reliable evidence. Moreover, further fundamental investigations are required to elucidate potential mechanisms and therapeutic targets.
Collapse
|
8
|
Özcan E, Yu KB, Dinh L, Lum GR, Lau K, Hsu J, Arino M, Paramo J, Lopez-Romero A, Hsiao EY. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606041. [PMID: 39131354 PMCID: PMC11312565 DOI: 10.1101/2024.07.31.606041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The gut microbiome is emerging as an important modulator of the anti-seizure effects of the classic ketogenic diet. However, many variations of the ketogenic diet are used clinically to treat refractory epilepsy, and how different dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that clinically prescribed ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and also in their ability to promote resistance to 6-Hz psychomotor seizures in mice. By screening specific dietary variables for their effects on a model human infant microbial community, we observe that dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts. Addition of dietary fiber to a fiber-deficient ketogenic formula restores seizure resistance, and supplementing protective ketogenic formulas with excess dietary fiber further potentiates seizure resistance. By screening 13 fiber sources and types, we identify distinct subsets of metagenomic responses in the model human infant microbial community that correspond with increased seizure resistance in mice. In particular, supplementation with seizure-protective fibers enriches microbial representation of genes related to queuosine biosynthesis and preQ0 biosynthesis and decreases representation of microbial genes related to sucrose degradation, which is also seen in seizure-protected mice that are fed fiber-containing ketogenic infant formulas. Overall, this study reveals that different formulations of clinical ketogenic diets, and dietary fiber content in particular, differentially impact seizure outcome in mice, likely through modification of the gut microbiome. Understanding interactions between dietary components of the ketogenic diet, the gut microbiome, and host susceptibility to seizures could inform novel microbiome-guided approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristie B Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Lyna Dinh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Katie Lau
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jessie Hsu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mariana Arino
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Molloy JW, Barry D. The interplay between glucose and ketone bodies in neural stem cell metabolism. J Neurosci Res 2024; 102:e25342. [PMID: 38773878 DOI: 10.1002/jnr.25342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including β-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.
Collapse
Affiliation(s)
- Joseph W Molloy
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Denis Barry
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Marinescu SC(N, Apetroaei MM, Nedea MI(I, Arsene AL, Velescu BȘ, Hîncu S, Stancu E, Pop AL, Drăgănescu D, Udeanu DI. Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet-Pharmacotherapy Interactions. Nutrients 2024; 16:1213. [PMID: 38674903 PMCID: PMC11054576 DOI: 10.3390/nu16081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients' compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.
Collapse
Affiliation(s)
- Simona Cristina (Nicolescu) Marinescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Amethyst Radiotherapy Center, 42, Drumul Odăi, 075100 Otopeni, Romania
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Sorina Hîncu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Fundeni Clinical Institute, 258, Fundeni Street, 022328 Bucharest, Romania
| | - Emilia Stancu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
11
|
Vendramini THA, Amaral AR, Rentas MF, Nogueira JPDS, Pedrinelli V, de Oliveira VV, Zafalon RVA, Brunetto MA. Ketogenic diets: A systematic review of current scientific evidence and possible applicability in dogs and cats. J Anim Physiol Anim Nutr (Berl) 2024; 108:541-556. [PMID: 38091342 DOI: 10.1111/jpn.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 03/06/2024]
Abstract
Ketogenic diets (KD) have been used in the treatment of epilepsy in humans for around a century and, more recently, they have been implanted for cancer patients, as well as in the treatment of obesity. This type of diet consists of high-fat levels, an adequate amount of protein and restricted carbohydrates, or high medium-chain triglycerides. Recently, the ketogenic diet has gained attention in veterinary medicine and studies were published evaluating the effects of KD in dogs with epilepsy. The objective of this review was to highlight recent studies about the application of KD in dogs and cats, to describe the neurobiochemical mechanisms through which KD improves epilepsy crisis, and their adverse effects. Studies were identified by a systematic review of literature available on PubMed, Embase, and Scopus. All cohort and case-control studies were included, and all articles were exported to Mendeley® citation manager, and duplicates were automatically removed. Seven articles and three conference abstracts conducted with dogs were included in the present study. There is evidence that the consumption of diets with medium-chain triglycerides increases the concentration of circulating ketone bodies and improves epilepsy signs, although these diets have higher carbohydrate and lower fat content when compared to the classic KD.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andressa R Amaral
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana F Rentas
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliana P D S Nogueira
- Department of Research & Development, Archer Daniels Midland Company (ADM), Animal Nutrition, Paulínia, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vinicius V de Oliveira
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | |
Collapse
|
12
|
Kaur A, Kumar S, Goel RK. Adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy. Epilepsy Res 2023; 198:107246. [PMID: 37925976 DOI: 10.1016/j.eplepsyres.2023.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to investigate the therapeutic potential of clotrimazole, an inhibitor of the transient receptor potential cation channel, for treating mitochondrial drug-resistant epilepsy and to understand its underlying neurochemical mechanisms. Adult albino mice underwent rotenone-corneal kindling, receiving daily electric shocks (15 mA, 20 V, 6-Hz for 3 s) through a corneal electrode, to induce mitochondrial drug-resistant epilepsy. The onset of drug resistance was confirmed by the significant (p < 0.05) lack of seizure control with standard antiseizure medications including levetiracetam (40 mg/kg), valproate (250 mg/kg), phenytoin (35 mg/kg), lamotrigine (15 mg/kg), and carbamazepine (40 mg/kg). Drug-resistant mice were then classified into one vehicle-treated group and three groups treated with varying doses of clotrimazole (40, 80, and 160 mg/kg orally). Neurochemical analysis of the seizurogenic hippocampus and cerebral cortex was conducted using high-performance liquid chromatography with an electrochemical detector. Administration of clotrimazole alongside standard antiseizure medications led to a significant decrease (p < 0.05) in seizure scores suggesting the restoration of antiseizure effects. Neurochemicals, including tryptophan, serotonin, kynurenine, serine, taurine, gamma-aminobutyric acid, and glutamate, were significantly restored post-clotrimazole treatment. Overall, the present study underscores the adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy, emphasising its role in neurochemical restoration.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India; Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
13
|
Landini L, Dadson P, Gallo F, Honka MJ, Cena H. Microbiota in anorexia nervosa: potential for treatment. Nutr Res Rev 2023; 36:372-391. [PMID: 35875979 DOI: 10.1017/s0954422422000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anorexia nervosa (AN) is characterised by the restriction of energy intake in relation to energy needs and a significantly lowered body weight than normally expected, coupled with an intense fear of gaining weight. Treatment of AN is currently based on psychological and refeeding approaches, but their efficacy remains limited since 40% of patients after 10 years of medical care still present symptoms of AN. The intestine hosts a large community of microorganisms, called the "microbiota", which live in symbiosis with the human host. The gut microbiota of a healthy human is dominated by bacteria from two phyla: Firmicutes and, majorly, Bacteroidetes. However, the proportion in their representation differs on an individual basis and depends on many external factors including medical treatment, geographical location and hereditary, immunological and lifestyle factors. Drastic changes in dietary intake may profoundly impact the composition of the gut microbiota, and the resulting dysbiosis may play a part in the onset and/or maintenance of comorbidities associated with AN, such as gastrointestinal disorders, anxiety and depression, as well as appetite dysregulation. Furthermore, studies have reported the presence of atypical intestinal microbial composition in patients with AN compared with healthy normal-weight controls. This review addresses the current knowledge about the role of the gut microbiota in the pathogenesis and treatment of AN. The review also focuses on the bidirectional interaction between the gastrointestinal tract and the central nervous system (microbiota-gut-brain axis), considering the potential use of the gut microbiota manipulation in the prevention and treatment of AN.
