1
|
Baltira C, Aronica E, Elmquist WF, Langer O, Löscher W, Sarkaria JN, Wesseling P, de Gooijer MC, van Tellingen O. The impact of ATP-binding cassette transporters in the diseased brain: Context matters. Cell Rep Med 2024; 5:101609. [PMID: 38897176 PMCID: PMC11228798 DOI: 10.1016/j.xcrm.2024.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
ATP-binding cassette (ABC) transporters facilitate the movement of diverse molecules across cellular membranes, including those within the CNS. While most extensively studied in microvascular endothelial cells forming the blood-brain barrier (BBB), other CNS cell types also express these transporters. Importantly, disruptions in the CNS microenvironment during disease can alter transporter expression and function. Through this comprehensive review, we explore the modulation of ABC transporters in various brain pathologies and the context-dependent consequences of these changes. For instance, downregulation of ABCB1 may exacerbate amyloid beta plaque deposition in Alzheimer's disease and facilitate neurotoxic compound entry in Parkinson's disease. Upregulation may worsen neuroinflammation by aiding chemokine-mediated CD8 T cell influx into multiple sclerosis lesions. Overall, ABC transporters at the BBB hinder drug entry, presenting challenges for effective pharmacotherapy. Understanding the context-dependent changes in ABC transporter expression and function is crucial for elucidating the etiology and developing treatments for brain diseases.
Collapse
Affiliation(s)
- Chrysiida Baltira
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Faculty of Biology, Medicine and Health, University of Manchester; The Christie NHS Foundation Trust, Manchester, UK.
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
3
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
4
|
Fei Z, Hu M, Baum L, Kwan P, Hong T, Zhang C. The potential role of human multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2 (MRP2) in the transport of Huperzine A in vitro. Xenobiotica 2019; 50:354-362. [PMID: 31132291 DOI: 10.1080/00498254.2019.1623935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ziyan Fei
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| | - Mengyun Hu
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| | - Larry Baum
- The State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, PR China
- Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Patrick Kwan
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| |
Collapse
|
5
|
Hartz AMS, Pekcec A, Soldner ELB, Zhong Y, Schlichtiger J, Bauer B. P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy. Mol Pharm 2017; 14:999-1011. [PMID: 28195743 DOI: 10.1021/acs.molpharmaceut.6b00770] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.
Collapse
Affiliation(s)
- Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky 40536, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky 40536, United States
| | - Anton Pekcec
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota , Duluth, Minnesota 55812, United States
| | - Emma L B Soldner
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota , Duluth, Minnesota 55812, United States
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky 40536, United States
| | - Juli Schlichtiger
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota , Duluth, Minnesota 55812, United States
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States.,Epilepsy Center, University of Kentucky , Lexington, Kentucky 40536, United States
| |
Collapse
|
6
|
Grewal GK, Kukal S, Kanojia N, Saso L, Kukreti S, Kukreti R. Effect of Oxidative Stress on ABC Transporters: Contribution to Epilepsy Pharmacoresistance. Molecules 2017; 22:molecules22030365. [PMID: 28264441 PMCID: PMC6155434 DOI: 10.3390/molecules22030365] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a neurological disorder affecting around 1%–2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response.
Collapse
Affiliation(s)
- Gurpreet Kaur Grewal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Samiksha Kukal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Neha Kanojia
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India.
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| |
Collapse
|
7
|
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. ACTA ACUST UNITED AC 2016; 6:225-248. [PMID: 28265539 PMCID: PMC5326671 DOI: 10.15171/bi.2016.30] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
![]()
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes.
Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting.
Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs).
Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, Zhou S, Pang Z, Geng D, Zhang J. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials 2016; 76:173-86. [DOI: 10.1016/j.biomaterials.2015.10.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022]
|
9
|
Baiceanu E, Crisan G, Loghin F, Falson P. Modulators of the human ABCC2: hope from natural sources? Future Med Chem 2015; 7:2041-63. [PMID: 26496229 DOI: 10.4155/fmc.15.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human ABCC2 is an ATP-binding cassette transporter involved in the export of endobiotics and xenobiotics. It is involved in cisplatin resistance in cancer cells, particularly in ovarian cancer. The few known ABCC2 modulators are poorly efficient, so it is necessary to explore new ways to select and optimize efficient compounds ABCC2. Natural products offer an original scaffold for such a strategy and brings hope for this aim. This review covers basic knowledge about ABCC2, from distribution and topology aspects to physiological and pathological functions. It summarizes the effect of natural products as ABCC2 modulators. Certain plant metabolites act on different ABCC2 regulation levels and therefore are promising candidates to block the multidrug resistance mediated by ABCC2 in cancer cells.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Gianina Crisan
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 5-9 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Pierre Falson
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
| |
Collapse
|
10
|
van Vliet E, Aronica E, Gorter J. Role of blood–brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 2014; 277:455-73. [DOI: 10.1016/j.neuroscience.2014.07.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
|
11
|
Disease Influence on BBB Transport in Neurodegenerative Disorders. DRUG DELIVERY TO THE BRAIN 2014. [DOI: 10.1007/978-1-4614-9105-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Yi JH, Cho YJ, Kim WJ, Lee MG, Lee JH. Genetic Variations of ABCC2 Gene Associated with Adverse Drug Reactions to Valproic Acid in Korean Epileptic Patients. Genomics Inform 2013; 11:254-62. [PMID: 24465238 PMCID: PMC3897854 DOI: 10.5808/gi.2013.11.4.254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022] Open
Abstract
The multidrug resistance protein 2 (MRP2, ABCC2) gene may determine individual susceptibility to adverse drug reactions (ADRs) in the central nervous system (CNS) by limiting brain access of antiepileptic drugs, especially valproic acid (VPA). Our objective was to investigate the effect of ABCC2 polymorphisms on ADRs caused by VPA in Korean epileptic patients. We examined the association of ABCC2 single-nucleotide polymorphisms and haplotype frequencies with VPA related to adverse reactions. In addition, the association of the polymorphisms with the risk of VPA related to adverse reactions was estimated by logistic regression analysis. A total of 41 (24.4%) patients had shown VPA-related adverse reactions in CNS, and the most frequent symptom was tremor (78.0%). The patients with CNS ADRs were more likely to have the G allele (79.3% vs. 62.7%, p = 0.0057) and the GG genotype (61.0% vs. 39.7%, p = 0.019) at the g.-1774delG locus. The frequency of the haplotype containing g.-1774Gdel was significantly lower in the patients with CNS ADRs than without CNS ADRs (15.8% vs. 32.3%, p = 0.0039). Lastly, in the multivariate logistic regression analysis, the presence of the GG genotype at the g.-1774delG locus was identified as a stronger risk factor for VPA related to ADRs (odds ratio, 8.53; 95% confidence interval, 1.04 to 70.17). We demonstrated that ABCC2 polymorphisms may influence VPA-related ADRs. The results above suggest the possible usefulness of ABCC2 gene polymorphisms as a marker for predicting response to VPA-related ADRs.
Collapse
Affiliation(s)
- Ji Hyun Yi
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Yang-Je Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji Hyun Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
13
|
Mittapalli RK, Manda VK, Bohn KA, Adkins CE, Lockman PR. Quantitative fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp mediated efflux at the in vivo blood-brain barrier. J Neurosci Methods 2013; 219:188-95. [PMID: 23916719 DOI: 10.1016/j.jneumeth.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 04/01/2013] [Accepted: 07/04/2013] [Indexed: 01/16/2023]
Abstract
Quantitative fluorescent microscopy is an emerging technology that has provided significant insight into cellular dye accumulation, organelle function, and tissue physiology. However, historically dyes have only been used to qualitatively or semi-quantitatively (fold change) determine changes in blood-brain barrier (BBB) integrity. Herein, we present a novel method to calculate the blood to brain transfer rates of the dyes rhodamine 123 and Texas red across the in situ BBB. We observed that rhodamine 123 is subject to p-glycoprotein mediated efflux at the rat BBB and can be increased nearly 20-fold with p-glycoprotein inhibition. However, Texas Red appears to not be subject to MRP2 mediated efflux at the rat BBB, agreeing with literature reports suggesting MRP2 may lack functionality at the normal rat BBB. Lastly, we present data demonstrating that once dyes have crossed the BBB, diffusion of the dye molecule is not as instantaneous as has been previously suggested. We propose that future work can now be completed to (1) match BBB transfer coefficients to interstitial diffusion constants and (2) use dyes with specific affinities to cellular organelles or that have specific properties (e.g., subject to efflux transporters) to more fully understand BBB physiology.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University HSC, Amarillo, TX 79106-1712, United States
| | | | | | | | | |
Collapse
|
14
|
Yao D, Liu L, Jin S, Li J, Liu XD. Overexpression of multidrug resistance-associated protein 2 in the brain of pentylenetetrazole-kindled rats. Neuroscience 2012; 227:283-92. [PMID: 23059797 DOI: 10.1016/j.neuroscience.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/11/2012] [Accepted: 10/02/2012] [Indexed: 01/03/2023]
Abstract
Clinical studies and animal models have shown that pharmacoresistant epilepsy is partly due to the overexpression of ATP-binding cassette transporters at the brain. The purposes of the study were to investigate the function and expression of multidrug resistance-associated protein 2 (Mrp2) in the brain of pentylenetetrazole (PTZ)-kindled rats, and the effect of the altered Mrp2 function and expression on phenytoin (PHT) distribution in the brain. Kindled rats were developed by sub-convulsive dose of PTZ (33 mg/kg, every day, intraperitoneal (i.p.)) for 28 days. Mrp2 expression and function were measured by western blot and bromosulfophthalein (BSP) distribution in the brain. PHT concentrations in the brain of PTZ-kindled rats were measured alone or with co-administration of probenecid (50mg/kg). Further experiment was designed to investigate whether PHT treatment prevented the up-regulated brain Mrp2 expression and function induced by PTZ-kindling. The results showed that PTZ-kindling resulted in an increase of Mrp2 level in the hippocampus and cortex of rats, accompanied by significant decreases in the brain-to-plasma concentration ratio of BSP. PTZ-kindling also decreased PHT levels in the hippocampus and cortex without altering PHT concentrations in plasma, resulting in a lower brain-to-plasma concentration ratio of PHT. Co-administration of probenecid increased the brain-to-plasma ratio of BSP and PHT in the brain of both normal and PTZ-kindled rats. A 14-day PHT treatment prevented the up-regulation of Mrp2 expression and function induced by PTZ-kindling, accompanied by increases of PHT concentrations in the brain and good anticonvulsive effects. The present study demonstrated that chronic PTZ-kindling increased Mrp2 expression and function in the rat brain, and the up-regulation partly came from epileptic seizure.
