1
|
Bierhansl L, Langenbruch L, Schulte-Mecklenbeck A, Dik A, Strzelczyk A, Schubert-Bast S, Meyer S, Kellinghaus C, Gross CC, Omran H, Fiedler B, Ebrahimi-Fakhari D, Wiendl H, Kovac S. Characterization of immune cell profiles in the blood of children and adults with tuberous sclerosis complex disease. J Neurol Sci 2025; 472:123465. [PMID: 40121806 DOI: 10.1016/j.jns.2025.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Tuberous sclerosis (TSC) is characterised by the formation of benign tumours across various organs, particularly in the central nervous system (CNS), where they can lead to epilepsy and neurodevelopmental disorders. TSC results from variants in either TSC1 or TSC2 genes, leading to hyperactivation of the mTORC1 pathway, which plays a pivotal role in regulating cell growth and survival. While the influence of mTOR on immune function has been extensively investigated, our understanding of the composition of immune cells in TSC patients remains limited. OBJECTIVE Blood immune cell profiles from healthy controls, epilepsy patients, and TSC patients (with or without mTOR inhibitor therapy) were collected and analyzed via flow cytometry in a multicenter study. RESULTS Between 12/2020 and 12/2023, 47 blood samples (mean age: 21 years, range 1-52, 72.3 % female) were analyzed via flow cytometry. Overall, we could not observe a unique immune cell profile between the subgroups as a potential distinguishing feature. However, a few cell populations (T cells, CD8+ T cells) seem to shift in patients with epilepsy (independent of TSC diagnosis) or those receiving mTOR inhibitor therapy (B cells, plasma cells) compared with healthy controls. CONCLUSION The overall blood immune cell profile is not changed in patients with epilepsy or TSC. However, analysis of subpopulations (T cells and B cells) has revealed changes in immune cell constitution in patients with epilepsy and those receiving mTOR inhibitor therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Lisa Langenbruch
- Department of Neurology, Klinikum Osnabrück, 49076 Osnabrück, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Adam Strzelczyk
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Susanne Schubert-Bast
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sascha Meyer
- Department of Pediatric Neurology, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Barbara Fiedler
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Daniel Ebrahimi-Fakhari
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany.
| |
Collapse
|
2
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2025; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
3
|
Brown JA, Faley SL, Judge M, Ward P, Ihrie RA, Carson R, Armstrong L, Sahin M, Wikswo JP, Ess KC, Neely MD. Rescue of impaired blood-brain barrier in tuberous sclerosis complex patient derived neurovascular unit. J Neurodev Disord 2024; 16:27. [PMID: 38783199 PMCID: PMC11112784 DOI: 10.1186/s11689-024-09543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene and dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). METHODS We generated TSC disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. RESULTS Using microphysiological systems, we demonstrate that a BBB generated from TSC2 heterozygous mutant cells shows increased permeability. This can be rescued by wild type astrocytes or by treatment with rapamycin, an mTOR kinase inhibitor. CONCLUSION Our results demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of cell lineages contributing to TSC pathogenesis and informs future therapeutics.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Shannon L Faley
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Monika Judge
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Patricia Ward
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Rebecca A Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, USA
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, USA
| | - Robert Carson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Laura Armstrong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Mustafa Sahin
- Rosamund Stone Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Kevin C Ess
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
4
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
5
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
6
|
Falsaperla R, Collotta AD, Marino SD, Sortino V, Leonardi R, Privitera GF, Pulvirenti A, Suppiej A, Vecchi M, Verrotti A, Farello G, Spalice A, Elia M, Spitaleri O, Micale M, Mailo J, Ruggieri M. Drug resistant epilepsies: A multicentre case series of steroid therapy. Seizure 2024; 117:115-125. [PMID: 38394725 DOI: 10.1016/j.seizure.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Our study aimed to evaluate the effectiveness of corticosteroids on seizure control in drug-resistant epilepsies (DREs). Our primary goal was to assess the response to steroids for various underlying etiologies, interictal electroencephalographic (EEG) patterns and electroclinical seizure descriptions. Our second goal was to compare steroid responsiveness to different treatment protocols. METHODS This is a retrospective multicentre cohort study conducted according to the STROBE guidelines (Strengthening the Reporting of Observational Studies in Epidemiology). The following data were collected for each patient: epilepsy etiology, interictal EEG pattern, seizure types and type of steroid treatment protocol administered. RESULTS Thirty patients with DRE were included in the study. After 6 months of therapy, 62.7 % of patients experienced reduced seizure frequency by 50 %, and 6.6 % of patients experienced complete seizure cessation. Findings associated with favourable response to steroids included structural/lesional etiology of epilepsy, immune/infectious etiology and focal interictal abnormalities on EEG. Comparing four different steroid treatment protocols, the most effective for seizure control was treatment with methylprednisolone at the dose of 30 mg/kg/day administered for 3 days, leading to greater than 50 % seizure reduction at 6 months in 85.7 % of patients. Treatment with dexamethasone 6 mg/day for 5 days decreased seizure frequency in 71.4 % of patients. Hydrocortisone 10 mg/kg administered for 3 months showed a good response to treatment in 71 %. CONCLUSIONS In our study, two-thirds of patients with DRE experienced a significant seizure reduction following treatment with steroids. We suggest considering steroids as a potential therapeutic option in children with epilepsy not responding to conventional antiseizure medicines (ASM).
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Paediatric and Paediatric Emergency Department, University Hospital "Policlinico-San Marco", Catania, Italy; Unit of Intensive Care and Neonatology, University Hospital "Policlinico-San Marco", Catania, Italy.
| | - Ausilia Desiree Collotta
- Paediatric and Paediatric Emergency Department, University Hospital "Policlinico-San Marco", Catania, Italy; Department of Clinical and Experimental Medicine, Postgraduate Training Program in Pediatrics, University of Catania, Catania, Italy.
| | - Simona D Marino
- Paediatric and Paediatric Emergency Department, University Hospital "Policlinico-San Marco", Catania, Italy
| | - Vincenzo Sortino
- Paediatric and Paediatric Emergency Department, University Hospital "Policlinico-San Marco", Catania, Italy; Department of Clinical and Experimental Medicine, Postgraduate Training Program in Pediatrics, University of Catania, Catania, Italy
| | - Roberta Leonardi
- Department of Clinical and Experimental Medicine, Postgraduate Training Program in Pediatrics, University of Catania, Catania, Italy
| | - Grete Francesca Privitera
- Department of Mathematics and Computer Science, Department of Clinical and Experimental Medicine, University of Catania, c/o Viale A. Doria, 6, Catania 95125, Italy
| | - Alfredo Pulvirenti
- Department of Mathematics and Computer Science, Department of Clinical and Experimental Medicine, University of Catania, c/o Viale A. Doria, 6, Catania 95125, Italy
| | - Agnese Suppiej
- Medical Science Department (D.O.), Maternal and Child Department, Ferrara University Hospital, University of Ferrara, Italy
| | - Marilena Vecchi
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, Padova University Hospital, Padova, Italy
| | - Alberto Verrotti
- Clinical Paediatric, University of Perugia, Hospital SM Della Misericordia, Perugia, Italy
| | - Giovanni Farello
- Clinical Paediatric, University of Perugia, Hospital SM Della Misericordia, Perugia, Italy
| | - Alberto Spalice
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Maurizio Elia
- Unit of Neurology and Clinical Neurophysiopathology, Oasi Research Institute, IRCCS, Troina, Italy
| | - Orazio Spitaleri
- Paediatric Neuropsychiatry Unit, Hospital " S.Marta e S.Venera", Acireale, Italy
| | - Marco Micale
- Paediatric Neuropsychiatry Unit, Maternal and Child Department, Arnas Civico, Palermo, Italy
| | - Janette Mailo
- Division of Paediatric Neurology, University of Alberta, Canada
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania 95124, Italy
| |
Collapse
|
7
|
Brown JA, Faley SL, Judge M, Ward P, Ihrie RA, Carson R, Armstrong L, Sahin M, Wikswo JP, Ess KC, Neely MD. Rescue of Impaired Blood-Brain Barrier in Tuberous Sclerosis Complex Patient Derived Neurovascular Unit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571738. [PMID: 38168450 PMCID: PMC10760190 DOI: 10.1101/2023.12.15.571738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene. Dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). We generated disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. Using these microphysiological systems, we demonstrate that the BBB generated from TSC2 heterozygous mutant cells shows increased permeability which can be rescued by wild type astrocytes and with treatment with rapamycin, an mTOR kinase inhibitor. Our results further demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of the cell lineages contributing to TSC pathogenesis.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Shannon L Faley
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Monika Judge
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Patricia Ward
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Rebecca A Ihrie
- Dept. of Cell & Developmental Biology, Vanderbilt University
- Neurological Surgery, Vanderbilt University Medical Center
| | - Robert Carson
- Dept. of Pediatrics, Vanderbilt University Medical Center
| | | | - Mustafa Sahin
- Rosamund Stone Translational Neuroscience Center, Dept. of Neurology, Boston Children's Hospital, Harvard Medical School
| | - John P Wikswo
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
- Dept. of Biomedical Engineering, Vanderbilt University
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University
| | - Kevin C Ess
- Neurological Surgery, Vanderbilt University Medical Center
- Dept. of Pediatrics, Vanderbilt University Medical Center
| | - M Diana Neely
- Dept. of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
8
|