Collapse
Affiliation(s)
- Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
| | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | - Fabrizio Gallo
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
| | | | - Hellas Cena
- Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
14
|
Dilmore AH, Martino C, Neth BJ, West KA, Zemlin J, Rahman G, Panitchpakdi M, Meehan MJ, Weldon KC, Blach C, Schimmel L, Kaddurah-Daouk R, Dorrestein PC, Knight R, Craft S, Alzheimer’s Gut Microbiome Project Consortium. Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and foodome in adults at risk for Alzheimer's disease. Alzheimers Dement 2023; 19:4805-4816. [PMID: 37017243 PMCID: PMC10551050 DOI: 10.1002/alz.13007] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION The ketogenic diet (KD) is an intriguing therapeutic candidate for Alzheimer's disease (AD) given its protective effects against metabolic dysregulation and seizures. Gut microbiota are essential for KD-mediated neuroprotection against seizures as well as modulation of bile acids, which play a major role in cholesterol metabolism. These relationships motivated our analysis of gut microbiota and metabolites related to cognitive status following a controlled KD intervention compared with a low-fat-diet intervention. METHODS Prediabetic adults, either with mild cognitive impairment (MCI) or cognitively normal (CN), were placed on either a low-fat American Heart Association diet or high-fat modified Mediterranean KD (MMKD) for 6 weeks; then, after a 6-week washout period, they crossed over to the alternate diet. We collected stool samples for shotgun metagenomics and untargeted metabolomics at five time points to investigate individuals' microbiome and metabolome throughout the dietary interventions. RESULTS Participants with MCI on the MMKD had lower levels of GABA-producing microbes Alistipes sp. CAG:514 and GABA, and higher levels of GABA-regulating microbes Akkermansia muciniphila. MCI individuals with curcumin in their diet had lower levels of bile salt hydrolase-containing microbes and an altered bile acid pool, suggesting reduced gut motility. DISCUSSION Our results suggest that the MMKD may benefit adults with MCI through modulation of GABA levels and gut-transit time.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
| | | | - Kiana A. West
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Jasmine Zemlin
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Gibraan Rahman
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Michael J. Meehan
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Kelly C. Weldon
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Duke Institute of Brain Sciences, Duke University, Durham, NC
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Duke Institute of Brain Sciences, Duke University, Durham, NC
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Duke Institute of Brain Sciences, Duke University, Durham, NC
| | - Pieter C Dorrestein
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Department of Bioengineering, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Geriatrics and Gerontology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alzheimer’s Gut Microbiome Project Consortium
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Department of Medicine, Duke University, Durham, NC
- Department of Internal Medicine, Section on Geriatrics and Gerontology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
15
|
Kong D, Sun JX, Yang JQ, Li YS, Bi K, Zhang ZY, Wang KH, Luo HY, Zhu M, Xu Y. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front Nutr 2023; 10:1191903. [PMID: 37575322 PMCID: PMC10414993 DOI: 10.3389/fnut.2023.1191903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.
Collapse
Affiliation(s)
- Deshenyue Kong
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-qun Yang
- Third People’s Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, China
| | - Yuan-sen Li
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-yue Zhang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Kun-hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Hua-you Luo
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
De Giorgis V, Tagliabue A, Bisulli F, Brambilla I, Camerini A, Cusmai R, Darra F, Dianin A, Domenica E, Lodi MAM, Matricardi S, Messana T, Operto F, Ragona F, Russo E, Varesio C, Volpi L, Zanaboni MP, Pasca L, Veggiotti P. Ketogenic dietary therapies in epilepsy: recommendations of the Italian League against Epilepsy Dietary Therapy Study Group. Front Neurol 2023; 14:1215618. [PMID: 37497012 PMCID: PMC10368245 DOI: 10.3389/fneur.2023.1215618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 07/28/2023] Open
Abstract
A stepwise increase in the utilization of ketogenic dietary therapies for drug-resistant epilepsy has been observed in Italy in the last decade, although it is still considered often underused in many centers when compared to other countries. The Dietary Therapy Study Group of the Italian League against Epilepsy proposes practical recommendations to improve shared knowledge and facilitate the application of ketogenic dietary therapies, optimizing its efficacy and tolerability. The experts involved (11 child neuropsychiatrists, two adult neurologists, one psychologist, one pharmacologist, one pediatric endocrinologist, one representative of patients' associations, and three dietitians and clinical nutritionists) responded to a survey on current clinical practice issues and were asked to discuss controversial topics related to supplementation, long-term maintenance, transition, and a multidisciplinary approach to ketogenic dietary therapies. Practical indications for patient selection, diet initiation, management, side effects prevention, and follow-up are provided.
Collapse
Affiliation(s)
- Valentina De Giorgis
- Department of Brain and Behaviour Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Tagliabue
- Department of Public Health, Human Nutrition and Eating Disorder Research Center and Ketogenic Metabolic Therapy Laboratory—Experimental and Forensic Medicine University of Pavia, Pavia, Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ilaria Brambilla
- Endocrinologia, Diabetologia e Ginecologia Pediatrica, Fondazione IRCCS Policlinico San Matteo di Pavia, Università degli Studi di Pavia, Pavia, Italy
| | | | - Raffaella Cusmai
- Child Neurology Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Engineering for Innovation Medicine, University of Verona, Full Member of European Reference Network EpiCARE, Verona, Italy
| | - Alice Dianin
- Inherited Metabolic Diseases Unit and Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elia Domenica
- Artificial Nutrition Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Monica Anna Maria Lodi
- Department of Child Neuropsychiatry, Epilepsy Center, Fatebenefratelli Hospital, Milan, Italy
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Tullio Messana
- Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'etá pediatrica, Member of the ERN Epicare, Bologna, Italy
| | - Francesca Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesca Ragona
- Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Emilio Russo
- Science of Health Department, University of Catanzaro, Catanzaro, Italy
| | - Costanza Varesio
- Department of Brain and Behaviour Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Lilia Volpi
- UOC Neurologia, IRCCS Istituto delle Scienze Neurologiche, Azienda USL di Bologna, Ospedale Bellaria Bologna, Bologna, Italy
| | | | - Ludovica Pasca
- Department of Brain and Behaviour Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pierangelo Veggiotti
- Vittore Buzzi Children's Hospital, Pediatric Neurology Unit, Milan, Italy
- Department of Biomedical and Clinical Sciences, L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Altıntaş M, Yıldırım M, Uçar Çİ, Köse E, Bektaş Ö, Teber S. Ketogenic diet-responsive drug-resistant epilepsy in a case of asparagine synthetase deficiency with a novel compound heterozygous missense variant. Clin Neurol Neurosurg 2023; 230:107772. [PMID: 37167844 DOI: 10.1016/j.clineuro.2023.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Asparagine synthetase deficiency (ASNSD) is a rare autosomal recessive neurometabolic disorder caused by homozygous or compound heterozygous mutations in the ASNS gene. Most of the patients have early-onset intractable seizures. A 7-year-old boy was first admitted to our clinic with intractable febrile and afebrile seizures that started when he was 6 months old. He had axial hypotonia with spastic quadriparesis, mild facial dysmorphism, and acquired microcephaly at 1 year-old. Metabolic tests showed a borderline-low serum asparagine level. The electroencephalogram demonstrated epileptic discharges with a high incidence of multifocal spike-wave activity. Brain MRI showed mild cerebral atrophy. His seizures continued despite combinations of multiple antiseizure agents. Whole-exome sequencing (WES) revealed a novel compound heterozygous missense variant of the ASNS gene, and the variants were confirmed by Sanger sequencing. He was started on a ketogenic diet at five years and six months of age. In the first month of the ketogenic diet, we observed that the frequency of seizures significantly decreased. He showed a remarkable improvement in seizures and milder improvement in cognitive skills. To our knowledge, our case is the first report describing significant improvement with a ketogenic diet in intractable seizures due to ASNSD.