Collapse
Affiliation(s)
- D Yao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
15
|
Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012; 64:919-29. [PMID: 22138133 DOI: 10.1016/j.addr.2011.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 12/26/2022]
Abstract
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Potschka H. Transporter hypothesis of drug-resistant epilepsy: challenges for pharmacogenetic approaches. Pharmacogenomics 2011; 11:1427-38. [PMID: 21047204 DOI: 10.2217/pgs.10.126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drug resistance in epilepsy is considered a complex and multifactorial problem. Overexpression of efflux transporters at the blood-brain barrier is discussed as one factor that might limit brain penetration and efficacy of antiepileptic drugs. Whereas experimental data render support for this hypothesis, there is still a lack of sufficient clinical evidence indicating a functional role of efflux transporters. Pharmacogenetic analysis has been considered as one approach in the evaluation of a putative link between transporters and drug-resistant epilepsy. However, the likelihood of a multifactorial nature of drug resistance and the complexity of the events regulating transporters pose a major challenge to any attempt at linking selected genetic polymorphisms to the outcome of drug therapy. In this article, the evidence for an impact of efflux transporters on the response to antiepileptic drugs is discussed, focusing in particular on the different issues presenting a challenge for pharmacogenetic approaches in this field.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University, Koeniginstr. 16, D-80539 Munich, Germany.
| |
Collapse
|
17
|
Boison D, Masino SA, Geiger JD. Homeostatic bioenergetic network regulation - a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 2011; 6:713-724. [PMID: 21731576 DOI: 10.1517/17460441.2011.575777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: Despite epilepsy being one of the most prevalent neurological disorders, one third of all patients with epilepsy cannot adequately be treated with available antiepileptic drugs. One of the significant causes for the failure of conventional pharmacotherapeutic treatment is the development of pharmacoresistance in many forms of epilepsy. The problem of pharmacoresistance has called for the development of new conceptual strategies that improve future drug development efforts. AREAS COVERED: A thorough review of the recent literature on pharmacoresistance in epilepsy was completed and select examples were chosen to highlight the mechanisms of pharmacoresistance in epilepsy and to demonstrate how those mechanistic findings might lead to improved treatment of pharmacoresistant epilepsy. The reader will gain a thorough understanding of pharmacoresistance in epilepsy and an appreciation of the limitations of conventional drug development strategies. EXPERT OPINION: Conventional drug development efforts aim to achieve specificity of symptom control by enhancing the selectivity of drugs acting on specific downstream targets; this conceptual strategy bears the undue risk of development of pharmacoresistance. Modulation of homeostatic bioenergetic network regulation is a novel conceptual strategy to affect whole neuronal networks synergistically by mobilizing multiple endogenous biochemical and receptor-dependent molecular pathways. In our expert opinion we conclude that homeostatic bioenergetic network regulation might thus be used as an innovative strategy for the control of pharmacoresistant seizures. Recent focal adenosine augmentation strategies support the feasibility of this strategy.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | | | | |
Collapse
|
18
|
Rajnai Z, Méhn D, Beéry E, Okyar A, Jani M, Tóth GK, Fülöp F, Lévi F, Krajcsi P. ATP-binding cassette B1 transports seliciclib (R-roscovitine), a cyclin-dependent kinase inhibitor. Drug Metab Dispos 2010; 38:2000-6. [PMID: 20699410 DOI: 10.1124/dmd.110.032805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Seliciclib, a cyclin-dependent kinase inhibitor, is a promising candidate to treat a variety of cancers. Pharmacokinetic studies have shown high oral bioavailability but limited brain exposure to the drug. This study shows that seliciclib is a high-affinity substrate of ATP-binding cassette B1 (ABCB1) because it activates the ATPase activity of the transporter with an EC(50) of 4.2 μM and shows vectorial transport in MDCKII-MDR1 cells, yielding an efflux ratio of 8. This interaction may be behind the drug's limited penetration of the blood-brain barrier. ABCB1 overexpression, on the other hand, does not confer resistance to the drug in the models tested. These findings should be considered when treatment strategies using seliciclib are designed.