Schartz ND, Aroor A, Li Y, Pinzón-Hoyos N, Brewster AL. Mice deficient in complement C3 are protected against recognition memory deficits and astrogliosis induced by status epilepticus. Front Mol Neurosci 2023; 16:1265944. [PMID: 38035266 PMCID: PMC10682718 DOI: 10.3389/fnmol.2023.1265944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Status epilepticus (SE) can significantly increase the risk of temporal lobe epilepsy (TLE) and cognitive comorbidities. A potential candidate mechanism underlying memory defects in epilepsy may be the immune complement system. The complement cascade, part of the innate immune system, modulates inflammatory and phagocytosis signaling, and has been shown to contribute to learning and memory dysfunctions in neurodegenerative disorders. We previously reported that complement C3 is elevated in brain biopsies from human drug-resistant epilepsy and in experimental rodent models. We also found that SE-induced increases in hippocampal C3 levels paralleled the development of hippocampal-dependent spatial learning and memory deficits in rats. Thus, we hypothesized that SE-induced C3 activation contributes to this pathophysiology in a mouse model of SE and acquired TLE. Methods In this study C3 knockout (KO) and wild type (WT) mice were subjected to one hour of pilocarpine-induced SE or sham conditions (control; C). Following a latent period of two weeks, recognition memory was assessed utilizing the novel object recognition (NOR) test. Western blotting was utilized to determine the protein levels of C3 in hippocampal lysates. In addition, we assessed the protein levels and distribution of the astrocyte marker glial fibrillary acidic protein (GFAP). Results In the NOR test, control WT + C or C3 KO + C mice spent significantly more time exploring the novel object compared to the familiar object. In contrast, WT+SE mice did not show preference for either object, indicating a memory defect. This deficit was prevented in C3 KO + SE mice, which performed similarly to controls. In addition, we found that SE triggered significant increases in the protein levels of GFAP in hippocampi of WT mice but not in C3 KO mice. Discussion These findings suggest that ablation of C3 prevents SE-induced recognition memory deficits and that a C3-astrocyte interplay may play a role. Therefore, it is possible that enhanced C3 signaling contributes to SE-associated cognitive decline during epileptogenesis and may serve as a potential therapeutic target for treating cognitive comorbidities in acquired TLE.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alisha Aroor
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yibo Li
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Nicole Pinzón-Hoyos
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
9
|
Panebianco M, Walker L, Marson AG. Immunomodulatory interventions for focal epilepsy. Cochrane Database Syst Rev 2023; 10:CD009945. [PMID: 37842826 PMCID: PMC10577807 DOI: 10.1002/14651858.cd009945.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND This is an updated version of an original Cochrane Review published in 2013 (Walker 2013). Epilepsy is a common neurological disorder affecting 0.5% to 1% of the population. Pharmacological treatment remains the first choice to control epilepsy. However, up to 30% of people do not respond to drug treatment, and therefore do not achieve seizure remission. Experimental and clinical evidence supports a role for inflammatory pathway activation in the pathogenesis of epilepsy which, if effectively targeted by immunomodulatory interventions, highlights a potentially novel therapeutic strategy. OBJECTIVES To assess the efficacy and tolerability of immunomodulatory interventions on seizures, adverse effect profile, cognition, and quality of life, compared to placebo controls, when used as additional therapy for focal epilepsy in children and adults. SEARCH METHODS For the latest update, we searched the following databases on 11 November 2021: Cochrane Register of Studies (CRS Web) and Medline (Ovid) 1946 to 10 November 2021. CRS Web includes randomised or quasi-randomised, controlled trials from PubMed, EMBASE, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform (ICTRP), the Cochrane Central Register of Controlled Trials (CENTRAL), and the Specialized Registers of Cochrane Review Groups including Epilepsy. We placed no language restrictions. We reviewed the bibliographies of retrieved studies to search for additional reports of relevant studies. SELECTION CRITERIA Randomised placebo-controlled trials of add-on immunomodulatory drug interventions, in which an adequate method of concealment of randomisation was used. The studies were double-, single- or unblinded. Eligible participants were children (aged over 2 years) and adults with focal epilepsy. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by the Cochrane Collaboration. We assessed the following outcomes. 1. 50% or greater reduction in seizure frequency. 2. Seizure freedom. 3. Treatment withdrawal for any reason. 4. Quality of life. 5. ADVERSE EFFECTS We used an intention-to-treat (ITT) population for all primary analyses, and we presented results as risk ratios (RRs) with 95% confidence intervals (95% Cl). MAIN RESULTS We included three randomised, double-blind, placebo-controlled trials on a total of 172 participants. All trials included children and adults over two years of age with focal epilepsy. Treatment phases lasted six weeks and follow-up from six weeks to six months. One of the three included trials described an adequate method of concealment of randomisation, whilst the other two trials were rated as having an unclear risk of bias due to lack of reported information around study design. Effective blinding of studies was reported in all three trials. All analyses were by ITT. One trial was sponsored by the manufacturer of an immunomodulatory agent and therefore was at high risk of funding bias. Immunomodulatory interventions were significantly more effective than placebo in reducing seizure frequency (risk ratio (RR) 2.30, 95% confidence interval (CI) 1.15 to 4.60; 3 studies, 172 participants; moderate-certainty evidence). For treatment withdrawal, there was insufficient evidence to conclude that people were more likely to discontinue immunomodulatory intervention than placebo (RR 1.04, 95% CI 0.28 to 3.80; 3 studies, 172 participants; low-certainty evidence). The RR for adverse effects was 1.16 (95% CI 0.84 to 1.59; 1 study, 66 participants; low-certainty evidence). Certain adverse effects such as dizziness, headache, fatigue, and gastrointestinal disorders were more often associated with immunomodulatory interventions. There were little to no data on cognitive effects and quality of life. No important heterogeneity between studies was found for any of the outcomes. We judged the overall certainty of evidence (using the GRADE approach) as low to moderate due to potential attrition bias resulting from missing outcome data and imprecise results with wide confidence intervals. AUTHORS' CONCLUSIONS Immunomodulatory interventions as add-on treatment for children and adults with focal epilepsy appear to be effective in reducing seizure frequency. It is not possible to draw any conclusions about the tolerability of these agents in children and adults with epilepsy. Further randomised controlled trials are needed.
Collapse
Affiliation(s)
- Mariangela Panebianco
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lauren Walker
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Bychkova E, Dorofeeva M, Levov A, Kislyakov A, Karandasheva K, Strelnikov V, Anoshkin K. Specific Features of Focal Cortical Dysplasia in Tuberous Sclerosis Complex. Curr Issues Mol Biol 2023; 45:3977-3996. [PMID: 37232723 DOI: 10.3390/cimb45050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Patients with tuberous sclerosis complex present with cognitive, behavioral, and psychiatric impairments, such as intellectual disabilities, autism spectrum disorders, and drug-resistant epilepsy. It has been shown that these disorders are associated with the presence of cortical tubers. Tuberous sclerosis complex results from inactivating mutations in the TSC1 or TSC2 genes, resulting in hyperactivation of the mTOR signaling pathway, which regulates cell growth, proliferation, survival, and autophagy. TSC1 and TSC2 are classified as tumor suppressor genes and function according to Knudson's two-hit hypothesis, which requires both alleles to be damaged for tumor formation. However, a second-hit mutation is a rare event in cortical tubers. This suggests that the molecular mechanism of cortical tuber formation may be more complicated and requires further research. This review highlights the issues of molecular genetics and genotype-phenotype correlations, considers histopathological characteristics and the mechanism of morphogenesis of cortical tubers, and also presents data on the relationship between these formations and the development of neurological manifestations, as well as treatment options.
Collapse
Affiliation(s)
- Ekaterina Bychkova
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Marina Dorofeeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Taldomskaya 2, 125412 Moscow, Russia
| | - Aleksandr Levov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | - Alexey Kislyakov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | | | - Vladimir Strelnikov
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| | - Kirill Anoshkin
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| |
Collapse
|
11
|
Kashii H, Kasai S, Sato A, Hagino Y, Nishito Y, Kobayashi T, Hino O, Mizuguchi M, Ikeda K. Tsc2 mutation rather than Tsc1 mutation dominantly causes a social deficit in a mouse model of tuberous sclerosis complex. Hum Genomics 2023; 17:4. [PMID: 36732866 PMCID: PMC9893559 DOI: 10.1186/s40246-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.
Collapse
Affiliation(s)
- Hirofumi Kashii
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.417106.5Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| | - Shinya Kasai
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Atsushi Sato
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.412708.80000 0004 1764 7572Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan
| | - Yoko Hagino
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Yasumasa Nishito
- grid.272456.00000 0000 9343 3630Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Toshiyuki Kobayashi
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Okio Hino
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Masashi Mizuguchi
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, 1-1-10 Komone, Itabashi-Ku, Tokyo, 173-0037 Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
12
|
Riikonen R. Biochemical mechanisms in pathogenesis of infantile epileptic spasm syndrome. Seizure 2023; 105:1-9. [PMID: 36634586 DOI: 10.1016/j.seizure.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms leading to infantile epileptic spasm syndrome (IESS) remain obscure. The only common factor seems to be that the spasms are restricted to a limited period of infancy, during a certain maturational state. Here the current literature regarding the biochemical mechanisms of brain maturation in IESS is reviewed, and various hypotheses of the pathophysiology are put together. They include: (1) imbalance of inhibitory (NGF, IGF-1, ACTH, GABA) and excitatory factors (glutamate, nitrites) which distinguishes the different etiological subgroups, (2) abnormality of the hypothalamic pituitary adrenal (HPA) axis linking insults and early life stress, (3) inflammation (4) yet poorly known genetic and epigenetic factors, and (5) glucocorticoid and vigabatrin action on brain development, pinpointing at molecular targets of the pathophysiology from another angle. An altered maturational process may explain why so many, seemingly independent etiological factors lead to the same clinical syndrome and frequently to developmental delay. Understanding these factors can provide ideas for novel therapies.
Collapse
Affiliation(s)
- Raili Riikonen
- Children's Hospital, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
13
|
Rossini L, De Santis D, Cecchini E, Cagnoli C, Maderna E, Cartelli D, Morgan BP, Torvell M, Spreafico R, di Giacomo R, Tassi L, de Curtis M, Garbelli R. Dendritic spine loss in epileptogenic Type II focal cortical dysplasia: Role of enhanced classical complement pathway activation. Brain Pathol 2022; 33:e13141. [PMID: 36564349 PMCID: PMC10154370 DOI: 10.1111/bpa.13141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.