Collapse
Affiliation(s)
- Mert Altıntaş
- Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Miraç Yıldırım
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey.
| | - Çiğdem İlter Uçar
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Engin Köse
- Department of Pediatric Metabolism and Nutrition, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ömer Bektaş
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serap Teber
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
19
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
20
|
Caraballo R. Ketogenic Diet and Drug-Resistant Epilepsy. PHARMACORESISTANCE IN EPILEPSY 2023:479-498. [DOI: 10.1007/978-3-031-36526-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
22
|
Sanderlin AH, Hayden KM, Baker LD, Craft S. Ketogenic dietary lifestyle intervention effects on sleep, cognition, and behavior in mild cognitive impairment: Study design. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12343. [PMID: 36177445 PMCID: PMC9473641 DOI: 10.1002/trc2.12343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
Introduction Sleep and diet are modifiable risk factors for Alzheimer's disease (AD) that may be salient areas for the development of preventive intervention strategies against dementia in people with mild cognitive impairment (MCI). Sleep disturbances account for up to 15% of the population attributable risk for AD. Diet influences sleep quality, such that diets high in sugars, fat, and processed food affect sleep quality and cognition in older adults. The combination of poor sleep and diet health may increase risk for dementia in people with MCI, yet it is unknown how intervening on diet may influence sleep health. Methods The MCI Sleep Study assesses longitudinal changes in objective and subjective measures of sleep between two investigational diet groups in the Brain Energy for Amyloid Transformation in Alzheimer's Disease study: the modified Mediterranean ketogenic diet (MMKD) and the American Heart Association diet. Objective sleep assessments include an in-home sleep study using the WatchPAT Central Plus (Itamar Medical, Ltd) at baseline and the end of the 4-month diet intervention. Subjective sleep questionnaires include the Epworth Sleepiness Scale and Pittsburgh Sleep Quality Index. The MCI Sleep Study outcome measures include longitudinal change in cognitive performance, mood, behavior, and quality of life. Results Study recruitment is currently ongoing. We hypothesize the low-carb MMKD diet to have a beneficial impact on sleep health in individuals with MCI. Pre- and post-diet changes in sleep metrics across diet groups will be examined using mixed effects analysis of variance models. Discussion Early assessment of chronic sleep and diet behaviors may be vital in understanding when interventions are necessary and the lifestyle modifications that should accompany future AD prevention and therapy recommendations.
Collapse
Affiliation(s)
- Ashley H. Sanderlin
- Department of Internal Medicine—Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health PolicyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Laura D. Baker
- Department of Internal Medicine—Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Social Sciences and Health PolicyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine—Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
23
|
Habashy KJ, Ahmad F, Ibeh S, Mantash S, Kobeissy F, Issa H, Habis R, Tfaily A, Nabha S, Harati H, Reslan MA, Yehya Y, Barsa C, Shaito A, Zibara K, El-Yazbi AF, Kobeissy FH. Western and ketogenic diets in neurological disorders: can you tell the difference? Nutr Rev 2022; 80:1927-1941. [PMID: 35172003 DOI: 10.1093/nutrit/nuac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The prevalence of obesity tripled worldwide between 1975 and 2016, and it is projected that half of the US population will be overweight by 2030. The obesity pandemic is attributed, in part, to the increasing consumption of the high-fat, high-carbohydrate Western diet, which predisposes to the development of the metabolic syndrome and correlates with decreased cognitive performance. In contrast, the high-fat, low-carbohydrate ketogenic diet has potential therapeutic roles and has been used to manage intractable seizures since the early 1920s. The brain accounts for 25% of total body glucose metabolism and, as a result, is especially susceptible to changes in the types of nutrients consumed. Here, we discuss the principles of brain metabolism with a focus on the distinct effects of the Western and ketogenic diets on the progression of neurological diseases such as epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury, highlighting the need to further explore the potential therapeutic effects of the ketogenic diet and the importance of standardizing dietary formulations to assure the reproducibility of clinical trials.
Collapse
Affiliation(s)
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Mantash
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Fatima Kobeissy
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ralph Habis
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Tfaily
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Comprehensive Epilepsy Program, Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Yehya
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha, Qatar
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
25
|
Marcotulli D, Davico C, Somà A, Teghille G, Ravaglia G, Amianto F, Ricci F, Puccinelli MP, Spada M, Vitiello B. Association between EEG Paroxysmal Abnormalities and Levels of Plasma Amino Acids and Urinary Organic Acids in Children with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2022; 9:540. [PMID: 35455584 PMCID: PMC9031943 DOI: 10.3390/children9040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Abnormalities in the plasma amino acid and/or urinary organic acid profile have been reported in autism spectrum disorder (ASD). An imbalance between excitatory and inhibitory neuronal activity has been proposed as a mechanism to explain dysfunctional brain networks in ASD, as also suggested by the increased risk of epilepsy in this disorder. This study explored the possible association between presence of EEG paroxysmal abnormalities and the metabolic profile of plasma amino acids and urinary organic acids in children with ASD. In a sample of 55 children with ASD (81.8% male, mean age 53.67 months), EEGs were recorded, and 24 plasma amino acids and 56 urinary organic acids analyzed. EEG epileptiform discharges were found in 36 (65%) children. A LASSO regression, adjusted by age and sex, was applied to evaluate the association of plasma amino acids and urinary organic acids profiles with the presence of EEG epileptiform discharges. Plasma levels of threonine (THR) (coefficient = -0.02, p = 0.04) and urinary concentration of 3-Hydroxy-3-Methylglutaric acid (HMGA) (coefficient = 0.04, p = 0.02) were found to be associated with the presence of epileptiform discharges. These results suggest that altered redox mechanisms might be linked to epileptiform brain activity in ASD.
Collapse
Affiliation(s)
- Daniele Marcotulli
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Chiara Davico
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Alessandra Somà
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Guido Teghille
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Giorgio Ravaglia
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Federico Amianto
- Department of Neuroscience, University of Turin, 10126 Turin, Italy;
| | - Federica Ricci
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Maria Paola Puccinelli
- Department of Clinical Biochemistry, “Baldi e Riberi” Laboratory, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Marco Spada
- Section of Pediatrics, Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy;
| | - Benedetto Vitiello
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| |
Collapse
|
26
|
Polito R, Valenzano A, Monda V, Cibelli G, Monda M, Messina G, Villano I, Messina A. Heart Rate Variability and Sympathetic Activity Is Modulated by Very Low-Calorie Ketogenic Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042253. [PMID: 35206443 PMCID: PMC8872337 DOI: 10.3390/ijerph19042253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Obesity is characterized by an energy imbalance and by the accumulation of visceral adipose tissue. The energy balance is controlled by a complex set of balanced physiological systems that provide hunger and satiety signals to the brain and regulate the body’s ability to consume energy. The central nervous system controls the metabolic state, influencing the activity of other systems and receiving information from them. Heart rate variability (HRV) is the natural variability of the heart rate in response to several factors. HRV is related to the interaction between the SNS and the parasympathetic. In the light of this evidence, the aim of this study is to investigate the possible effects of the two different dietary regimens such as very low-calorie ketogenic diet (VLCKD) vs. low caloric diet (LCD), on the functions of the nervous system, with particular attention to the autonomous control of heart rate variability (HRV). A total of 26 obese subjects underwent diet therapy in order to reduce body weight; they were also randomly divided into two groups: the VLCKD group and the LCD group. Our results showed that in both groups, there is a reduction in heart rate as an indicator of sympathetic activity; we found a statistically significant variation only in the VLCKD group. Therefore, this study supports the notion that the sympathovagal balance can be modulated by a specific diet, but further studies are needed to clarify the molecular pathway undergoing this modulation.