Collapse
|
19
|
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 2010; 42:402-36. [PMID: 20082599 DOI: 10.3109/03602530903491741] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Biomolecular Chemistry, HAS, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 2010; 88:1457-74. [PMID: 20025060 DOI: 10.1002/jnr.22316] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) refers to the network of microvessels that selectively restricts the passage of substances between the circulation and the central nervous system (CNS). This microvascular network is comprised of arterioles, capillaries and venules, yet the respective contribution of each of these to the BBB awaits clarification. In this regard, it has been postulated that brain microvascular endothelial cells (BMEC) from these different tributaries might exhibit considerable heterogeneity in form and function, with such diversity underlying unique roles in physiological and pathophysiological processes. Means to begin exploring such endothelial differences in situ, free from caveats associated with cell isolation and culturing procedures, are crucial to comprehending the nature and treatment of CNS diseases with vascular involvement. Here, the recently validated approach of immuno-laser capture microdissection (immuno-LCM) coupled to quantitative real-time PCR (qRT-PCR) was used to analyze gene expression patterns of BMEC retrieved in situ from either capillaries or venules. From profiling 87 genes known to play a role in BBB function and/or be enriched in isolated brain microvessels, results imply that most BBB properties reside in both segments, but that capillaries preferentially express some genes related to solute transport, while venules tend toward higher expression of an assortment of genes involved in inflammatory-related tasks. Fuller appreciation of such heterogeneity will be critical for efficient therapeutic targeting of the endothelium and the management of CNS disease.
Collapse
Affiliation(s)
- Jennifer A Macdonald
- Blood-Brain Barrier Laboratory, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 07070, USA
| | | | | |
Collapse
|
21
|
A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics 2010; 20:249-56. [PMID: 20216337 DOI: 10.1097/fpc.0b013e328338073a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Multidrug resistance protein 2 (MRP2, ABCC2) is involved in the transport of antiepileptic drugs and is upregulated in the brain tissues of patients with epilepsy. Therefore, genetic variations in the MRP2 gene may affect individual drug responses to the antiepileptic agent carbamazepine. METHODS Associations between MRP2 polymorphisms and the adverse drug reactions (ADRs) of carbamazepine were analyzed using an integrated population genetics and molecular functional approach. In the initial case-control study, five tag single nucleotide polymorphisms in the MRP2 gene were analyzed in 146 patients with epilepsy. Patients were divided into two groups: those who experienced ADRs of the central nervous system and those who did not. An independent replication study was performed using DNA samples from 279 patients. RESULTS A nonsynonymous polymorphism, c.1249G>A (p.V417I, rs2273697), showed a strong association with the neurological ADR caused by carbamazepine (P=0.005). Logistic regression analysis with multiple clinical variables indicated that the presence of A allele at the MRP2 c.1249G>A locus was an independent determinant of central nervous system ADR caused by carbamazepine. Moreover, the positive association of c.1249A was reproduced in the replication study (P=0.042, joint P value of the replication=0.001). The functional study using ATPase assay and FACScan flow cytometer indicated that carbamazepine was a substrate of MRP2 and that the 417I variation selectively reduced carbamazepine transport across the cell membrane. CONCLUSION These results strongly suggest that the A-allele of the MRP2 single nucleotide polymorphism c.1247G>A is associated with adverse neurological drug reactions to carbamazepine.