Collapse
Affiliation(s)
- Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dalia De Santis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Erica Cecchini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Cagnoli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Maderna
- Division of Neurology V and Neuropathology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Roberto Spreafico
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberta di Giacomo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda Hospital, Milan, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
14
|
Shimada T, Yamagata K. Spine morphogenesis and synapse formation in tubular sclerosis complex models. Front Mol Neurosci 2022; 15:1019343. [PMID: 36606143 PMCID: PMC9807618 DOI: 10.3389/fnmol.2022.1019343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose products form a complex and inactivate the small G-protein Rheb1. The activation of Rheb1 may cause refractory epilepsy, intellectual disability, and autism, which are the major neuropsychiatric manifestations of TSC. Abnormalities in dendritic spines and altered synaptic structure are hallmarks of epilepsy, intellectual disability, and autism. In addition, spine dysmorphology and aberrant synapse formation are observed in TSC animal models. Therefore, it is important to investigate the molecular mechanism underlying the regulation of spine morphology and synapse formation in neurons to identify therapeutic targets for TSC. In this review, we focus on the representative proteins regulated by Rheb1 activity, mTORC1 and syntenin, which are pivotal downstream factors of Rheb1 in the alteration of spine formation and synapse function in TSC neurons.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,*Correspondence: Tadayuki Shimada,
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,Department of Psychiatry, Takada Nishishiro Hospital, Niigata, Japan,Kanato Yamagata,
| |
Collapse
|
15
|
Cilberti MG, Santillo A, Polito AN, Messina G, della Malva A, Caroprese M, Sevi A, Albenzio M. Cytokine Pattern of Peripheral Blood Mononuclear Cells Isolated from Children Affected by Generalized Epilepsy Treated with Different Protein Fractions of Meat Sources. Nutrients 2022; 14:nu14112243. [PMID: 35684043 PMCID: PMC9182632 DOI: 10.3390/nu14112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of the present study was the evaluation of cytokine patterns in terms of TNF-α, IL-10, IL-6, and IL-1β secretion in peripheral blood mononuclear cell (PBMC) supernatants isolated from blood of children affected by generalized epilepsy and treated in vitro with myofibrillar, sarcoplasmic, and total protein fractions of meat and fish sources. Children with generalized epilepsy (EC group, n = 16) and children without any clinical signs of disease, representing a control group (CC group n = 16), were recruited at the Complex Structure of Neuropsychiatry Childhood-Adolescence of Policlinico Riuniti (Foggia, Italy). Myofibrillar (MYO), sarcoplasmic (SA), and total (TOT) protein fractions were obtained from longissimus thoracis muscle of beef (BF) and lamb (LA); from pectoralis muscle of chicken (CH); and from dorsal white muscle of sole (Solea solea, SO), European hake (Merluccius merluccius, EH), and sea bass fish (Dicentrarchus labrax, SB), respectively. PBMCs were isolated from peripheral blood of EC and CC groups, and an in vitro stimulation in the presence of 100 μg/mL for each protein fraction from different meat sources was performed. Data were classified according to three different levels of cytokines produced from the EC group relative to the CC group. TNF-α, IL-10, and IL-6 levels were not affected by different meat fractions and meat sources; on the contrary, IL-1β levels were found to be significantly affected by the tested proteins fractions, as well as different meat sources, in high-level cytokine group. On average, the protein fractions obtained from LB, BF, and CH meat sources showed a higher level of IL-1β than the protein fractions obtained from EH and SB fish samples. When all cytokine classes were analyzed, on average, a significant effect was observed for IL-10, IL-1β, and TNF-α. Data obtained in the present study evidence that the nutritional strategy based on protein from fish and meat sources may modulate the immunological cytokine pattern of infants with generalized epilepsy.
Collapse
Affiliation(s)
- Maria Giovanna Cilberti
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
- Correspondence:
| | - Anna N. Polito
- Complex Structure of Neuropsychiatry Childhood-Adolescence of Ospedali Riuniti of Foggia, Viale Pinto, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Antonella della Malva
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.G.C.); (A.d.M.); (M.C.); (A.S.); (M.A.)
| |
Collapse
|
16
|
Hippocampal Cytokine Release in Experimental Epileptogenesis—A Longitudinal In Vivo Microdialysis Study. Brain Sci 2022; 12:brainsci12050677. [PMID: 35625063 PMCID: PMC9139593 DOI: 10.3390/brainsci12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Inflammation, particularly cytokine release, contributes to epileptogenesis by influencing the cerebral tissue remodeling and neuronal excitability that occurs after a precipitating epileptogenic insult. While several cytokines have been explored in this process, release kinetics are less well investigated. Determining the time course of cytokine release in the epileptogenic zone is necessary for precisely timed preventive or therapeutic anti-inflammatory interventions. Methods: Hippocampal extracellular levels of six cytokines and chemokines (IL-1β, IL-6, IL-10, CCL2, CCL3, and CCL5) were quantified at various time points during epileptogenesis in a rat model of mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) using microdialysis (MD). Results: The analysis of microdialysates demonstrated consistent elevation at all time points during epileptogenesis for IL-1β and IL-10. IL-10 release was maximal on day 1, IL-1β release peaked at day 8. No correlation between local hippocampal IL-1β concentrations and IL-1β blood levels was found. Conclusion: The release kinetics of IL-1β are consistent with its established pro-epileptogenic properties, while the kinetics of IL-10 suggest a counter-regulatory effect. This proof-of-concept study demonstrates the feasibility of intraindividual longitudinal monitoring of hippocampal molecular inflammatory processes via repetitive MD over several weeks and sheds light on the kinetics of hippocampal cytokine release during epileptogenesis.
Collapse
|
17
|
López-Aranda MF, Boxx GM, Phan M, Bach K, Mandanas R, Herrera I, Taloma S, Thadani C, Lu O, Bui R, Liu S, Li N, Zhou Y, Cheng G, Silva AJ. Role of type I interferon signaling and microglia in the abnormal long term potentiation and object place recognition deficits of male mice with a mutation of the Tuberous Sclerosis 2 gene. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519458 PMCID: PMC10382699 DOI: 10.1016/j.bpsgos.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Tuberous sclerosis complex is a genetic disorder associated with high rates of intellectual disability and autism. Mice with a heterozygous null mutation of the Tsc2 gene (Tsc2+/-) show deficits in hippocampal-dependent tasks and abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of tuberous sclerosis complex, the results presented here demonstrate a role for microglia in these deficits. Methods To test the possible role of microglia and type I interferon in abnormal hippocampal-dependent memory and LTP of Tsc2+/- mice, we used field recordings in CA1 and the object place recognition (OPR) task. We used the colony stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in Tsc2+/- mice and interferon alpha/beta receptor alpha chain null mutation (Ifnar1-/-) to manipulate a signaling pathway known to modulate microglia function. Results Unexpectedly, we demonstrate that male, but not female, Tsc2+/- mice show OPR deficits. These deficits can be rescued by depletion of microglia and by the Ifnar1-/- mutation. In addition to rescuing OPR deficits, depletion of microglia also reversed abnormal LTP of the Tsc2+/- mice. Altogether, our results suggest that altered IFNAR1 signaling in microglia causes the abnormal LTP and OPR deficits of male Tsc2+/- mice. Conclusions Microglia and IFNAR1 signaling have a key role in the hippocampal-dependent memory deficits and abnormal hippocampal LTP of Tsc2+/- male mice.
Collapse
|
18
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
19
|
Bidirectional Relations Among Depression, Migraine, and Epilepsy: Do They Have an Impact on Their Response to Treatment? Curr Top Behav Neurosci 2021; 55:251-265. [PMID: 34964936 DOI: 10.1007/7854_2021_286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The evaluation and treatment of patients with epilepsy is not limited to the type of epilepsy, but it must incorporate the common comorbid neurologic, psychiatric, and medical disorders, as the latter can bare an impact on the course and response to treatment of the seizure disorder and vice versa. In this article we review the bidirectional relations among epilepsy and two of its most common comorbidities, mood disorders and migraine and examine the implications of these relations on the selection of therapies of these three disorders and their response to treatment. We also review the most salient common pathogenic mechanisms that may explain such relations.
Collapse
|
20
|
Gruber VE, Luinenburg MJ, Colleselli K, Endmayr V, Anink JJ, Zimmer TS, Jansen F, Gosselaar P, Coras R, Scholl T, Blumcke I, Pimentel J, Hainfellner JA, Höftberger R, Rössler K, Feucht M, van Scheppingen J, Aronica E, Mühlebner A. Increased expression of complement components in tuberous sclerosis complex and focal cortical dysplasia type 2B brain lesions. Epilepsia 2021; 63:364-374. [PMID: 34904712 PMCID: PMC9299842 DOI: 10.1111/epi.17139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
Objective Increasing evidence supports the contribution of inflammatory mechanisms to the neurological manifestations of epileptogenic developmental pathologies linked to mammalian target of rapamycin (mTOR) pathway dysregulation (mTORopathies), such as tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD). In this study, we aimed to investigate the expression pattern and cellular distribution of the complement factors C1q and C3 in resected cortical tissue of clinically well‐characterized patients with TSC and FCD2B. Methods We applied immunohistochemistry in TSC (n = 29) and FCD2B (n = 32) samples and compared them to autopsy and biopsy controls (n = 27). Furthermore, protein expression was observed via Western blot, and for descriptive colocalization studies immunofluorescence double labeling was performed. Results Protein expression for C3 was significantly upregulated in TSC and FCD2B white and gray matter lesions compared to controls. Staining of the synaptic vesicle protein synaptophysin showed a remarkable increase in the white matter of both TSC and FCD2B. Furthermore, confocal imaging revealed colocalization of complement factors with astroglial, microglial, neuronal, and abnormal cells in various patterns. Significance Our results demonstrate that the prominent activation of the complement pathway represents a common pathological hallmark of TSC and FCD2B, suggesting that complement overactivation may play a role in these mTORopathies.
Collapse
Affiliation(s)
| | - Mark J Luinenburg
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katrin Colleselli
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Floor Jansen
- Department of Child Neurology, Brain Center, University Medical Center Utrecht, Member of the European Reference Network EpiCARE, Utrecht, the Netherlands
| | - Peter Gosselaar
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingmar Blumcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - José Pimentel
- Department of Neurology, Santa Maria Hospital, Lisbon, Portugal
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Epilepsy Institutes of the Netherlands Foundation, Heemstede, the Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
21
|
Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment? Eur J Nucl Med Mol Imaging 2021; 49:221-233. [PMID: 34120191 DOI: 10.1007/s00259-021-05449-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1-2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.
Collapse
Affiliation(s)
- Viviane Bouilleret
- Unité de Neurophysiologie et d'Epileptologie (UNCE), Université Paris-Saclay APHP, 78, Rue du Général Leclerc, 94275, Le Kremlin Bicêtre, France.
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay, France.