Collapse
Affiliation(s)
- Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (A.V.); (G.C.); (G.M.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (A.V.); (G.C.); (G.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.M.); (M.M.); (I.V.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (A.V.); (G.C.); (G.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.M.); (M.M.); (I.V.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (A.V.); (G.C.); (G.M.)
| | - Ines Villano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.M.); (M.M.); (I.V.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.M.); (M.M.); (I.V.)
- Correspondence: ; Tel.: +39-081-5665891
| |
Collapse
|
27
|
Murakami M, Tognini P. Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet. Nutrients 2022; 14:nu14040782. [PMID: 35215432 PMCID: PMC8879219 DOI: 10.3390/nu14040782] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The consumption of a high-fat, low-carbohydrate diet (ketogenic diet) has diverse effects on health and is expected to have therapeutic value in neurological disorders, metabolic syndrome, and cancer. Recent studies have shown that a ketogenic diet not only pronouncedly shifts the cellular metabolism to pseudo-starvation, but also exerts a variety of physiological functions on various organs through metabolites that act as energy substrates, signaling molecules, and epigenetic modifiers. In this review, we highlight the latest findings on the molecular mechanisms of a ketogenic diet and speculate on the significance of these functions in the context of the epigenome and microbiome. Unraveling the molecular basis of the bioactive effects of a ketogenic diet should provide solid evidence for its clinical application in a variety of diseases including cancer.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Correspondence:
| | - Paola Tognini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
- Laboratory of Biology, Scuola Normale, Superiore, 56126 Pisa, Italy
| |
Collapse
|
28
|
Carneiro L, Pellerin L. Nutritional Impact on Metabolic Homeostasis and Brain Health. Front Neurosci 2022; 15:767405. [PMID: 35153657 PMCID: PMC8829049 DOI: 10.3389/fnins.2021.767405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aging in modern societies is often associated with various diseases including metabolic and neurodegenerative disorders. In recent years, researchers have shown that both dysfunctions are related to each other. Although the relationship is not fully understood, recent evidence indicate that metabolic control plays a determinant role in neural defects onset. Indeed, energy balance dysregulation affects neuroenergetics by altering energy supply and thus neuronal activity. Consistently, different diets to help control body weight, blood glucose or insulin sensitivity are also effective in improving neurodegenerative disorders, dampening symptoms, or decreasing the risk of disease onset. Moreover, adapted nutritional recommendations improve learning, memory, and mood in healthy subjects as well. Interestingly, adjusted carbohydrate content of meals is the most efficient for both brain function and metabolic regulation improvement. Notably, documented neurological disorders impacted by specific diets suggest that the processes involved are inflammation, mitochondrial function and redox balance as well as ATP production. Interestingly, processes involving inflammation, mitochondrial function and redox balance as well as ATP production are also described in brain regulation of energy homeostasis. Therefore, it is likely that changes in brain function induced by diets can affect brain control of energy homeostasis and other brain functions such as memory, anxiety, social behavior, or motor skills. Moreover, a defect in energy supply could participate to the development of neurodegenerative disorders. Among the possible processes involved, the role of ketone bodies metabolism, neurogenesis and synaptic plasticity, oxidative stress and inflammation or epigenetic regulations as well as gut-brain axis and SCFA have been proposed in the literature. Therefore, the goal of this review is to provide hints about how nutritional studies could help to better understand the tight relationship between metabolic balance, brain activity and aging. Altogether, diets that help maintaining a metabolic balance could be key to both maintain energy homeostasis and prevent neurological disorders, thus contributing to promote healthy aging.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, United States
| | - Luc Pellerin
- Inserm U1082, Université de Poitiers and CHU de Poitiers, Poitiers, France
| |
Collapse
|
29
|
Chen M, Ruan G, Chen L, Ying S, Li G, Xu F, Xiao Z, Tian Y, Lv L, Ping Y, Cheng Y, Wei Y. Neurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome. Front Endocrinol (Lausanne) 2022; 13:817100. [PMID: 35250873 PMCID: PMC8888441 DOI: 10.3389/fendo.2022.817100] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder of unknown etiology. IBS is caused by a disruption in the gut-brain axis. Given the importance of the gut microbiota in maintaining local and systemic homeostasis of immunity, endocrine, and other physiological processes, the microbiota-gut-brain axis has been proposed as a key regulator in IBS. Neurotransmitters have been shown to affect blood flow regulation, intestinal motility, nutrient absorption, the gastrointestinal immune system, and the microbiota in recent studies. It has the potential role to play a function in the pathophysiology of the gastrointestinal and neurological systems. Transmitters and their receptors, including 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and histamine, play an important role in IBS, especially in visceral sensitivity and gastrointestinal motility. Studies in this field have shed light on revealing the mechanism by which neurotransmitters act in the pathogenesis of IBS and discovering new therapeutic strategies based on traditional pharmacological approaches that target the nervous system or novel therapies that target the microbiota.
Collapse
Affiliation(s)
- Minjia Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Pathogenic Biology and Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangcong Ruan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Senhong Ying
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guanhu Li
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fenghua Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linling Lv
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Ping
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Yi Cheng,
| | - Yanling Wei
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Yi Cheng,
| |
Collapse
|
30
|
Ricci A, Idzikowski MA, Soares CN, Brietzke E. Exploring the mechanisms of action of the antidepressant effect of the ketogenic diet. Rev Neurosci 2021; 31:637-648. [PMID: 32406387 DOI: 10.1515/revneuro-2019-0073] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
The ketogenic diet (KD) is characterized by a diet ratio of 4:1 fat to non-fat energy sources. For decades KD has been successfully used to control seizures in epilepsy patients. Investigations into its mechanism of action suggest that it may have an effect on the metabolic, nervous, immune, and digestive systems. In this review, we postulate that KD may also improve depressive symptoms - for that, we highlight the similarities between depression and epilepsy, describe the extent to which body systems involved in both conditions are affected by the KD, and ultimately hypothesize how KD could improve MDD outcomes. Research into animal models and human patients have reported that KD can increase mitochondrial biogenesis and increase cellular resistance to oxidative stress both at the mitochondrial and genetic levels. Its effect on neurotransmitters alters cell-to-cell communication in the brain and may decrease hyperexcitability by increasing Gamma Aminobutyric Acid (GABA) and decreasing excitatory neurotransmitter levels. Its anti-inflammatory effects are mediated by decreasing chemo- and cytokine levels, including TNF-alpha and IL-1 levels. Finally, KD can alter gut microbiota (GM). Certain strains of microbiota predominate in major depressive disorder (MDD) when compared to healthy individuals. Recent evidence points to Bacteroidetes as a potential treatment predictor as it seems to increase in KD treatment responders for epilepsy. Each of these observations contributes to the presumed modulatory effects of KD on mood and supports its potential role as antidepressant.