Collapse
|
22
|
Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 2010; 51:1333-47. [PMID: 20477844 DOI: 10.1111/j.1528-1167.2010.02585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enhanced brain efflux of antiepileptic drugs by the blood-brain barrier transporter P-glycoprotein is discussed as one mechanism contributing to pharmacoresistance of epilepsies. P-glycoprotein overexpression has been proven to occur as a consequence of seizure activity. Therefore, blocking respective signaling events should help to improve brain penetration and efficacy of P-glycoprotein substrates. A series of recent studies revealed key signaling factors involved in seizure-associated transcriptional activation of P-glycoprotein. These data suggested several interesting targets, including the N-methyl-d-aspartate (NMDA) receptor, the inflammatory enzyme cyclooxygenase-2, and the prostaglandin E2 EP1 receptor. These targets have been further evaluated in rodent models, demonstrating that targeting these factors can control P-glycoprotein expression, improve antiepileptic drug brain penetration, and help to overcome pharmacoresistance. In general, the approach offers particular advantages over transporter inhibition as it preserves basal transporter function. In this review the different strategies for blocking P-glycoprotein upregulation, including their therapeutic promise and drawbacks are discussed. Moreover, pros and cons of the approach are compared to those of alternative strategies to overcome transporter-associated resistance. Regarding future perspectives of the novel approach, there is an obvious need to more clearly define the clinical relevance of transporter overexpression. In this context current efforts are discussed, including the development of imaging tools that allow an evaluation of P-glycoprotein function in individual patients.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
23
|
Pekcec A, Unkrüer B, Schlichtiger J, Soerensen J, Hartz AMS, Bauer B, van Vliet EA, Gorter JA, Potschka H. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther 2009; 330:939-47. [PMID: 19494186 DOI: 10.1124/jpet.109.152520] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostaglandin E2 receptor, EP1, as a key factor in the signaling pathway that mediates seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier. In the rat pilocarpine model, status epilepticus significantly increased P-glycoprotein expression by 92 to 197% in the hippocampal hilus and granule cell layer as well as the piriform cortex. The EP1 receptor antagonist 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-[1-oxo-3-(4-pyridinyl)propyl]hydrazide hydrochloride (SC-51089) abolished seizure-induced P-glycoprotein up-regulation and retained its expression at the control level. The control of P-glycoprotein expression despite prolonged seizure activity suggests that EP1 receptor antagonism will also improve antiepileptic drug efficacy. Preliminary evidence for this concept has been obtained using a massive kindling paradigm during which animals received a subchronic SC-51089 treatment. After withdrawal of the EP1 receptor antagonist, a low dose of the P-glycoprotein substrate phenobarbital resulted in an anticonvulsant effect in this pretreated group, whereas the same dosage of phenobarbital did not exert a significant effect in the respective control group. In conclusion, our data demonstrate that EP1 is a key signaling factor in the regulatory pathway that drives P-glycoprotein up-regulation during seizures. These findings suggest new intriguing possibilities to prevent and interrupt P-glycoprotein overexpression in epilepsy. Future studies are necessary to further evaluate the appropriateness of the strategy to enhance the efficacy of antiepileptic drugs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Anticonvulsants/pharmacology
- Blotting, Western
- Capillaries/drug effects
- Electrodes, Implanted
- Female
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Kindling, Neurologic/drug effects
- Muscarinic Agonists
- Phenobarbital/pharmacology
- Pilocarpine
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E, EP1 Subtype
- Seizures/genetics
- Seizures/prevention & control
- Status Epilepticus/chemically induced
- Status Epilepticus/prevention & control
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Anton Pekcec
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstr. 16, 80539 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Large interindividual variation in efficacy and adverse effects of anti-epileptic therapy presents opportunities and challenges in pharmacogenomics. Although the first true association of genetic polymorphism in drug-metabolizing enzymes with anti-epileptic drug dose was reported 10 years ago, most of the findings have had little impact on clinical practice so far. Most studies performed to date examined candidate genes and were focused on candidate gene selection. Genome-wide association and whole-genome sequencing technologies empower hypothesis-free comprehensive screening of genetic variation across the genome and now the main challenge remaining is to select and study clinically relevant phenotypes suitable for genetic studies. Here we review the current state of epilepsy pharmacogenetics focusing on phenotyping questions and discuss what characteristics we need to study to get answers.
Collapse
Affiliation(s)
- Dalia Kasperavičiūtė
- Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sanjay M Sisodiya
- Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
25
|
Kuteykin-Teplyakov K, Brandt C, Hoffmann K, Löscher W. Complex time-dependent alterations in the brain expression of different drug efflux transporter genes after status epilepticus. Epilepsia 2009; 50:887-97. [DOI: 10.1111/j.1528-1167.2008.01916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Over-expression of P-glycoprotein in the canine brain following spontaneous status epilepticus. Epilepsy Res 2009; 83:144-51. [DOI: 10.1016/j.eplepsyres.2008.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/12/2023]
|
27
|
Hughes JR. One of the hottest topics in epileptology: ABC proteins. Their inhibition may be the future for patients with intractable seizures. Neurol Res 2008; 30:920-5. [PMID: 18593522 DOI: 10.1179/174313208x319116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
One of the new topics in epileptology is the ABC proteins, which seem to control whether or not anti-epileptic drugs (AEDs) can come in contact with and affect the epileptogenic areas that cause seizures. The goal of this report is to simplify the concepts involved in these proteins and then to review the progress made in the field, especially of one protein called P-glycoprotein (P-gp). First, the ABC proteins are reviewed, mainly P-gp, which appears to alter drug permeability (like an extra blood-brain barrier). The possibility is discussed that changes in P-gp are the result of many seizures; are caused by the AEDs, or truly reflect pharmacoresistance. The different locations where these changes can be seen include the endothelial cells, glia and also neurons. The polymorphism of P-gp, called C3435T, probably has little functional significance and finally the importance of inhibitors of P-g to reverse pharmacoresistance is emphasized. Tariquidar (XR9576) is likely to be a good candidate that appears to inhibit these proteins and therefore to allow the AEDs to control the intractable seizures that may account for nearly 40% of our patients.