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, Early Solutions, UCB Pharma, Braine-l'Alleud, Belgium
- Experimental Laboratory of Haematology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
22
|
Riikonen R. Could prevention of infantile spasms have been possible in a historical cohort of 31 tuberous sclerosis patients? Eur J Paediatr Neurol 2021; 35:153-157. [PMID: 34731702 DOI: 10.1016/j.ejpn.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED Efforts to prevent epilepsy in infants with tuberous sclerosis complex (TSC) has been the focus of EPISTOP. PURPOSE The present study was carried out to evaluate whether prevention could have been realistic. METHODS A retrospective analysis by hospital chart review of 31 patients with TSC and infantile spasms (practically all patients) admitted to two tertiary hospitals, Children's Hospital, University of Helsinki and Kuopio in 1980-2000. Clinical history, early cognitive development, early clinical signs of TSC, clinical signs of suspicious seizures, first seizures and EEG, response to adrenocorticotropic hormone (ACTH) therapy, EEG and brain imaging were evaluated. RESULTS Early development prior the spasms was apparently normal in 25 (80%). The first EEG ever performed for a child showed hypsarrhythmia in 16 (51%) or modified hypsarrhythmia in 10 (32%). Treatment lag was short (0-4, mean 2 weeks) and the primary response to ACTH favorable in 19 (64%). Etiological diagnostic workup of IS revealed TSC. In one single case (3%) the diagnosis of TSC could be made at birth due to a congenital cardiac rhabdomyoma. Three other rhabomyomas were diagnosed later. In brain imaging, subependymal periventricular calcifications or hypodense areas were seen in every patient at onset of IS. Other organ manifestations of TSC were retinal phakomas (6), polycystic kidneys (2), and renal angiolipomatosis (1). CONCLUSIONS Preventive treatment of epileptic discharges could have been possible in a single case of neonatal rhabdomyoma suggesting that preventive treatment is challenging in everyday practice. The main obstacle is the delay of TSC diagnosis.
Collapse
Affiliation(s)
- Raili Riikonen
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland, Postal Address: Yliopistonranta 1, FI-70110, Kuopio, Finland.
| |
Collapse
|
23
|
Bongaarts A, Mijnsbergen C, Anink JJ, Jansen FE, Spliet WGM, den Dunnen WFA, Coras R, Blümcke I, Paulus W, Gruber VE, Scholl T, Hainfellner JA, Feucht M, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Söylemezoğlu F, Pimentel J, Jones DTW, Scicluna BP, Schouten-van Meeteren AYN, Mühlebner A, Mills JD, Aronica E. Distinct DNA Methylation Patterns of Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex. Cell Mol Neurobiol 2021; 42:2863-2892. [PMID: 34709498 PMCID: PMC9560915 DOI: 10.1007/s10571-021-01157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/12/2021] [Indexed: 10/28/2022]
Abstract
Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHULN), Lisbon, Portugal
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brendon P Scicluna
- Center for Experimental & Molecular Medicine and Department of Clinical Epidemiology, Biostatistics & Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands.
| | - James D Mills
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands.
| | - Eleonora Aronica
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
24
|
High frequency oscillations associate with neuroinflammation in low-grade epilepsy associated tumors. Clin Neurophysiol 2021; 133:165-174. [PMID: 34774442 DOI: 10.1016/j.clinph.2021.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE High frequency oscillations (HFOs) in intraoperative electrocorticography (ioECoG) are thought to be generated by hyperexcitable neurons. Inflammation may promote neuronal hyperexcitability. We investigated the relation between HFOs and inflammation in tumor-related epilepsy. METHODS We identified HFOs (ripples 80-250 Hz, fast ripples 250-500 Hz) in the preresection ioECoG of 32 patients with low-grade tumors. Localization of recorded HFOs was classified based on magnetic resonance imaging reconstructions: in tumor, in resected non-tumorous area and outside the resected area. We tested if the following inflammatory markers in the tumor or peritumoral tissue were related to HFOs: activated microglia, cluster of differentiation 3 (CD3)-positive T-cells, interleukin 1-beta (IL1β), toll-like receptor 4 (TLR4) and high mobility group box 1 protein (HMGB1). RESULTS Tumors that generated ripples were infiltrated by more CD3-positive cells than tumors without ripples. Ripple rate outside the resected area was positively correlated with IL1β/TLR4/HMGB1 pathway activity in peritumoral area. These two areas did not directly overlap. CONCLUSIONS Ripple rates may be associated with inflammatory processes. SIGNIFICANCE Our findings support that ripple generation and spread might be associated with synchronized fast firing of hyperexcitable neurons due to certain inflammatory processes. This pilot study provides arguments for further investigations in HFOs and inflammation.
Collapse
|
25
|
Gruber V, Lang J, Endmayr V, Diehm R, Pimpel B, Glatter S, Anink JJ, Bongaarts A, Luinenburg MJ, Reinten RJ, van der Wel N, Larsen P, Hainfellner JA, Rössler K, Aronica E, Scholl T, Mühlebner A, Feucht M. Impaired myelin production due to an intrinsic failure of oligodendrocytes in mTORpathies. Neuropathol Appl Neurobiol 2021; 47:812-825. [PMID: 34173252 PMCID: PMC8518586 DOI: 10.1111/nan.12744] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
AIMS We aim to evaluate if the myelin pathology observed in epilepsy-associated focal cortical dysplasia type 2B (FCD2B) and-histologically indistinguishable-cortical tubers of tuberous sclerosis complex (TSC) is primarily related to the underlying malformation or constitutes a secondary phenomenon due to the toxic microenvironment created by epileptic seizures. We also aim to investigate the possible beneficial effect of the mTOR pathway regulator everolimus on white matter pathology. METHODS Primary mixed glial cell cultures derived from epilepsy surgery specimens of one TSC and seven FCD2B patients were grown on polycaprolactone fibre matrices and analysed using immunofluorescence and electron microscopy. Unaffected white matter from three age-matched epilepsy patients with mild malformations of cortical development (mMCD) and one with FCD3D served as controls. Additionally, TSC2 knock-out was performed using an oligodendroglial cell line. Myelination capacities of nanofibre grown cells in an inflammatory environment after mTOR-inhibitor treatment with everolimus were further investigated. RESULTS Reduced oligodendroglial turnover, directly related to a lower myelin content was found in the patients' primary cells. In our culture model of myelination dynamics, primary cells grown under 'inflammatory condition' showed decreased myelination, that was repaired by treatment with everolimus. CONCLUSIONS Results obtained in patient-derived primary oligodendroglial and TSC2 knock-out cells suggest that maturation of oligodendroglia and production of a proper myelin sheath seem to be impaired as a result of mTOR pathway disturbance. Hence, oligodendroglial pathology may reflect a more direct effect of the abnormal genetic programme rather than to be an inactive bystander of chronic epilepsy.
Collapse
Affiliation(s)
- Victoria‐Elisabeth Gruber
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Judith Lang
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Robert Diehm
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Birgit Pimpel
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Sarah Glatter
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark J. Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Roy J. Reinten
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Nicole van der Wel
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Per Larsen
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johannes A. Hainfellner
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Karl Rössler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - Theresa Scholl
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Angelika Mühlebner
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| |
Collapse
|
26
|
Sun K, Cui J, Xue R, Jiang T, Wang B, Zhang Z, Zhuo Y, Zhou XJ, Liang S, Yu X, Chen L. New imaging features of tuberous sclerosis complex: A 7 T MRI study. NMR IN BIOMEDICINE 2021; 34:e4565. [PMID: 34061413 DOI: 10.1002/nbm.4565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Few in vivo studies have focused on the perivenous association of tubers and iron deposition in the deep gray nuclei in patients with tuberous sclerosis complex (TSC). We investigated this possible relationship in TSC patients using susceptibility weighted imaging (SWI) at 7 T. SWI with high spatial resolution and enhanced sensitivity was performed on 11 TSC patients in comparison with 15 age- and sex-matched healthy controls. The relationship between tubers and veins was evaluated. In addition, the phase images of SWI were processed to produce local field shift (LFS) maps to quantify iron deposition. The mean LFS in the deep gray nuclei was compared between the TSC patients and healthy controls using a covariance analysis. Venous involvement was observed in 211 of the 231 (91.3%) cortical tubers on SWI. The slender tubers often oriented around the long axis of penetrating veins, possibly because cortical tubers typically developed and/or migrated along venous vasculatures. A significant difference in LFS of the thalamus was detected between the TSC patients and healthy controls (3.36 ± 0.50 versus 3.01 ± 0.39, p < 0.01). The new in vivo imaging features observed at 7 T provide valuable insights into the possible venous association of TSC lesions and iron accumulation in the deep gray nuclei. Our results may lead to a better understanding of the pathological changes involved in TSC under in vivo conditions.
Collapse
Affiliation(s)
- Kaibao Sun
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianfei Cui
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
- Chinese PLA General Hospital, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shuli Liang
- Chinese PLA General Hospital, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xinguang Yu
- Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Chang JW, Reyes SD, Faure-Kumar E, Lam SK, Lawlor MW, Leventer RJ, Lew SM, Lockhart PJ, Pope K, Weiner HL, Salamon N, Vinters HV, Mathern GW, Fallah A, Owens GC. Clonally Focused Public and Private T Cells in Resected Brain Tissue From Surgeries to Treat Children With Intractable Seizures. Front Immunol 2021; 12:664344. [PMID: 33889159 PMCID: PMC8056262 DOI: 10.3389/fimmu.2021.664344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Using a targeted transcriptomics approach, we have analyzed resected brain tissue from a cohort of 53 pediatric epilepsy surgery cases, and have found that there is a spectrum of involvement of both the innate and adaptive immune systems as evidenced by the differential expression of immune-specific genes in the affected brain tissue. The specimens with the highest expression of immune-specific genes were from two Rasmussen encephalitis cases, which is known to be a neuro-immunological disease, but also from tuberous sclerosis complex (TSC), focal cortical dysplasia, and hemimegalencephaly surgery cases. We obtained T cell receptor (TCR) Vβ chain sequence data from brain tissue and blood from patients with the highest levels of T cell transcripts. The clonality indices and the frequency of the top 50 Vβ clonotypes indicated that T cells in the brain were clonally restricted. The top 50 Vβ clonotypes comprised both public and private (patient specific) clonotypes, and the TCR Vβ chain third complementarity region (CDR3) of the most abundant public Vβ clonotype in each brain sample was strikingly similar to a CDR3 that recognizes an immunodominant epitope in either human cytomegalovirus or Epstein Barr virus, or influenza virus A. We found that the frequency of 14 of the top 50 brain Vβ clonotypes from a TSC surgery case had significantly increased in brain tissue removed to control recurrent seizures 11 months after the first surgery. Conversely, we found that the frequency in the blood of 18 of the top 50 brain clonotypes from a second TSC patient, who was seizure free, had significantly decreased 5 months after surgery indicating that T cell clones found in the brain had contracted in the periphery after removal of the brain area associated with seizure activity and inflammation. However, the frequency of a public and a private clonotype significantly increased in the brain after seizures recurred and the patient underwent a second surgery. Combined single cell gene expression and TCR sequencing of brain-infiltrating leukocytes from the second surgery showed that the two clones were CD8 effector T cells, indicating that they are likely to be pathologically relevant.