Collapse
Affiliation(s)
- Alessandro Ricci
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada
| | - Maia A Idzikowski
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada
| | - Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Kingston General Hospital, Kingston, ON, Canada.,Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada.,Kingston General Hospital, Kingston, ON, Canada.,Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| |
Collapse
|
31
|
García-Rodríguez D, Giménez-Cassina A. Ketone Bodies in the Brain Beyond Fuel Metabolism: From Excitability to Gene Expression and Cell Signaling. Front Mol Neurosci 2021; 14:732120. [PMID: 34512261 PMCID: PMC8429829 DOI: 10.3389/fnmol.2021.732120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ketone bodies are metabolites that replace glucose as the main fuel of the brain in situations of glucose scarcity, including prolonged fasting, extenuating exercise, or pathological conditions such as diabetes. Beyond their role as an alternative fuel for the brain, the impact of ketone bodies on neuronal physiology has been highlighted by the use of the so-called “ketogenic diets,” which were proposed about a century ago to treat infantile seizures. These diets mimic fasting by reducing drastically the intake of carbohydrates and proteins and replacing them with fat, thus promoting ketogenesis. The fact that ketogenic diets have such a profound effect on epileptic seizures points to complex biological effects of ketone bodies in addition to their role as a source of ATP. In this review, we specifically focus on the ability of ketone bodies to regulate neuronal excitability and their effects on gene expression to respond to oxidative stress. Finally, we also discuss their capacity as signaling molecules in brain cells.
Collapse
Affiliation(s)
- Darío García-Rodríguez
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfredo Giménez-Cassina
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Patrono E, Svoboda J, Stuchlík A. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis. Behav Brain Funct 2021; 17:7. [PMID: 34158061 PMCID: PMC8218443 DOI: 10.1186/s12993-021-00180-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism. There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota–schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.
Collapse
Affiliation(s)
- Enrico Patrono
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| | - Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| |
Collapse
|
33
|
Wang J, Huang J, Yao S, Wu JH, Li HB, Gao F, Wang Y, Huang GB, You QL, Li J, Chen X, Sun XD. The ketogenic diet increases Neuregulin 1 expression via elevating histone acetylation and its anti-seizure effect requires ErbB4 kinase activity. Cell Biosci 2021; 11:93. [PMID: 34020711 PMCID: PMC8139023 DOI: 10.1186/s13578-021-00611-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The ketogenic diet (KD)has been considered an effective treatment for epilepsy, whereas its underlying mechanisms remain obscure. We have previously reported that the KD feeding increased Neuregulin 1 (NRG1) expression in the hippocampus; disruption of NRG1 signaling by genetically deleting its receptor-ErbB4 abolished KDs effects on inhibitory synaptic activity and seizures. However, it is still unclear about the mechanisms underlying the effect of KD on NRG1 expression and whether the effects of KD require ErbB4 kinase activity. Methods The effects of the KD on NRG1 expression were assessed via western blotting and real-time PCR. Acetylation level at the Nrg1 promoter locus was examined using the chromatin immunoprecipitation technique. Kainic acid (KA)-induced acute seizure model was utilized to examine the effects of KD and histone deacetylase inhibitor-TSA on seizures. Synaptic activities in the hippocampus were recorded with the technique of electrophysiology. The obligatory role of ErbB4 kinase activity in KDs effects on seizures and inhibitory synaptic activity was evaluated by using ErbB kinase antagonist and transgenic mouse-T796G. Results We report that KD specifically increases Type I NRG1 expression in the hippocampus. Using the chromatin immunoprecipitation technique, we observe increased acetylated-histone occupancy at the Nrg1 promoter locus of KD-fed mice. Treatment of TSA dramatically elevates NRG1 expression and diminishes the difference between the effects of the control diet (CD) and KD. These data indicate that KD increases NRG1 expression via up-regulating histone acetylation. Moreover, both pharmacological and genetic inhibitions of ErbB4 kinase activity significantly block the KDs effects on inhibitory synaptic activity and seizure, suggesting an essential role of ErbB4 kinase activity. Conclusion These results strengthen our understanding of the role of NRG1/ErbB4 signaling in KD and shed light on novel therapeutic interventions for epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00611-7.
Collapse
Affiliation(s)
- Jin Wang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jie Huang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Shan Yao
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jia-Hui Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hui-Bin Li
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Feng Gao
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Ying Wang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Guo-Bin Huang
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Qiang-Long You
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jianhua Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Chen
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| | - Xiang-Dong Sun
- Emergency Department, Institute of Neuroscience, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
34
|
Masino SA, Ruskin DN, Freedgood NR, Lindefeldt M, Dahlin M. Differential ketogenic diet-induced shift in CSF lipid/carbohydrate metabolome of pediatric epilepsy patients with optimal vs. no anticonvulsant response: a pilot study. Nutr Metab (Lond) 2021; 18:23. [PMID: 33648550 PMCID: PMC7923458 DOI: 10.1186/s12986-020-00524-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/21/2020] [Indexed: 02/02/2023] Open
Abstract
Background The low carbohydrate, high fat ketogenic diet can be an effective anticonvulsant treatment in some pediatric patients with pharmacoresistant epilepsy. Its mechanism(s) of action, however, remain uncertain. Direct sampling of cerebrospinal fluid before and during metabolic therapy may reveal key changes associated with differential clinical outcomes. We characterized the relationship between seizure responsiveness and changes in lipid and carbohydrate metabolites. Methods We performed metabolomic analysis of cerebrospinal fluid samples taken before and during ketogenic diet treatment in patients with optimal response (100% seizure remission) and patients with no response (no seizure improvement) to search for differential diet effects in hallmark metabolic compounds in these two groups. Optimal responders and non-responders were similar in age range and included males and females. Seizure types and the etiologies or syndromes of epilepsy varied but did not appear to differ systematically between responders and non-responders. Results Analysis showed a strong effect of ketogenic diet treatment on the cerebrospinal fluid metabolome. Longitudinal and between-subjects analyses revealed that many lipids and carbohydrates were changed significantly by ketogenic diet, with changes typically being of larger magnitude in responders. Notably, responders had more robust changes in glucose and the ketone bodies β-hydroxybutyrate and acetoacetate than non-responders; conversely, non-responders had significant increases in fructose and sorbose, which did not occur in responders. Conclusions The data suggest that a differential and stronger metabolic response to the ketogenic diet may predict a better anticonvulsant response, and such variability is likely due to inherent biological factors of individual patients. Strategies to boost the metabolic response may be beneficial.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA.
