1
|
An Analysis of the Structural Relationship between Thyroid Hormone-Signaling Disruption and Polybrominated Diphenyl Ethers: Potential Implications for Male Infertility. Int J Mol Sci 2023; 24:ijms24043296. [PMID: 36834711 PMCID: PMC9964322 DOI: 10.3390/ijms24043296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a common class of anthropogenic organobromine chemicals with fire-retardant properties and are extensively used in consumer products, such as electrical and electronic equipment, furniture, textiles, and foams. Due to their extensive use, PBDEs have wide eco-chemical dissemination and tend to bioaccumulate in wildlife and humans with many potential adverse health effects in humans, such as neurodevelopmental deficits, cancer, thyroid hormone disruption, dysfunction of reproductive system, and infertility. Many PBDEs have been listed as chemicals of international concern under the Stockholm Convention on Persistent Organic Pollutants. In this study, the aim was to investigate the structural interactions of PBDEs against thyroid hormone receptor (TRα) with potential implications in reproductive function. Structural binding of four PBDEs, i.e., BDE-28, BDE-100, BDE-153 and BDE-154 was investigated against the ligand binding pocket of TRα using Schrodinger's induced fit docking, followed by molecular interaction analysis and the binding energy estimation. The results indicated the stable and tight binding of all four PDBE ligands and similarity in the binding interaction pattern to that of TRα native ligand, triiodothyronine (T3). The estimated binding energy value for BDE-153 was the highest among four PBDEs and was more than that of T3. This was followed by BDE-154, which is approximately the same as that of TRα native ligand, T3. Furthermore, the value estimated for BDE-28 was the lowest; however, the binding energy value for BDE-100 was more than BDE-28 and close to that of TRα native ligand, T3. In conclusion, the results of our study suggested the thyroid signaling disruption potential of indicated ligands according to their binding energy order, which can possibly lead to disruption of reproductive function and infertility.
Collapse
|
2
|
Babichuk N, Sarkar A, Mulay S, Knight J, Bautista JJ, Young CJ. Polybrominated Diphenyl Ethers (PBDEs) in Marine Fish and Dietary Exposure in Newfoundland. ECOHEALTH 2022; 19:99-113. [PMID: 35471683 DOI: 10.1007/s10393-022-01582-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Presence of PBDEs tested in 127 liver samples from Atlantic Cod (Gadus morhua) and Turbot (Scophthalmus Maximus) and 80 adult participants from two rural Newfoundland communities. Seafood consumption was measured through a validated seafood consumption questionnaire. PBDEs (-28, -47, -99, -156, and -209) were found in all fish liver samples, and PBB-153 and PBDEs-28, -47, -99, -100, -153 were identified as the most prominent congeners from the participants' serum samples. Cod was the most frequently consumed species in the seafood consumption survey. PBB-153 was higher amongst older (> 50 years age) participants (p < 0.0001), however, no PBDE congeners were significantly different by age. PBB-153 (p = 0.001), PBDE-153 (p = 0.006), and 5PBDE (p = 0.008) levels were significantly higher in males. The study shows that the marine ecosystem around Newfoundland has been contaminated by PBDEs, and that rural coastal residents are potentially exposed to these contaminants through local seafood consumption.
Collapse
Affiliation(s)
- Nicole Babichuk
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Atanu Sarkar
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada.
| | - Shree Mulay
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - John Knight
- Primary Healthcare Research Unit, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | | | - Cora J Young
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
3
|
Cheng PK, Chen HC, Kuo PL, Chang JW, Chang WT, Huang PC. Associations between Oxidative/Nitrosative Stress and Thyroid Hormones in Pregnant Women—Tainan Birth Cohort Study (TBCS). Antioxidants (Basel) 2022; 11:antiox11020334. [PMID: 35204216 PMCID: PMC8868566 DOI: 10.3390/antiox11020334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative and nitrosative stress have been linked to thyroid function in both animal and human studies. In the present study, the associations between oxidative and nitrosative stress and thyroid hormones were investigated. Measurements were obtained from 97 Taiwanese pregnant women at the first, second, and third trimesters. Levels of five oxidative and nitrosative stress biomarkers (8-hydroxy-2′-deoxyguanosine [8-OHdG], 8-nitroguanine [8-NO2Gua], 4-hydroxy-2-nonenal-mercapturic acid [HNE-MA], 8-isoprostaglandin F2α [8-isoPGF2α], and malondialdehyde [MDA]) were measured using urine samples, and levels of five thyroid hormones (triiodothyronine [T3], thyroxine [T4], free T4, thyroid-stimulating hormone [TSH], and T4-binding globulin [TBG]) were measured in blood samples. Multiple linear regressions and linear mixed-model regressions were conducted to determine the associations between oxidative or nitrosative stress biomarkers and thyroid hormones in pregnant women. We found that TSH was negatively and significantly associated with 8-NO2Gua (−14%, 95% CI [−26.9% to −1.1%]) and HNE-MA (−23%, 95% CI [−35.9% to −10.0%]) levels. However, T4 (3%, 95% CI [0.2%–5.8%]) and free T4 (4.3%, 95% CI [0.8%–7.8%]) levels were positively and significantly associated with 8-NO2Gua. The T4 to TBG and free T4 to TBG ratios were positively and significantly associated with 8-NO2Gua level (T4/TBG: 3.6%, 95% CI [0.5%–6.7%]; free T4/TBG: 5.6%, 95% CI [0.2%–11.1%]). However, the TSH to T4 ratio was negatively and significantly associated with 8-NO2Gua level (−17.3%, 95% CI [−30.4% to −4.3%]). The T3 to TSH ratio was positively and significantly associated with HNE-MA level (25.2%, 95% CI [11.2%–39.2%]). However, the TSH to T4 and TSH to free T4 ratios were negatively and significantly associated with HNE-MA level (TSH/T4: −21.2%, 95% CI [−34.5% to −7.8%] and TSH/free T4: −24.0%, 95% CI [−38.3% to −9.6%]). Our findings suggest that an imbalance of oxidative and nitrosative stress may alter thyroid hormone homeostasis during pregnancy. Disruption of the maternal thyroid homeostasis during pregnancy would affect embryonic and fetal development.