Collapse
Affiliation(s)
- Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Samuel D Reyes
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Emmanuelle Faure-Kumar
- Department of Medicine: Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Sandi K Lam
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Richard J Leventer
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Kathryn Pope
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Howard L Weiner
- Department of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States.,Mattel Children's Hospital, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Zimmer TS, Korotkov A, Zwakenberg S, Jansen FE, Zwartkruis FJT, Rensing NR, Wong M, Mühlebner A, van Vliet EA, Aronica E, Mills JD. Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathol 2021; 31:e12949. [PMID: 33786950 PMCID: PMC8412124 DOI: 10.1111/bpa.12949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a congenital disorder characterized by cortical malformations and concomitant epilepsy caused by loss‐of‐function mutations in the mTOR suppressors TSC1 or TSC2. While the underlying molecular changes caused by mTOR activation in TSC have previously been investigated, the drivers of these transcriptional change have not been fully elucidated. A better understanding of the perturbed transcriptional regulation could lead to the identification of novel pathways for therapeutic intervention not only in TSC, but other genetic epilepsies in which mTOR activation plays a key role, such as focal cortical dysplasia 2b (FCD). Here, we analyzed RNA sequencing data from cortical tubers and a tsc2−/− zebrafish. We identified differential expression of the transcription factors (TFs) SPI1/PU.1, IRF8, GBX2, and IKZF1 of which SPI1/PU.1 and IRF8 targets were enriched among the differentially expressed genes. Furthermore, for SPI1/PU.1 these findings were conserved in TSC zebrafish model. Next, we confirmed overexpression of SPI1/PU.1 on the RNA and protein level in a separate cohort of surgically resected TSC tubers and FCD tissue, in fetal TSC tissue, and a Tsc1GFAP−/− mouse model of TSC. Subsequently, we validated the expression of SPI1/PU.1 in dysmorphic cells with mTOR activation in TSC tubers. In fetal TSC, we detected SPI1/PU.1 expression prenatally and elevated RNA Spi1 expression in Tsc1GFAP−/− mice before the development of seizures. Finally, in vitro, we identified that in astrocytes and neurons SPI1 transcription was driven by H2O2‐induced oxidative stress, independent of mTOR. We identified SPI1/PU.1 as a novel TF involved in the pro‐inflammatory gene expression of malformed cells in TSC and FCD 2b. This transcriptional program is activated in response to oxidative stress and already present prenatally. Importantly, SPI1/PU.1 protein appears to be strictly limited to malformed cells, as we did not find SPI1/PU.1 protein expression in mice nor in our in vitro models.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Michael Wong
- Department of Neurology, Washington University, Saint Louis, MO, USA
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Clinical and Experimental Epilepsy, UCL, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
29
|
Enhancing cyst-like lesions of the white matter in tuberous sclerosis complex: a novel neuroradiological finding. Neuroradiology 2021; 63:971-974. [PMID: 33481070 DOI: 10.1007/s00234-021-02647-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant condition clinically presenting with heterogenous clinical features. Multiple neuroradiological manifestations have been associated with TSC, such as tubers, radial migration lines, subependymal nodules, subependymal giant cell astrocytomas, and cyst-like lesions of the white matter (CLLWMs). The latter have been described as non-enhancing well-defined cysts whose pathogenesis is still unknown. We describe 2 TSC patients with CLLWM showing contrast enhancement after Gadolinium injection, a previously unreported entity.
Collapse
|
30
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
31
|
Bongaarts A, de Jong JM, Broekaart DWM, van Scheppingen J, Anink JJ, Mijnsbergen C, Jansen FE, Spliet WGM, den Dunnen WFA, Gruber VE, Scholl T, Hainfellner JA, Feucht M, Borkowska J, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Scicluna BP, Schouten-van Meeteren AYN, van Vliet EA, Mühlebner A, Mills JD, Aronica E. Dysregulation of the MMP/TIMP Proteolytic System in Subependymal Giant Cell Astrocytomas in Patients With Tuberous Sclerosis Complex: Modulation of MMP by MicroRNA-320d In Vitro. J Neuropathol Exp Neurol 2020; 79:777-790. [PMID: 32472129 PMCID: PMC7304985 DOI: 10.1093/jnen/nlaa040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberous sclerosis complex (TSC), a rare genetic disorder caused by a mutation in the TSC1 or TSC2 gene, is characterized by the growth of hamartomas in several organs. This includes the growth of low-grade brain tumors, known as subependymal giant cell astrocytomas (SEGA). Previous studies have shown differential expression of genes related to the extracellular matrix in SEGA. Matrix metalloproteinases (MMPs), and their tissue inhibitors (TIMPs) are responsible for remodeling the extracellular matrix and are associated with tumorigenesis. This study aimed to investigate the MMP/TIMP proteolytic system in SEGA and the regulation of MMPs by microRNAs, which are important post-transcriptional regulators of gene expression. We investigated the expression of MMPs and TIMPs using previously produced RNA-Sequencing data, real-time quantitative PCR and immunohistochemistry in TSC-SEGA samples and controls. We found altered expression of several MMPs and TIMPs in SEGA compared to controls. We identified the lowly expressed miR-320d in SEGA as a potential regulator of MMPs, which can decrease MMP2 expression in human fetal astrocyte cultures. This study provides evidence of a dysregulated MMP/TIMP proteolytic system in SEGA of which MMP2 could be rescued by microRNA-320d. Therefore, further elucidating microRNA-mediated MMP regulation may provide insights into SEGA pathogenesis and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jody M de Jong
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands (WGMS); Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (WFAdD)
| | | | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Julita Borkowska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Brendon P Scicluna
- Department of Clinical Epidemiology, Biostatistics & Bioinformatics, Center for Experimental & Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
32
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
33
|
Zimmer TS, Broekaart DWM, Gruber VE, van Vliet EA, Mühlebner A, Aronica E. Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis. Front Neurol 2020; 11:1028. [PMID: 33041976 PMCID: PMC7527496 DOI: 10.3389/fneur.2020.01028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) represents the prototypic monogenic disorder of the mammalian target of rapamycin (mTOR) pathway dysregulation. It provides the rational mechanistic basis of a direct link between gene mutation and brain pathology (structural and functional abnormalities) associated with a complex clinical phenotype including epilepsy, autism, and intellectual disability. So far, research conducted in TSC has been largely neuron-oriented. However, the neuropathological hallmarks of TSC and other malformations of cortical development also include major morphological and functional changes in glial cells involving astrocytes, oligodendrocytes, NG2 glia, and microglia. These cells and their interglial crosstalk may offer new insights into the common neurobiological mechanisms underlying epilepsy and the complex cognitive and behavioral comorbidities that are characteristic of the spectrum of mTOR-associated neurodevelopmental disorders. This review will focus on the role of glial dysfunction, the interaction between glia related to mTOR hyperactivity, and its contribution to epileptogenesis in TSC. Moreover, we will discuss how understanding glial abnormalities in TSC might give valuable insight into the pathophysiological mechanisms that could help to develop novel therapeutic approaches for TSC or other pathologies characterized by glial dysfunction and acquired mTOR hyperactivation.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| |
Collapse
|
34
|
Gelot AB, Represa A. Progression of Fetal Brain Lesions in Tuberous Sclerosis Complex. Front Neurosci 2020; 14:899. [PMID: 32973442 PMCID: PMC7472962 DOI: 10.3389/fnins.2020.00899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Tuberous sclerosis (TSC) is a multisystem autosomal dominant genetic disorder due to loss of function of TSC1/TSC2 resulting in increased mTOR (mammalian target of rapamycin) signaling. In the brain, TSC is characterized by the formation of specific lesions that include subependymal and white matter nodules and cortical tubers. Cells that constitute TSC lesions are mainly Giant cells and dysmorphic neurons and astrocytes, but normal cells also populate the tubers. Although considered as a developmental disorder, the histopathological features of brain lesions have been described in only a limited number of fetal cases, providing little information on how these lesions develop. In this report we characterized the development of TSC lesions in 14 fetal brains ranging from 19 gestational weeks (GW) to term and 2 postnatal cases. The study focused on the telencephalon at the level of the caudothalamic notch. Our data indicate that subcortical lesions, forming within and at the vicinity of germinative zones, are the first alterations (already detected in 19GW brains), characterized by the presence of numerous dysmorphic astrocytes and Giant, balloon-like, cells. Our data show that cortical tuber formation is a long process that initiates with the presence of dysmorphic astrocytes (by 19–21GW), progress with the apparition of Giant cells (by 24GW) and mature with the appearance of dysmorphic neurons by the end of gestation (by 36GW). Furthermore, the typical tuberal aspect of cortical lesions is only reached when bundles of neurofilament positive extensions delineate the bottom of the cortical lesion (by 36GW). In addition, our study reveals the presence of Giant cells and dysmorphic neurons immunopositive for interneuron markers such as calbindin and parvalbumin, suggesting that TSC lesions would be mosaic lesions generated from different classes of progenitors.