| | - Natalie R Freedgood
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - Marie Lindefeldt
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Diet- and sex-related changes of gut microbiota composition and functional profiles after 4 months of weight loss intervention. Eur J Nutr 2021; 60:3279-3301. [PMID: 33591390 DOI: 10.1007/s00394-021-02508-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Obesity has been related to intestinal dysbiosis and the modification of gut microbiota composition by dietary strategies becomes a promising strategy to help manage obesity. The aim of the current study was to evaluate the effect of two weight-loss diets on the composition and functional profile of gut microbiota. METHODS 55 men and 124 women with BMI > 25 kg/m2 were randomly assigned to moderately high-protein (MHP) or low-fat (LF) diet. Differences in fecal bacteria abundance (based on 16 s rRNA sequencing) between before and after 4 months of calorie restriction was analyzed using EdgeR tool in MicrobiomeAnalyst platform. Bacterial functional profile was predicted using Tax4Fun and metagenomeSeq analysis. Significant KEGG Orthology (KO) terms were selected for the metabolomic study using chromatography. RESULTS After the intervention, MHP-men showed a significant decrease in Negativicutes, Selenomonadales, Dielma and Dielma fastidiosa. LF-men showed a significant increase in Bacilli, Lactobacillales, Christensenellaceae, Peptococcaceae, and Streptococcaceae, Peptococcus, Streptococcus and Christensenella, Duncaniella dubosii_CP039396_93.49%, Roseburia sp_AB744234_98.96% and Alistipes inops_KJ572413_99.57%. MHP-women increased Pasteurellales, Phascolarctobacterium succinatutens, Ruthenibacterium lactatiformans_LR215981_99.55% and decreased in Phascolarctobacterium succinatutens_NR112902_99.56%. Finally, LF-women presented a significant decrease in Bacteroides clarus and Erysipelothrix inopinata_CP060715_84.4%. Surprisingly, no matching bacterial changes were found between these four groups. A total of 42 KO, 10 metabolic pathways and 107 related metabolites related were found implicated in these bacterial changes. Seven metabolites were confirmed in plasma. CONCLUSION Weight-loss-related-changes in gut microbiome composition and the functional profile occur in a sex- and diet-related manner, showing that women and men could differentially benefit from the consumption of MHP and LF diets. TRIAL REGISTRATION NCT02737267, 10th March 2016 retrospectively registered.
Collapse
|
36
|
Wang J, Huang J, Li YQ, Yao S, Wu CH, Wang Y, Gao F, Xu MD, Huang GB, Zhao CQ, Wu JH, Zhang YL, Jiao R, Deng ZH, Jie W, Li HB, Xuan A, Sun XD. Neuregulin 1/ErbB4 signaling contributes to the anti-epileptic effects of the ketogenic diet. Cell Biosci 2021; 11:29. [PMID: 33536056 PMCID: PMC7860047 DOI: 10.1186/s13578-021-00536-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Background The ketogenic diet (KD) has been recognized as a potentially effective therapy to treat neuropsychiatric diseases, including epilepsy. Previous studies have indicated that KD treatment elevates γ-Amino butyric acid (GABA) levels in both human and murine brains, which presumably contributes to the KD’s anti-seizure effects. However, this has not been systematically investigated at the synaptic level, and the underlying molecular mechanisms remain to be elucidated. Methods Kainic acid (KA)-induced acute and chronic seizure models were utilized to examine the effects of KD treatment on seizure threshold and epileptogenesis. Synaptic activities in the hippocampus were recorded with the technique of electrophysiology. The effects of the KD on Neuregulin 1 (Nrg1) expression were assessed via RNA sequencing, real-time PCR and Western blotting. The obligatory role of Nrg1 in KD’s effects on seizures was evaluated through disruption of Nrg1 signaling in mice by genetically deleting its receptor-ErbB4. Results We found that KD treatment suppressed seizures in both acute and chronic seizure models and enhanced presynaptic GABA release probability in the hippocampus. By screening molecular targets linked to GABAergic activity with transcriptome analysis, we identified that KD treatment dramatically increased the Nrg1 gene expression in the hippocampus. Disruption of Nrg1 signaling by genetically deleting its receptor-ErbB4 abolished KD’s effects on GABAergic activity and seizures. Conclusion Our findings suggest a critical role of Nrg1/ErbB4 signaling in mediating KD’s effects on GABAergic activity and seizures, shedding light on developing new therapeutic interventions to seizure control.
Collapse
Affiliation(s)
- Jin Wang
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jie Huang
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.,Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511518, China
| | - Shan Yao
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Cui-Hong Wu
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Ying Wang
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Feng Gao
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Min-Dong Xu
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Guo-Bin Huang
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Chang-Qin Zhao
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jia-Hui Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yun-Long Zhang
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zi-Hao Deng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Jie
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Bin Li
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Aiguo Xuan
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
37
|
Gavrilovici C, Rho JM. Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. J Inherit Metab Dis 2021; 44:42-53. [PMID: 32654164 DOI: 10.1002/jimd.12283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Metabolic epilepsies arise in the context of rare inborn errors of metabolism (IEM), notably glucose transporter type 1 deficiency syndrome, succinic semialdehyde dehydrogenase deficiency, pyruvate dehydrogenase complex deficiency, nonketotic hyperglycinemia, and mitochondrial cytopathies. A common feature of these disorders is impaired bioenergetics, which through incompletely defined mechanisms result in a wide spectrum of neurological symptoms, such as epileptic seizures, developmental delay, and movement disorders. The ketogenic diet (KD) has been successfully utilized to treat such conditions to varying degrees. While the mechanisms underlying the clinical efficacy of the KD in IEM remain unclear, it is likely that the proposed heterogeneous targets influenced by the KD work in concert to rectify or ameliorate the downstream negative consequences of genetic mutations affecting key metabolic enzymes and substrates-such as oxidative stress and cell death. These beneficial effects can be broadly grouped into restoration of impaired bioenergetics and synaptic dysfunction, improved redox homeostasis, anti-inflammatory, and epigenetic activity. Hence, it is conceivable that the KD might prove useful in other metabolic disorders that present with epileptic seizures. At the same time, however, there are notable contraindications to KD use, such as fatty acid oxidation disorders. Clearly, more research is needed to better characterize those metabolic epilepsies that would be amenable to ketogenic therapies, both experimentally and clinically. In the end, the expanded knowledge base will be critical to designing metabolism-based treatments that can afford greater clinical efficacy and tolerability compared to current KD approaches, and improved long-term outcomes for patients.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
38
|
Neves GS, Lunardi MS, Lin K, Rieger DK, Ribeiro LC, Moreira JD. Ketogenic diet, seizure control, and cardiometabolic risk in adult patients with pharmacoresistant epilepsy: a review. Nutr Rev 2020; 79:931-944. [PMID: 33230563 DOI: 10.1093/nutrit/nuaa112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pharmacoresistant epilepsy causes serious deleterious effects on the patient's health and quality of life. For this condition, a ketogenic diet (KD) is a treatment option. The KD is a general term for a set of diets that contain high amounts of fat and low content of carbohydrates. The most prominent KD treatments are classical KD (4:1 ratio of fat to carbohydrate), modified Atkins diet (2:1 to 1:1 ratio), medium-chain triglycerides KD (with medium-chain triglyceride as a part of the fat content), and low glycemic index KD (using low glycemic carbohydrates). KD has been widely prescribed for children with epilepsy but not for adult patients. One of the main concerns about adult use of KD is its cardiovascular risk associated with high-fat and cholesterol intake. Therefore, this narrative review provides comprehensive information of the current literature on the effects of KD on lipid profile, glycemic-control biomarkers, and other cardiometabolic risk factors in adult patients with pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Gabriela S Neves
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Mariana S Lunardi
- Postgraduate Program in Medical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Katia Lin
- Postgraduate Program in Medical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Débora Kurrle Rieger
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Letícia C Ribeiro
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Júlia D Moreira
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
39
|
Ren JN, Yin KJ, Fan G, Li X, Zhao L, Li Z, Zhang LL, Xie DY, Pan SY, Yuan F. Effect of short-term intake of high- and low-concentrations of sucrose solution on the neurochemistry of male and female mice. Food Funct 2020; 11:9103-9113. [PMID: 33026021 DOI: 10.1039/d0fo02214d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of short-term intake of high- and low-concentrations of sucrose solution on the neurochemistry of male and female mice was studied. The body weight, feed intake, sucrose solution consumption and brain monoamine neurotransmitters were determined after 34 days' intake of 1% and 8% sucrose solutions. The gene expression and protein levels related to dopamine and opioids were also determined. The results showed that the intake of 1% and 8% sucrose solution for 34 days did not cause significant changes in the weight development of both male and female mice. The preference for sucrose varies with sex. Both males and females had greater preference for the high concentration sucrose solution than the low concentration sucrose solution. The continuous intake of sucrose stimulated the release of monoamine neurotransmitters (DA, 5-HT, NE) in the brains of mice, and the reward effect of 8% sucrose solution is significantly higher than that of 1% sucrose solution. The sex of mice did not affect the release of neurotransmitters. The gene expressions of D1 and D2 were up-regulated in the 1% sucrose group of male mice, while the OPRM1 gene expression was down-regulated. The expression of these three genes in the 8% sucrose group of male mice was all down-regulated, while the gene expressions of D1 and D2 in the 1% and 8% sucrose group (p < 0.05) of female mice were both up-regulated.