Collapse
Affiliation(s)
- John R Hughes
- Department of Neurology, University of Illinois Medical Center, 912 S. Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Liu X, Chen C, Smith BJ. Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 2008; 325:349-56. [PMID: 18203948 DOI: 10.1124/jpet.107.130294] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
This review discusses strategies to optimize brain penetration from the perspective of drug discovery and development. Brain penetration kinetics can be described by the extent and time to reach brain equilibrium. The extent is defined as the ratio of free brain concentration to free plasma concentration at steady state. For all central nervous system (CNS) drug discovery programs, optimization of the extent of brain penetration should focus on designing and selecting compounds having low efflux transport at the blood-brain barrier (BBB). The time to reach brain equilibrium is determined by both BBB permeability and brain tissue binding. Rapid brain penetration can be achieved by increasing passive permeability and reducing brain tissue binding. Although many drug transporters have been identified at the BBB, the available literature demonstrates only the in vivo functional importance of P-glycoprotein (P-gp) in limiting brain penetration of its substrates. Drug-drug interactions mediated by P-gp at the BBB are possible due to inhibition or induction of P-gp. For newly identified drug transporters at the BBB, more research is needed to reveal their in vivo significance. We propose the following strategies for addressing drug transporters at the BBB. 1) Drug discovery screens should be used to eliminate good P-gp substrates for CNS targets. Special consideration could be given to moderate P-gp substrates as potential CNS drugs based on a high unmet medical need and the presence of a large safety margin. 2) Selection of P-gp substrates as drug candidates for non-CNS targets can reduce their CNS-mediated side effects.
Collapse
Affiliation(s)
- Xingrong Liu
- Roche Palo Alto, 3431 Hillview Avenue S3-2, Palo Alto, CA 94304, USA.
| | | | | |
Collapse
|
29
|
Ito K. ABCC2/Abcc2 Transport Property in Different Species and its Modulation by Heterogeneous Factors. Drug Metab Pharmacokinet 2008; 23:394-405. [DOI: 10.2133/dmpk.23.394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Abstract
Multidrug resistance is one of the most serious problems in the treatment of epilepsy and is likely to have a complex genetic and environmental basis. Various experimental data support the hypothesis that overexpression of antiepileptic drug transporters may be important. However, key questions concerning their functionality remain unanswered. The first study reporting a positive association--between genetic variation in a putative antiepileptic drug transporter (P-glycoprotein, encoded by ABCB1) and multidrug resistant epilepsy was published in 2003. Since then, several other association genetics studies have sought to confirm this result, but, taken overall, do not support a major role for this polymorphism. Lessons learnt from the ABCB1 studies can help guide future association genetics studies, both for multidrug resistance in epilepsy, and for other epilepsy phenotypes.
Collapse
Affiliation(s)
- Sarah K Tate
- University College London, Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
31
|
Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 2007; 254:11-29. [PMID: 17275180 DOI: 10.1016/j.canlet.2006.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/14/2006] [Indexed: 01/11/2023]
Abstract
Most brain tumors are highly resistant to chemotherapy because many chemotherapeutic drugs poorly cross the blood-brain barrier, the blood-cerebrospinal-fluid barrier, and the plasma membrane of the tumor cells. This restricted drug delivery is largely due to the presence of integral plasma membrane proteins belonging to the solute carriers (SLCs) and to the ATP-binding cassette (ABC) superfamily of transporters that decisively determine substance uptake and efflux, respectively, by the barrier-forming cells and the tumor cells. This review focuses on the localization and function of drug-transporting members of both transporter groups in human brain.
Collapse
Affiliation(s)
- Anne T Nies
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
32
|
Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target 2007; 15:253-68. [PMID: 17487694 DOI: 10.1080/10611860701288539] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The blood-brain barrier (BBB) remains a significant obstacle to the delivery of therapeutic agents into the central nervous system (CNS). Primary cell cultures of brain capillary endothelial cells represent the closest possible phenotype to the in vivo BBB cell providing a convenient model for the study of transport systems and events that mediate solute delivery to the CNS. In this investigation we have characterized an in vitro primary BBB model from porcine brain microvascular endothelial capillary (PBMVEC) cells after recovery from cryopreservation of upto 12 months and studied their modulation by astrocytes. Co-cultures of PBMVECs with astrocytes (C6 astroglioma) resulted in trans-endothelial electrical resistance of up to approximately 900Omega cm2 and marked discrimination between the para- and trans- cellular markers sucrose and propranolol. Micrographs of confluent monolayers of PBMVECs showed the presence of tight junction complexes and vesicles with the morphological characteristics of either caveolae or clathrin coated pits. Extensive RT-PCR evaluation highlighted the expression of tight junction transcripts, ABC transporters, leptin receptor and select nutrient transporters. Functional studies examined the kinetics of transport of glucose, large neutral amino acids and p-glycoprotein (P-gp). Our findings indicate primary PBMVECs retain many barrier characteristics and transport pathways of the in vivo BBB. Further, primary cells can be stored as frozen stocks which can be thawed and cultured without phenotypic drift many months after isolation. Frozen PBMVECs therefore serve as a robust and convenient in vitro cell culture tool for research programs involving CNS drug delivery and targeting and in studies addressing blood-brain barrier transport mechanisms.