Collapse
Affiliation(s)
- Antoinette Bernabe Gelot
- Aix-Marseille University, INSERM, INMED, Marseille, France.,APHP, Hôpital Trousseau, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
35
|
Kapfhamer D, McKenna J, Yoon CJ, Murray-Stewart T, Casero RA, Gambello MJ. Ornithine decarboxylase, the rate-limiting enzyme of polyamine synthesis, modifies brain pathology in a mouse model of tuberous sclerosis complex. Hum Mol Genet 2020; 29:2395-2407. [PMID: 32588887 PMCID: PMC7424721 DOI: 10.1093/hmg/ddaa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant neurodevelopmental disorder characterized by variable expressivity. TSC results from inactivating variants within the TSC1 or TSC2 genes, leading to constitutive activation of mechanistic target of rapamycin complex 1 signaling. Using a mouse model of TSC (Tsc2-RG) in which the Tsc2 gene is deleted in radial glial precursors and their neuronal and glial descendants, we observed increased ornithine decarboxylase (ODC) enzymatic activity and concentration of its product, putrescine. To test if increased ODC activity and dysregulated polyamine metabolism contribute to the neurodevelopmental defects of Tsc2-RG mice, we used pharmacologic and genetic approaches to reduce ODC activity in Tsc2-RG mice, followed by histologic assessment of brain development. We observed that decreasing ODC activity and putrescine levels in Tsc2-RG mice worsened many of the neurodevelopmental phenotypes, including brain growth and neuronal migration defects, astrogliosis and oxidative stress. These data suggest a protective effect of increased ODC activity and elevated putrescine that modify the phenotype in this developmental Tsc2-RG model.
Collapse
Affiliation(s)
- David Kapfhamer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - James McKenna
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Caroline J Yoon
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
36
|
Hsieh CCJ, Lo YC, Li SJ, Lin TC, Chang CW, Chen TC, Yang SH, Lee YC, Chen YY. Detection of endophenotypes associated with neuropsychiatric deficiencies in a mouse model of tuberous sclerosis complex using diffusion tensor imaging. Brain Pathol 2020; 31:4-19. [PMID: 32530070 PMCID: PMC8018051 DOI: 10.1111/bpa.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare hereditary disease, which results from the mutation of either TSC1 or TSC2, and its clinical features include benign tumors and dysfunctions in numerous organs, including the brain. Many individuals with TSC manifest neuropsychiatric symptoms, such as learning impairments, cognitive deficits and anxiety. Current pharmacological treatment for TSC is the use of mTOR inhibitors. However, they are not effective in treating neuropsychiatric symptoms. We previously used curcumin, a diet-derived mTOR inhibitor, which possesses both anti-inflammatory and antiproliferative properties, to improve learning and memory deficits in Tsc2+/- mice. Diffusion tensor imaging (DTI) provides microstructural information in brain tissue and has been used to study the neuropathological changes in TSC. In this study, we confirmed that the impaired recognition memory and increased anxiety-like behavior in Tsc2+/- mice can be reversed by curcumin treatment. Second, we found altered fractional anisotropy and mean diffusivity in the anterior cingulate cortex and the hippocampus of the Tsc2+/- mice, which may indicate altered circuitry. Finally, the mTOR complex 1 hyperactivity was found in the cortex and hippocampus, coinciding with abnormal cortical myelination and increased glial fibrillary acidic protein expression in the hippocampal CA1 of Tsc2+/- mice, both of which can be rescued with curcumin treatment. Overall, DTI is sensitive to the subtle alterations that cannot be detected by conventional imaging, suggesting that noninvasive DTI may be suitable for longitudinally monitoring the in vivo neuropathology associated with the neuropsychiatric symptoms in TSC, thereby facilitating future clinical trials of pharmacological treatments.
Collapse
Affiliation(s)
- Christine Chin-Jung Hsieh
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Chun Lo
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - You-Yin Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan.,PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
37
|
Immunotherapy for GRIN2A and GRIN2D-related epileptic encephalopathy. Epilepsy Res 2020; 163:106325. [PMID: 32289570 DOI: 10.1016/j.eplepsyres.2020.106325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND GRIN-related developmental-epileptic encephalopathies are associated with a spectrum of neurodevelopmental disorders, including intellectual disability, epilepsy including continuous spike-and-wave during sleep syndrome (CSWS), or epilepsy-aphasia spectrum phenotypes such as in Landau-Kleffner syndrome. Efficacy of IVIG treatment was recently reported in a patient with LKS related to GRIN2A mutation. AIM AND METHODS We describe the efficacy of Immunotherapy in 5 consecutive patients (4 males, age range 6 months-13 years) with molecularly confirmed GRIN-related epileptic encephalopathy (4 with GRIN2A- related epilepsy-aphasia spectrum/epileptic encephalopathy with CSWS, accompanied by verbal, communicative and behavioural regression, and one patient with GRIN2D - related infantile developmental-epileptic encephalopathy). All patients had global developmental delay/ intellectual disability in various degrees, and were resistant to anticonvulsants, but none of the patients had frequent clinical seizures. All patients received monthly infusion of IVIG 2 g/ kg for 6 months; 2 patients were also treated with high-dose corticosteroids. RESULTS Normalization or near normalization of the EEG was noted in 3 patients, from whom 2 had mild improvement in verbal abilities and communication skills. Perceptual/spatial abilities, as well as executive functions and attention span, remained significantly impaired. CONCLUSION according to this preliminary, open-label study, Immunotherapy may lead to a clinical and electrographic improvement in patients with GRIN-related developmental-epileptic encephalopathies. Further studies to validate the efficacy of immunotherapy and the potential role of autoimmunity in GRIN-related disorders are needed.
Collapse
|
38
|
Broekaart DWM, van Scheppingen J, Anink JJ, Wierts L, van het Hof B, Jansen FE, Spliet WG, van Rijen PC, Kamphuis WW, de Vries HE, Aronica E, van Vliet EA. Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathol Appl Neurobiol 2020; 46:142-159. [PMID: 31183875 PMCID: PMC7217197 DOI: 10.1111/nan.12572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023]
Abstract
AIM Matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) control proteolysis within the extracellular matrix (ECM) of the brain. Dysfunction of this enzymatic system due to brain inflammation can disrupt the blood-brain barrier (BBB) and has been implicated in the pathogenesis of epilepsy. However, this has not been extensively studied in the epileptogenic human brain. METHODS We investigated the expression and cellular localization of major MMPs (MMP2, MMP3, MMP9 and MMP14) and TIMPs (TIMP1, TIMP2, TIMP3 and TIMP4) using quantitative real-time polymerase chain reaction (RT-PCR) and immunohistochemistry in resected epileptogenic brain tissue from patients with tuberous sclerosis complex (TSC), a severe neurodevelopmental disorder characterized by intractable epilepsy and prominent neuroinflammation. Furthermore, we determined whether anti-inflammatory microRNAs, miR146a and miR147b, which can regulate gene expression at the transcriptional level, could attenuate dysregulated MMP and TIMP expression in TSC tuber-derived astroglial cultures. RESULTS We demonstrated higher mRNA and protein expression of MMPs and TIMPs in TSC tubers compared to control and perituberal brain tissue, particularly in dysmorphic neurons and giant cells, as well as in reactive astrocytes, which was associated with BBB dysfunction. More importantly, IL-1β-induced dysregulation of MMP3, TIMP2, TIMP3 and TIMP4 could be rescued by miR146a and miR147b in tuber-derived TSC cultures. CONCLUSIONS This study provides evidence of dysregulation of the MMP/TIMP proteolytic system in TSC, which is associated with BBB dysfunction. As dysregulated MMP and TIMP expression can be ameliorated in vitro by miR146a and miR147b, these miRNAs deserve further investigation as a novel therapeutic approach.
Collapse
Affiliation(s)
- D. W. M. Broekaart
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. van Scheppingen
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. J. Anink
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - L. Wierts
- Brendinn TherapeuticsAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - B. van het Hof
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - F. E. Jansen
- Department of Pediatric NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - W. G. Spliet
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - P. C. van Rijen
- Department of NeurosurgeryRudolf Magnus Institute for NeuroscienceUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - W. W. Kamphuis
- Brendinn TherapeuticsAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - H. E. de Vries
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Aronica
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - E. A. van Vliet
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Swammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
39
|
Abstract
Psychiatric illnesses, including depression and anxiety, are highly comorbid with epilepsy (for review see Josephson and Jetté (Int Rev Psychiatry 29:409-424, 2017), Salpekar and Mula (Epilepsy Behav 98:293-297, 2019)). Psychiatric comorbidities negatively impact the quality of life of patients (Johnson et al., Epilepsia 45:544-550, 2004; Cramer et al., Epilepsy Behav 4:515-521, 2003) and present a significant challenge to treating patients with epilepsy (Hitiris et al., Epilepsy Res 75:192-196, 2007; Petrovski et al., Neurology 75:1015-1021, 2010; Fazel et al., Lancet 382:1646-1654, 2013) (for review see Kanner (Seizure 49:79-82, 2017)). It has long been acknowledged that there is an association between psychiatric illnesses and epilepsy. Hippocrates, in the fourth-fifth century B.C., considered epilepsy and melancholia to be closely related in which he writes that "melancholics ordinarily become epileptics, and epileptics, melancholics" (Lewis, J Ment Sci 80:1-42, 1934). The Babylonians also recognized the frequency of psychosis in patients with epilepsy (Reynolds and Kinnier Wilson, Epilepsia 49:1488-1490, 2008). Despite the fact that the relationship between psychiatric comorbidities and epilepsy has been recognized for thousands of years, psychiatric illnesses in people with epilepsy still commonly go undiagnosed and untreated (Hermann et al., Epilepsia 41(Suppl 2):S31-S41, 2000) and systematic research in this area is still lacking (Devinsky, Epilepsy Behav 4(Suppl 4):S2-S10, 2003). Thus, although it is clear that these are not new issues, there is a need for improvements in the screening and management of patients with psychiatric comorbidities in epilepsy (Lopez et al., Epilepsy Behav 98:302-305, 2019) and progress is needed to understand the underlying neurobiology contributing to these comorbid conditions. To that end, this chapter will raise awareness regarding the scope of the problem as it relates to comorbid psychiatric illnesses and epilepsy and review our current understanding of the potential mechanisms contributing to these comorbidities, focusing on both basic science and clinical research findings.
Collapse
|
40
|
Abstract
Microglia are the resident immune cells and professional phagocytes of the central nervous system. However, little is known about the contribution of their phagocytic signaling to the neuropathology and pathophysiology of epilepsy. Here, we summarize and discuss the implications of recent evidence supporting that aberrant microglia phagocytic activity and alterations in phagocytosis signaling molecules occur in association with microglia-neuronal contacts, neuronal/synaptic loss, and spontaneous recurrent seizures in human and preclinical models of epilepsy. This body of evidence provides strong support that the microglial contribution to epileptogenic networks goes beyond inflammation, and suggests that phagocytic signaling molecules may be novel therapeutic targets for epilepsy.