Collapse
Affiliation(s)
- Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Kai-Jing Yin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, China
| | - Zhi Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Ding-Yuan Xie
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Fang Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
40
|
Pittman QJ. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Res 2020; 166:106409. [PMID: 32673970 DOI: 10.1016/j.eplepsyres.2020.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023]
|
41
|
Mens Sana in Corpore Sano: Does the Glycemic Index Have a Role to Play? Nutrients 2020; 12:nu12102989. [PMID: 33003562 PMCID: PMC7599769 DOI: 10.3390/nu12102989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although diet interventions are mostly related to metabolic disorders, nowadays they are used in a wide variety of pathologies. From diabetes and obesity to cardiovascular diseases, to cancer or neurological disorders and stroke, nutritional recommendations are applied to almost all diseases. Among such disorders, metabolic disturbances and brain function and/or diseases have recently been shown to be linked. Indeed, numerous neurological functions are often associated with perturbations of whole-body energy homeostasis. In this regard, specific diets are used in various neurological conditions, such as epilepsy, stroke, or seizure recovery. In addition, Alzheimer’s disease and Autism Spectrum Disorders are also considered to be putatively improved by diet interventions. Glycemic index diets are a novel developed indicator expected to anticipate the changes in blood glucose induced by specific foods and how they can affect various physiological functions. Several results have provided indications of the efficiency of low-glycemic index diets in weight management and insulin sensitivity, but also cognitive function, epilepsy treatment, stroke, and neurodegenerative diseases. Overall, studies involving the glycemic index can provide new insights into the relationship between energy homeostasis regulation and brain function or related disorders. Therefore, in this review, we will summarize the main evidence on glycemic index involvement in brain mechanisms of energy homeostasis regulation.
Collapse
|
42
|
Jang SH, Woo YS, Lee SY, Bahk WM. The Brain-Gut-Microbiome Axis in Psychiatry. Int J Mol Sci 2020; 21:E7122. [PMID: 32992484 PMCID: PMC7583027 DOI: 10.3390/ijms21197122] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Beginning with the concept of the brain-gut axis, the importance of the interaction between the brain and the gastrointestinal tract has been extended to the microbiome with increasing clinical applications. With the recent development of various techniques for microbiome analysis, the number of relevant preclinical and clinical studies on animals and human subjects has rapidly increased. Various psychotic symptoms affect the intestinal microbiome through the hypothalamus-pituitary-adrenal gland axis. Conversely, the intestinal microbiome regulates the gastrointestinal tract environment and affects psychological factors by means of the microorganisms or their metabolites, either acting directly on the brain or through the synthesis of various neurotransmitters. This review discusses the clinical applicability of the brain-gut-microbiome axis and directions for improving psychological symptoms based on the studies published to date.
Collapse
Affiliation(s)
- Seung-Ho Jang
- Department of Psychiatry, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-H.J.); (S.-Y.L.)
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| | - Sang-Yeol Lee
- Department of Psychiatry, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-H.J.); (S.-Y.L.)
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| |
Collapse
|
43
|
Verrotti A, Iapadre G, Di Francesco L, Zagaroli L, Farello G. Diet in the Treatment of Epilepsy: What We Know So Far. Nutrients 2020; 12:2645. [PMID: 32872661 PMCID: PMC7551815 DOI: 10.3390/nu12092645] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a chronic and debilitating neurological disorder, with a worldwide prevalence of 0.5-1% and a lifetime incidence of 1-3%. An estimated 30% of epileptic patients continue to experience seizures throughout life, despite adequate drug therapy or surgery, with a major impact on society and global health. In recent decades, dietary regimens have been used effectively in the treatment of drug-resistant epilepsy, following the path of a non-pharmacological approach. The ketogenic diet and its variants (e.g., the modified Atkins diet) have an established role in contrasting epileptogenesis through the production of a series of cascading events induced by physiological ketosis. Other dietary regimens, such as caloric restriction and a gluten free diet, can also exert beneficial effects on neuroprotection and, therefore, on refractory epilepsy. The purpose of this review was to analyze the evidence from the literature about the possible efficacy of different dietary regimens on epilepsy, focusing on the underlying pathophysiological mechanisms, safety, and tolerability both in pediatric and adult population. We believe that a better knowledge of the cellular and molecular biochemical processes behind the anticonvulsant effects of alimentary therapies may lead to the development of personalized dietary intervention protocols.
Collapse
Affiliation(s)
- Alberto Verrotti
- Department of Pediatrics, University of L’Aquila, Via Vetoio, 1. Coppito, 67100 L’Aquila, Italy; (G.I.); (L.D.F.); (L.Z.); (G.F.)
| | | | | | | | | |
Collapse
|
44
|
Rozen TD. Can the effects of the mitochondrial DNA mutations found in Leber’s hereditary optic neuropathy be protective against the development of cluster headache in smokers? CEPHALALGIA REPORTS 2020. [DOI: 10.1177/2515816320939571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Is it possible that some mitochondrial DNA (mtDNA) mutations enhance the risk of developing a headache disorder while other mutations actually confer a protective effect? Mitochondrial disorders have been linked to migraine but very rarely to cluster headache (CH). The true pathogenesis of CH is unknown but a linkage to cigarette smoking is irrefutable. Leber’s hereditary optic neuropathy is a syndrome of bilateral vision loss that typically manifests in a patient’s 20s and 30s, is male predominant, and its sufferers are heavy smokers and heavy drinkers. Tobacco exposure is so linked to the condition that only smokers appear to develop vision loss while nonsmokers remain unaffected carriers of their mutations. In essence, the Leber’s hereditary optic neuropathy population is the CH population but at present there have been no reported cases of CH in this mitochondrial subgroup. Thus, could the effects of the mtDNA mutations found in Leber’s hereditary optic neuropathy, which involve complex I of the electron transport chain, actually confer a protective effect against the development of CH? This article will delve into this theory.