Collapse
Affiliation(s)
- Mathew Smith
- Pharmaceutical Cell Biology, Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
33
|
Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernandez N, Van Boxel-Dezaire A, Najm I, Janigro D. In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 2007; 48:1934-46. [PMID: 17645533 PMCID: PMC3900294 DOI: 10.1111/j.1528-1167.2007.01185.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A common experimental model of status epilepticus (SE) utilizes intraperitoneal administration of the cholinergic agonist pilocarpine preceded by methyl-scopolamine treatment. Currently, activation of cholinergic neurons is recognized as the only factor triggering pilocarpine SE. However, cholinergic receptors are also widely distributed systemically and pretreatment with methyl-scopolamine may not be sufficient to counteract the effects of systemically injected pilocarpine. The extent of such peripheral events and the contribution to SE are unknown and the possibility that pilocarpine also induces SE by peripheral actions is yet untested. METHODS We measured in vivo at onset of SE: brain and blood pilocarpine levels, blood-brain barrier (BBB) permeability, T-lymphocyte activation and serum levels of IL-1beta and TNF-alpha. The effects of pilocarpine on neuronal excitability was assessed in vitro on hippocampal slices or whole guinea pig brain preparations in presence of physiologic or elevated [K+](out). RESULTS Pilocarpine blood and brain levels at SE were 1400 +/- 200 microM and 200 +/- 80 microM, respectively. In vivo, after pilocarpine injection, increased serum IL-1beta, decreased CD4:CD8 T-lymphocyte ratios and focal BBB leakage were observed. In vitro, pilocarpine failed to exert significant synchronized epileptiform activity when applied at concentrations identical or higher to levels measured in vivo. Intense electrographic seizure-like events occurred only in the copresence of levels of K+ (6 mM) mimicking BBB leakage. CONCLUSIONS Early systemic events increasing BBB permeability may promote entry of cofactors (e. g. K+) into the brain leading to pilocarpine-induced SE. Disturbance of brain homeostasis represents an etiological factor contributing to pilocarpine seizures.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Emily Oby
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Ayush Batra
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Laura Uva
- Department of Experimental Neurophysiology, Neurological Institute “C. Besta,” Milano, Italy
| | - Marco De Curtis
- Department of Experimental Neurophysiology, Neurological Institute “C. Besta,” Milano, Italy
| | - Nadia Hernandez
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | | | - Imad Najm
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Damir Janigro
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| |
Collapse
|
34
|
Hoffmann K, Löscher W. Upregulation of Brain Expression of P-Glycoprotein in MRP2-deficient TR-Rats Resembles Seizure-induced Up-regulation of This Drug Efflux Transporter in Normal Rats. Epilepsia 2007; 48:631-45. [PMID: 17437408 DOI: 10.1111/j.1528-1167.2006.00939.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The multidrug resistance protein 2 (MRP2) is a drug efflux transporter that is expressed predominantly at the apical domain of hepatocytes but seems also to be expressed at the apical membrane of brain capillary endothelial cells that form the blood-brain barrier (BBB). MRP2 is absent in the transport-deficient (TR(-)) Wistar rat mutant, so that this rat strain was very helpful in defining substrates of MRP2 by comparing tissue concentrations or functional activities of compounds in MRP2-deficient rats with those in transport-competent Wistar rats. By using this strategy to study the involvement of MRP2 in brain access of antiepileptic drugs (AEDs), we recently reported that phenytoin is a substrate for MRP2 in the BBB. However, one drawback of such studies in genetically deficient rats is the fact that compensatory changes with upregulation of other transporters can occur. This prompted us to study the brain expression of P-glycoprotein (Pgp), a major drug efflux transporter in many tissues, including the BBB, in TR(-) rats compared with nonmutant (wild-type) Wistar rats. METHODS The expression of MRP2 and Pgp in brain and liver sections of TR(-) rats and normal Wistar rats was determined with immunohistochemistry, by using a novel, highly selective monoclonal MRP2 antibody and the monoclonal Pgp antibody C219, respectively. RESULTS Immunofluorescence staining with the MRP2 antibody was found to label a high number of microvessels throughout the brain in normal Wistar rats, whereas such labeling was absent in TR(-) rats. TR(-) rats exhibited a significant up-regulation of Pgp in brain capillary endothelial cells compared with wild-type controls. No such obvious upregulation of Pgp was observed in liver sections. A comparable overexpression of Pgp in the BBB was obtained after pilocarpine-induced seizures in wild-type Wistar rats. Experiments with systemic administration of the Pgp substrate phenobarbital and the selective Pgp inhibitor tariquidar in TR(-) rats substantiated that Pgp is functional and compensates for the lack of MRP2 in the BBB. CONCLUSIONS The data on TR(-) rats indicate that Pgp plays an important role in the compensation of MRP2 deficiency in the BBB. Because such a compensatory mechanism most likely occurs to reduce injury to the brain from cytotoxic compounds, the present data substantiate the concept that MRP2 performs a protective role in the BBB. Furthermore, our data suggest that TR(-) rats are an interesting tool to study consequences of overexpression of Pgp in the BBB on access of drugs in the brain, without the need of inducing seizures or other Pgp-enhancing events for this purpose.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