Collapse
Affiliation(s)
| | - Amy L. Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
41
|
Bongaarts A, van Scheppingen J, Korotkov A, Mijnsbergen C, Anink JJ, Jansen FE, Spliet WGM, den Dunnen WFA, Gruber VE, Scholl T, Samueli S, Hainfellner JA, Feucht M, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Coras R, Blümcke I, Krsek P, Zamecnik J, Meijer L, Scicluna BP, Schouten-van Meeteren AYN, Mühlebner A, Mills JD, Aronica E. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain 2020; 143:131-149. [PMID: 31834371 PMCID: PMC6935755 DOI: 10.1093/brain/awz370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sharon Samueli
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Lisethe Meijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine and Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
42
|
Wong M. The role of glia in epilepsy, intellectual disability, and other neurodevelopmental disorders in tuberous sclerosis complex. J Neurodev Disord 2019; 11:30. [PMID: 31838997 PMCID: PMC6913020 DOI: 10.1186/s11689-019-9289-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic disorder characterized by severe neurological manifestations, including epilepsy, intellectual disability, autism, and a range of other behavioral and psychiatric symptoms, collectively referred to as TSC-associated neuropsychiatric disorders (TAND). Various tumors and hamartomas affecting different organs are the pathological hallmarks of the disease, especially cortical tubers of the brain, but specific cellular and molecular abnormalities, such as involving the mechanistic target of rapamycin (mTOR) pathway, have been identified that also cause or contribute to neurological manifestations of TSC independent of gross structural lesions. In particular, while neurons are immediate mediators of neurological symptoms, different types of glial cells have been increasingly recognized to play important roles in the phenotypes of TSC. Main body This review summarizes the literature supporting glial dysfunction from both mouse models and clinical studies of TSC. In particular, evidence for the role of astrocytes, microglia, and oligodendrocytes in the pathophysiology of epilepsy and TAND in TSC is analyzed. Therapeutic implications of targeting glia cells in developing novel treatments for the neurological manifestations of TSC are also considered. Conclusions Different types of glial cells have both cell autonomous effects and interactions with neurons and other cells that are involved in the pathophysiology of the neurological phenotype of TSC. Targeting glial-mediated mechanisms may represent a novel therapeutic approach for epilepsy and TAND in TSC patients.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
43
|
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S, Yang H. Activation of leukocyte immunoglobulin-like receptor B2 signaling pathway in cortical lesions of pediatric patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Dev 2019; 41:829-838. [PMID: 31495513 DOI: 10.1016/j.braindev.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUNDS Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are very frequently associated with epilepsy in pediatric patients. Human leukocyte immunoglobulin-like receptor B2 (LILRB2) participates in the process of neurite growth, synaptic plasticity, and inflammatory reaction, suggesting a potential role of LILRB2 in epilepsy. However, little is known about the distribution and expression of LILRB2 in cortical lesions of FCD IIb and cortical tubers of TSC. METHODS In this study, we have described the distribution and expression of LILRB2 signaling pathway in cortical lesions of pediatric patients with FCD IIb (n = 15) and TSC (n = 12) relative to age-matched autopsy control samples (CTX, n = 10), respectively. The protein levels of LILRB2 pathway molecules were assessed by western blotting and immunohistochemistry. The expression pattern was investigated by immunohistochemistry and double labeling experiment. Spearman correlation analysis to explore the correlation between LILRB2 protein level and seizure frequency. RESULTS The protein levels of LILRB2 and its downstream molecules POSH, SHROOM3, ROCK1, ROCK2 were increased in cortices of patients compared to CTX. Protein levels of LILRB2 negatively correlated with the frequency of seizures in FCD IIb and TSC patients, respectively. Moreover, all LILRB2 pathway molecules were strongly expressed in dysmorphic neurons, balloon cells, and giant cells, LILRB2 co-localized with neuron marker and astrocyte marker. CONCLUSION Taken together, the special expression patterns of LILRB2 signaling pathway in cortical lesions of FCD IIb and TSC implies that it may be involved in the process of epilepsy.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Shi
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lihong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
44
|
Cappoli N, Mezzogori D, Tabolacci E, Coletta I, Navarra P, Pani G, Dello Russo C. The mTOR kinase inhibitor rapamycin enhances the expression and release of pro-inflammatory cytokine interleukin 6 modulating the activation of human microglial cells. EXCLI JOURNAL 2019; 18:779-798. [PMID: 31645839 PMCID: PMC6806201 DOI: 10.17179/excli2019-1715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests the potential use of rapamycin in treatment of several neurological disorders. The drug readily crosses the blood brain barrier and may exert direct immunomodulatory effects within the brain. Microglia are the main innate immune cells of the brain, thus critically involved in the initiation and development of inflammatory processes at this level. However, there are conflicting data from rodent studies about the pharmacological effects of rapamycin on microglial inflammatory responses. Considering that rodent microglia display relevant biochemical and pharmacological differences compared to human microglia, in the present study we studied the effects of rapamycin in an experimental model of human microglia, the human microglial clone 3 (HMC3) cell line. Rapamycin was tested in the nM range both under basal conditions and in cells activated with a pro-inflammatory cytokine cocktail, consisting in a mixture of interferon-γ and interleukin-1β (II). The drug significantly increased II stimulatory effect on interleukin-6 (IL-6) expression and release in the HMC3 cells, while reducing the production of free oxygen radicals (ROS) both under basal conditions and in cells activated with II. Consistently with its known molecular mechanism of action, rapamycin reduced the extent of activation of the so-called 'mechanistic' target of rapamycin complex 1 (mTORC1) kinase and the total amount of intracellular proteins. In contrast to rodent cells, rapamycin did not alter human microglial cell viability nor inhibited cell proliferation. Moreover, rapamycin did not exert any significant effect on the morphology of the HMC3 cells. All together these data suggest that the inhibition of mTORC1 in human microglia by rapamycin results in complex immunomodulatory effects, including a significant increase in the expression and release of the pro-inflammatory IL-6.
Collapse
Affiliation(s)
- Natalia Cappoli
- Institute of Pharmacology, Università Cattolica del S. Cuore, Roma
| | - Daniele Mezzogori
- Institute of Human Physiology, Università Cattolica del S. Cuore, Roma
| | - Elisabetta Tabolacci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma -Institute of Genomic Medicine, Università Cattolica del S. Cuore, Roma
| | - Isabella Coletta
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A
| | - Pierluigi Navarra
- Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma -Institute of Pharmacology, Università Cattolica del S. Cuore, Roma
| | - Giovambattista Pani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma - Institute of General Pathology, Università Cattolica del S. Cuore, Roma
| | - Cinzia Dello Russo
- Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma -Institute of Pharmacology, Università Cattolica del S. Cuore, Roma
| |
Collapse
|
45
|
Ribot R, Kanner AM. Neurobiologic properties of mood disorders may have an impact on epilepsy: Should this motivate neurologists to screen for this psychiatric comorbidity in these patients? Epilepsy Behav 2019; 98:298-301. [PMID: 31182393 DOI: 10.1016/j.yebeh.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Abstract
Epilepsy and psychiatric comorbidities have a complex relation, which can be manifested by their relatively high comorbid occurrence and the existence of a bidirectional relation, whereby not only are people with epilepsy (PWE) at greater risk of developing psychiatric disorders, but patients with primary psychiatric disorders are at higher risk of developing epilepsy. The existence of common pathogenic mechanisms operant in primary psychiatric disorders and epilepsy has been postulated as one of the leading hypothesis to explain their close and very complex relation. The neurobiologic characteristics of mood disorders can be used as a model to test this hypothesis. In this manuscript, we highlight data that suggest how several neurobiologic aspects of mood disorders can facilitate the epileptogenic process in animal models and explain the increased risk of patients with primary mood disorders to develop epilepsy in general and treatment-resistant epilepsy in particular. It is our hope that the inclusion of these data in this Special Issue will motivate neurologists to screen common psychiatric comorbidities in PWE. This article is part of the Special Issue "Obstacles of Treatment of Psychiatric Comorbidities in Epilepsy".
Collapse
Affiliation(s)
- Ramses Ribot
- Comprehensive Epilepsy Center and Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Andres M Kanner
- Comprehensive Epilepsy Center and Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
46
|
Frigerio F, Pasqualini G, Craparotta I, Marchini S, van Vliet EA, Foerch P, Vandenplas C, Leclercq K, Aronica E, Porcu L, Pistorius K, Colas RA, Hansen TV, Perretti M, Kaminski RM, Dalli J, Vezzani A. n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain 2019; 141:3130-3143. [PMID: 30307467 PMCID: PMC6202571 DOI: 10.1093/brain/awy247] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy therapy is based on drugs that treat the symptoms rather than the underlying mechanisms of the disease (epileptogenesis). There are no treatments for preventing seizures or improving disease prognosis, including neurological comorbidities. The search of pathogenic mechanisms of epileptogenesis highlighted that neuroinflammatory cytokines [i.e. interleukin-1β (IL-1β), tumour necrosis factor-α (Tnf-α)] are induced in human and experimental epilepsies, and contribute to seizure generation in animal models. A major role in controlling the inflammatory response is played by specialized pro-resolving lipid mediators acting on specific G-protein coupled receptors. Of note, the role that these pathways have in epileptogenic tissue remains largely unexplored. Using a murine model of epilepsy, we show that specialized pro-resolving mechanisms are activated by status epilepticus before the onset of spontaneous seizures, but with a marked delay as compared to the neuroinflammatory response. This was assessed by measuring the time course of mRNA levels of 5-lipoxygenase (Alox5) and 15-lipoxygenase (Alox15), the key biosynthetic enzymes of pro-resolving lipid mediators, versus Il1b and Tnfa transcripts and proteins. In the same hippocampal tissue, we found a similar delayed expression of two main pro-resolving receptors, the lipoxin A4 receptor/formyl peptide receptor 2 and the chemerin receptor. These receptors were also induced in the human hippocampus after status epilepticus and in patients with temporal lobe epilepsy. This evidence supports the hypothesis that the neuroinflammatory response is sustained by a failure to engage pro-resolving mechanisms during epileptogenesis. Lipidomic LC-MS/MS analysis showed that lipid mediator levels apt to resolve the neuroinflammatory response were also significantly altered in the hippocampus during epileptogenesis with a shift in the biosynthesis of several pro-resolving mediator families including the n-3 docosapentaenoic acid (DPA)-derived protectin D1. Of note, intracerebroventricular injection of this mediator during epileptogenesis in mice dose-dependently reduced the hippocampal expression of both Il1b and Tnfa mRNAs. This effect was associated with marked improvement in mouse weight recovery and rescue of cognitive deficit in the novel object recognition test. Notably, the frequency of spontaneous seizures was drastically reduced by 2-fold on average and the average seizure duration was shortened by 40% after treatment discontinuation. As a result, the total time spent in seizures was reduced by 3-fold in mice treated with n-3 DPA-derived protectin D1. Taken together, the present findings demonstrate that epilepsy is characterized by an inadequate engagement of resolution pathways. Boosting endogenous resolution responses significantly improved disease outcomes, providing novel treatment avenues.