Collapse
Affiliation(s)
- Todd D Rozen
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
45
|
MRI spectroscopic and tractography studies indicate consequences of long-term ketogenic diet. Brain Struct Funct 2020; 225:2077-2089. [PMID: 32681181 PMCID: PMC7473966 DOI: 10.1007/s00429-020-02111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
To maintain its functional abilities, the mature brain obtains energy from glucose produced in carbohydrate metabolism. When carbohydrates are eliminated from the diet, the energy comes from the oxidation of fatty acids. In this metabolic state called ketosis, ketone bodies are formed: β-hydroxybutyric acid (bHb), acetone, and acetoacetate as alternative source of energy passing through the blood–brain barrier easily. The ketosis state can be achieved through various strategies like caloric restriction, supplementation with medium-chain triglycerides, intense physical training, or ketogenic diet (KD). Using KD, drug-resistant epilepsy has been successfully treated in children and adults. It can also exert neuroprotective influences in cases of brain damage, glioblastoma multiforme, and Alzheimer's or Parkinson's diseases. Although many possible mechanisms of KD activity have been proposed, newer hypotheses appear with the research progress, mostly characterizing the brain under pathological but not normal conditions. Since different pathological conditions may affect the mechanism of KD action differently, additional research on the normal brain appears reasonable. For this purpose, young adult rats were treated with 4-month-lasting KD. Then, MRI structural measurements, spectroscopy, and tractography were performed. The procedures revealed significant increases in the concentration of glutamine, glutamate, glutathione and NAA, accompanied by changes in the pattern of neuronal connections of the striatum and hippocampal formation. This implies a possible involvement of these structures in the functional changes occurring in the brain after KD application. Thus, the investigations on the normal brain add important details concerning mechanisms underlying KD effects without their possible modification by a pathological status.
Collapse
|
46
|
Alqahtani F, Imran I, Pervaiz H, Ashraf W, Perveen N, Rasool MF, Alasmari AF, Alharbi M, Samad N, Alqarni SA, Al-Rejaie SS, Alanazi MM. Non-pharmacological Interventions for Intractable Epilepsy. Saudi Pharm J 2020; 28:951-962. [PMID: 32792840 PMCID: PMC7414058 DOI: 10.1016/j.jsps.2020.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.
Collapse
Key Words
- ASDs, Antiepileptic drugs
- ATP, Adenosine triphosphate
- Anaplerotic diet
- BBB, Blood-brain barrier
- CKD, Classic ketogenic diet
- CSF, Cerebrospinal fluid
- EEG, Electroencephalography
- EMG, Electromyography
- GABA, Gamma-aminobutyric acid
- Intractable epilepsy
- KB, Ketone bodies
- KD, Ketogenic diet
- Ketogenic diet
- LC, Locus coeruleus
- LCFA, Long-chain fatty acids
- MAD, Modified Atkin's diet
- MCT, Medium-chain triglyceride
- MEP, Maximal evoked potential
- Music therapy
- NTS, Nucleus tractus solitaries
- PPAR, Peroxisome proliferator-activated receptor
- PUFAs, Polyunsaturated fatty acids
- RNS, Responsive neurostimulation
- ROS, reactive oxygen species
- SMR, Sensorimotor rhythm
- TCA, Tricarboxylic acid cycle
- TMS, Transcranial magnetic stimulation
- Transcranial magnetic stimulation Biofeedback therapy
- VNS, Vagus nerve stimulation
- Vagus nerve stimulation
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hafsa Pervaiz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Nadia Perveen
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Wells J, Swaminathan A, Paseka J, Hanson C. Efficacy and Safety of a Ketogenic Diet in Children and Adolescents with Refractory Epilepsy-A Review. Nutrients 2020; 12:nu12061809. [PMID: 32560503 PMCID: PMC7353240 DOI: 10.3390/nu12061809] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy in the pediatric and adolescent populations is a devastating condition where individuals are prone to recurrent epileptic seizures or changes in behavior or movement that is the direct result of a primary change in the electrical activity in the brain. Although many children with epilepsy will have seizures controlled with antiseizure medications (ASMs), a large percentage of patients are refractory to drug therapy and may consider initiating a ketogenic diet. The term Ketogenic Diet or Ketogenic Diet Therapy (KDT) refers to any diet therapy in which dietary composition results in a ketogenic state of human metabolism. Currently, there are 4 major Ketogenic diet therapies—the classic ketogenic diet (cKD), the modified Atkins diet (MAD), the medium chain triglyceride ketogenic diet (MCTKD) and the low glycemic index treatment (LGIT). The compositions of the 4 main KDTs differ and limited evidence to distinguish the efficacy among different diets currently exists. Although it is apparent that more randomized controlled trials (RCTs) and long-term studies are needed to evaluate efficacy, side effects and individual response to the diet, it is imperative to study and understand the metabolic profiles of patients with epilepsy in order to isolate which dietary restrictions are necessary to maximize clinical benefit.
Collapse
Affiliation(s)
- Jana Wells
- College of Allied Health Professions, University of Nebraska Medical Center, 984045 Nebraska Medical Center, Omaha, NE 68198-4045, USA;
- Correspondence:
| | - Arun Swaminathan
- Department of Neurological Sciences, University of Nebraska Medical Center, 988440 Nebraska Medical Center, Omaha, NE 68198-8440, USA;
| | - Jenna Paseka
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine 4350 Dewey Ave, Omaha, NE 68105, USA;
| | - Corrine Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, 984045 Nebraska Medical Center, Omaha, NE 68198-4045, USA;
| |
Collapse
|
48
|
Lyons L, Schoeler NE, Langan D, Cross JH. Use of ketogenic diet therapy in infants with epilepsy: A systematic review and meta-analysis. Epilepsia 2020; 61:1261-1281. [PMID: 32452537 DOI: 10.1111/epi.16543] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Ketogenic diet therapy (KDT) is a group of high-fat, low-carbohydrate diets used as an effective treatment option for children and adults with drug-resistant epilepsy. There is limited research on the efficacy of KDT in infants, where there is the highest incidence of onset of the epilepsy. We aimed to systematically review studies that have reported on response to KDT in infants with epilepsy. METHODS An online comprehensive literature search was performed, including studies that provided seizure frequency data for at least one infant younger than 2 years of age who was treated with KDT for ≥1 month. The proportions of infants achieving ≥50% seizure reduction, seizure-freedom rates, retention rates, and reported side effects were extracted from studies. Meta-analyses were performed using a random-effects model, and subgroup analyses were performed to investigate possible between-study heterogeneity. RESULTS Thirty-three studies met inclusion criteria and were included in the final analysis, with a total of 534 infants with efficacy data. Two studies were randomized-controlled trials, and the remainder were uncontrolled cohort studies. All studies were categorized as low quality. Meta-analyses of uncontrolled studies estimate 59% (95% confidence interval [CI] 53-65) of infants achieved ≥50% seizure reduction and 33% (95% CI 26-43) of infants achieved seizure freedom. Retention rates ranged from 84% at 3 months to 27% at 24 months. The most commonly reported side effects were dyslipidemia (20/171, 12%), vomiting (11/171, 6%), constipation (7/171, 4%), gastroesophageal reflux (6/171, 4%), and diarrhea (6/171, 4%). SIGNIFICANCE This review indicates that KDT is safe and tolerable and that it can be an effective treatment option for infants with drug-resistant epilepsy. However, there are few studies focusing on infants treated with KDT, and high-quality evidence is lacking. High-quality randomized-controlled trials are needed to confirm the effectiveness, safety, and tolerability of dietary treatment in this vulnerable age group.
Collapse
Affiliation(s)
- Laura Lyons
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Dean Langan
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - J Helen Cross
- UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
49
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
50
|
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2019; 134:104621. [PMID: 31628992 DOI: 10.1016/j.nbd.2019.104621] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|