35
|
Hawkins BT, Ocheltree SM, Norwood KM, Egleton RD. Decreased blood-brain barrier permeability to fluorescein in streptozotocin-treated rats. Neurosci Lett 2007; 411:1-5. [PMID: 17110033 PMCID: PMC1785293 DOI: 10.1016/j.neulet.2006.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 01/01/2023]
Abstract
Investigations of the blood-brain barrier (BBB) in diabetes have yielded contradictory results. It is possible that diabetes differentially affects paracellular and transcellular permeabilities via modulation of tight junction and transport proteins, respectively. Fluorescein (FL), a marker for paracellular permeability, is a substrate for the transport proteins organic anion transporter (OAT)-3 and multidrug resistance protein (MRP)-2 at the BBB. Furthermore, MRP-2-mediated efflux of FL can be upregulated by glucose. In this study, streptozotocin-induced diabetes led to decreased brain distribution of FL measured by in situ brain perfusion, consistent with activation of an efflux transport system for FL at the BBB. This change was paralleled by increased protein expression of MRP-2, but not OAT-3, in cerebral microvessels. These data indicate that diabetes may lead to changes in efflux transporters at the BBB and have implications for delivery of therapeutics to the central nervous system.
Collapse
Affiliation(s)
- Brian T. Hawkins
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Scott M. Ocheltree
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Kristi M. Norwood
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Richard D. Egleton
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| |
Collapse
|
36
|
Abstract
The amount of new knowledge being generated regarding brain mechanisms in general, and epileptic mechanisms in particular, is enormous. Anticonvulsant drugs are ineffective in approximately a third of people with epilepsy. To our knowledge, strategies for preventing epilepsy after an initial insult are nonexistent. In this review, we briefly examine some recent novel concepts for preventing seizures, which might lead to enhanced anticonvulsant drug therapy. We start with some known seizure mechanisms that have yet to yield widely used anticonvulsant drugs, including potassium channels, chloride cotransporters, extracellular space constriction, gap junctions and magnesium. Pharmacoresistance is then discussed, focusing on the upregulation of drug-resistance proteins (a concept with significant therapeutic appeal) and the drug-target hypothesis. Two further areas that hold great promise for future therapeutics are sex hormones and inflammatory processes. The genetics of epilepsy are currently being elaborated, providing potential novel anticonvulsant targets. Prevention being better than a cure, we discuss epileptogenesis and its treatment. Given the astounding progress of neuroscience research, one hopes for many new therapeutics for our intractable epileptic patients.
Collapse
Affiliation(s)
- Danielle M Andrade
- University of Toronto, Division of Neurology, Epilepsy Program, Krembil neuroscience Centre, Toronto Western Hospital, Deparment of Medicine, 5W-445, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | - Peter L Carlen
- University of Toronto, Division of Neurology, Epilepsy Program, Krembil neuroscience Centre, Toronto Western Hospital & Toronto Western Research Institute, Departments of Medicine, Physiology & IBBME, 5W-442, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| |
Collapse
|
37
|
Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2006; 453:643-59. [PMID: 16847695 DOI: 10.1007/s00424-006-0109-y] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/29/2006] [Indexed: 12/14/2022]
Abstract
ABCC2 is a member of the multidrug resistance protein subfamily localized exclusively to the apical membrane domain of polarized cells, such as hepatocytes, renal proximal tubule epithelia, and intestinal epithelia. This localization supports the function of ABCC2 in the terminal excretion and detoxification of endogenous and xenobiotic organic anions, particularly in the unidirectional efflux of substances conjugated with glutathione, glucuronate, or sulfate, as exemplified by leukotriene C(4), bilirubin glucuronosides, and some steroid sulfates. The hepatic ABCC2 pump contributes to the driving forces of bile flow. Acquired or hereditary deficiency of ABCC2, the latter known as Dubin-Johnson syndrome in humans, causes an increased concentration of bilirubin glucuronosides in blood because of their efflux from hepatocytes via the basolateral ABCC3, which compensates for the deficiency in ABCC2-mediated apical efflux. In this article we provide an overview on the molecular characteristics of ABCC2 and its expression in various tissues and species. We discuss the transcriptional and posttranscriptional regulation of ABCC2 and review approaches to the functional analysis providing information on its substrate specificity. A comprehensive list of sequence variants in the human ABCC2 gene summarizes predicted and proven functional consequences, including variants leading to Dubin-Johnson syndrome.
Collapse
Affiliation(s)
- Anne T Nies
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|