Collapse
Affiliation(s)
- Federica Frigerio
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCSS, Milano, Italy
| | - Giulia Pasqualini
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCSS, Milano, Italy
| | - Ilaria Craparotta
- Department of Oncology, Mario Negri Institute for Pharmacological Research IRCSS, Milano, Italy
| | - Sergio Marchini
- Department of Oncology, Mario Negri Institute for Pharmacological Research IRCSS, Milano, Italy
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| | - Luca Porcu
- Department of Oncology, Mario Negri Institute for Pharmacological Research IRCSS, Milano, Italy
| | - Kimberly Pistorius
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Romain A Colas
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Trond V Hansen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, Oslo, Norway
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | | | - Jesmond Dalli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
- Correspondence regarding lipid mediators to: Jesmond Dalli, PhD Centre for inflammation and Therapeutic Innovation Queen Mary University of London Charterhouse Square, London, EC1M 6BQ, UK E-mail:
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCSS, Milano, Italy
- Correspondence regarding epileptogenesis to: Annamaria Vezzani, PhD Department of Neuroscience Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via G. La Masa 19, 20156 Milano, Italy E-mail:
| |
Collapse
|
47
|
Blair JD, Bateup HS. New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn 2019; 249:46-55. [PMID: 31070828 DOI: 10.1002/dvdy.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Recent advances in human stem cell and genome engineering have enabled the generation of genetically defined human cellular models for brain disorders. These models can be established from a patient's own cells and can be genetically engineered to generate isogenic, controlled systems for mechanistic studies. Given the challenges of obtaining and working with primary human brain tissue, these models fill a critical gap in our understanding of normal and abnormal human brain development and provide an important complement to animal models. Recently, there has been major progress in modeling the neuropathophysiology of the canonical "mTORopathy" tuberous sclerosis complex (TSC) with such approaches. Studies using two- and three-dimensional cultures of human neurons and glia have provided new insights into how mutations in the TSC1 and TSC2 genes impact human neural development and function. Here we discuss recent progress in human stem cell-based modeling of TSC and highlight challenges and opportunities for further efforts in this area.
Collapse
Affiliation(s)
- John D Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Chan Zuckerberg Biohub, San Francisco, California
| |
Collapse
|
48
|
Nguyen LH, Mahadeo T, Bordey A. mTOR Hyperactivity Levels Influence the Severity of Epilepsy and Associated Neuropathology in an Experimental Model of Tuberous Sclerosis Complex and Focal Cortical Dysplasia. J Neurosci 2019; 39:2762-2773. [PMID: 30700531 PMCID: PMC6445990 DOI: 10.1523/jneurosci.2260-18.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) are focal malformations of cortical development (FMCDs) that are highly associated with intractable epilepsy. TSC and FCD are mTORopathies caused by a spectrum of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway genes leading to differential activation of mTOR signaling. However, whether the degree of mTOR hyperactivity influences disease severity remains unclear. Here, we examined the effects of differential mTOR hyperactivity levels on epilepsy and associated neuropathology in a mouse model of TSC and FCD. Constitutively active Rheb (RhebCA), the canonical activator of mTOR complex 1 (mTORC1), was expressed in mouse embryos of either sex via in utero electroporation at low, intermediate, and high concentrations to induce different mTORC1 activity levels in developing cortical neurons. We found that RhebCA expression induced mTORC1 hyperactivation and increased neuronal soma size and misplacement in a dose-dependent manner. No seizures were detected in the low RhebCA mice, whereas the intermediate and high RhebCA mice displayed spontaneous, recurrent seizures that significantly increased with higher RhebCA concentrations. Seizures were associated with a global increase in microglial activation that was notably higher in the regions containing RhebCA-expressing neurons. These data demonstrate that neuronal mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in experimental TSC and FCD. Overall, these findings highlight the importance of evaluating the outcome of individual variants on mTOR activity levels and support personalized medicine strategies based on patient variants and mTOR activity level for TSC, FCD, and potentially other mTORopathies.SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) are epileptogenic cortical malformations caused by pathogenic variants in mechanistic target of rapamycin (mTOR) pathway genes leading to differential mTOR hyperactivation. Here, we present novel findings that neuronal mTOR hyperactivity levels correlate with the severity of epilepsy and associated neuropathology in a mouse model of TSC and FCD. Our findings suggest the need to evaluate the outcome of individual variants on mTOR activity levels in clinical assessments and support personalized medicine strategies based on patient variants and mTOR activity level. Additionally, we present useful modifications to a previously described mouse model of TSC and FCD that allows for titration of seizure frequency and generation of a mild to severe epilepsy phenotype as applicable for preclinical drug testing and mechanistic studies.
Collapse
Affiliation(s)
| | | | - Angélique Bordey
- Department of Neurosurgery, and
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
49
|
Owens GC, Garcia AJ, Mochizuki AY, Chang JW, Reyes SD, Salamon N, Prins RM, Mathern GW, Fallah A. Evidence for Innate and Adaptive Immune Responses in a Cohort of Intractable Pediatric Epilepsy Surgery Patients. Front Immunol 2019; 10:121. [PMID: 30761153 PMCID: PMC6362260 DOI: 10.3389/fimmu.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Brain-infiltrating lymphocytes (BILs) were isolated from resected brain tissue from 10 pediatric epilepsy patients who had undergone surgery for Hemimegalencephaly (HME) (n = 1), Tuberous sclerosis complex (TSC) (n = 2), Focal cortical dysplasia (FCD) (n = 4), and Rasmussen encephalitis (RE) (n = 3). Peripheral blood mononuclear cells (PBMCs) were also isolated from blood collected at the time of the surgery. Cells were immunostained with a panel of 20 antibody markers, and analyzed by mass cytometry. To identify and quantify the immune cell types in the samples, an unbiased clustering method was applied to the entire data set. More than 85 percent of the CD45+ cells isolated from resected RE brain tissue comprised T cells; by contrast NK cells and myeloid cells constituted 80-95 percent of the CD45+ cells isolated from the TSC and the FCD brain specimens. Three populations of myeloid cells made up >50 percent of all of the myeloid cells in all of the samples of which a population of HLA-DR+ CD11b+ CD4- cells comprised the vast majority of myeloid cells in the BIL fractions from the FCD and TSC cases. CD45RA+ HLA-DR- CD11b+ CD16+ NK cells constituted the major population of NK cells in the blood from all of the cases. This subset also comprised the majority of NK cells in BILs from the resected RE and HME brain tissue, whereas NK cells defined as CD45RA- HLA-DR+ CD11b- CD16- cells comprised 86-96 percent of the NK cells isolated from the FCD and TSC brain tissue. Thirteen different subsets of CD4 and CD8 αβ T cells and γδ T cells accounted for over 80% of the CD3+ T cells in all of the BIL and PBMC samples. At least 90 percent of the T cells in the RE BILs, 80 percent of the T cells in the HME BILs and 40-66 percent in the TSC and FCD BILs comprised activated antigen-experienced (CD45RO+ HLA-DR+ CD69+) T cells. We conclude that even in cases where there is no evidence for an infection or an immune disorder, activated peripheral immune cells may be present in epileptogenic areas of the brain, possibly in response to seizure-driven brain inflammation.
Collapse
Affiliation(s)
- Geoffrey C. Owens
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alejandro J. Garcia
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron Y. Mochizuki
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julia W. Chang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samuel D. Reyes
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
50
|
Riikonen R, Kokki H. CSF nerve growth factor (β-NGF) is increased but CSF insulin-like growth factor-(IGF-1) is normal in children with tuberous sclerosis and infantile spasms. Eur J Paediatr Neurol 2019; 23:191-196. [PMID: 30503720 DOI: 10.1016/j.ejpn.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/31/2023]
Abstract
Tuberous sclerosis is associated with epilepsy that is often refractory. We examined cerebrospinal fluid (CSF) concentrations for neurotrophins, nerve growth factor (β-NGF) and insulin-like growth factor (IGF-1) in children with infantile spasms between 1997 and 2010. We classified the patients as follows: tuberous sclerosis (n = 5), cryptogenic spasms (n = 6), postinfectious spasms (n = 5) and other symptomatic spasms (n = 22). We had 22 age- and sex-matched controls for CSF-NGF and 14 for CSF-IGF-1. The median of CSF-NGF was higher in those with tuberous sclerosis, 56 (minimum-maximum, 8.0-131) ng/L, in relative to age- and sex-matched controls, 6.7 (0.0-22) ng/L, and symptomatic infantile spasms, 0.0 (0.0-4.5) ng/L or cryptogenic cases of infantile spasms, 6.2 (3.9-8.8) ng/L, respectively. CSF-NGF were highest in children with postinfectious aetiology, 408 (89-778) ng/L. CSF-IGF-1 of tuberous sclerosis, 0.65 (0.35-0.98) μg/L, did not differ from the cryptogenic spasms, 0.68 (0.32-0.87) μg/L, or from age- and sex-matched controls 0.52 (0.22-0.77) μg/L. Patients with tuberous sclerosis and cryptogenic spasms had normal development prior the ACTH therapy. We suggest that increased CSF-NGF might indicate a persistent activation of inflammatory pathways in cortical tubers in tuberous sclerosis and this would reflect in CSF concentrations.
Collapse
Affiliation(s)
- Raili Riikonen
- Children's Hospital, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| | - Hannu Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|