Collapse
Affiliation(s)
- Po-Keng Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan; (P.-K.C.); (W.-T.C.)
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, Tainan 70101, Taiwan;
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan; (P.-K.C.); (W.-T.C.)
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan; (P.-K.C.); (W.-T.C.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-37-206-166 (ext. 38507)
| |
Collapse
|
4
|
|
5
|
Gouesse RJ, Dianati E, McDermott A, Wade MG, Hales B, Robaire B, Plante I. In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Induces a Premature Development of the Mammary Glands. Toxicol Sci 2021; 179:206-219. [PMID: 33252648 DOI: 10.1093/toxsci/kfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In utero and prepubertal development of the mammary glands occurs minimally in a hormone independent manner until puberty where maturation of the hypothalamic-pituitary-gonadal axis drives an extensive remodeling. Nevertheless, because the immature glands contain functional hormone receptors, they are especially vulnerable to the effects of endocrine disruptors, such as brominated flame retardants (BFRs). BFRs are widespread chemicals added to household objects to reduce their flammability, and to which humans are ubiquitously exposed. We previously reported that in utero and lactational exposure to BFRs resulted in an impaired mammary gland development in peripubertal animals. Here, we assessed whether BFR-induced disruption of mammary gland development could manifest earlier in life. Dams were exposed prior to mating until pups' weaning to a BFR mixture (0, 0.06, 20, or 60 mg/kg/day) formulated according to levels found in house dust. The mammary glands of female offspring were collected at weaning. Histo-morphological analyses showed that exposure to 0.06 mg/kg/day accelerates global epithelial development as demonstrated by a significant increase in total epithelial surface area, associated with a tendency to increase of the ductal area and thickness, and of lumen area. Significant increases of the Ki67 cell proliferation index and of the early apoptotic marker cleaved caspase-9 were also observed, as well as an upward trend in the number of thyroid hormone receptor α1 positive cells. These molecular, histologic, and morphometric changes are suggestive of accelerated pubertal development. Thus, our results suggest that exposure to an environmentally relevant mixture of BFRs induces precocious development of the mammary gland.
Collapse
Affiliation(s)
| | - Elham Dianati
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Alec McDermott
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Michael G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara Hales
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Faculty of Medicine, Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
6
|
Guo LC, Liu T, Yang Y, Yu S, Gao Y, Huang W, Xiao J, Ma W, Rutherford S, Zhang Y. Changes in thyroid hormone related proteins and gene expression induced by polychlorinated biphenyls and halogen flame retardants exposure of children in a Chinese e-waste recycling area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140597. [PMID: 32629271 DOI: 10.1016/j.scitotenv.2020.140597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and halogen flame retardants (HFRs) are major pollutants in e-waste recycling area. High internal exposure levels of PCBs and HFRs are harmful to human thyroid hormone (TH) equilibrium. To examine their disrupting effects on TH, we conducted a study on children (n = 114) of an e-waste recycling and a control area in South China. Concentrations of PCBs, HFRs, and TH levels were determined in serum samples. TH related proteins and their corresponding gene were also monitored as markers of such disruption. Levels of these chemicals in the exposed group were much greater than those in the control group. Results of the linear regression and generalized additive model indicated the presence of close relationships between the internal exposure levels and the responses of TH related proteins, gene expression. More extensive exposure concentrations of these chemicals led to higher expression of iodothyronine deiodinase I and decreased the concentrations of thyroid-stimulating hormone, expression of TH receptor α, indicating the exertion of discrepant and even contrary influences on equilibrium of TH, and a compensation of these mechanisms may kept the homeostasis of TH. These results for children warrant further investigation on the health risks of PCBs and HFRs exposure in e-waste area.
Collapse
Affiliation(s)
- Ling-Chuan Guo
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Shengbing Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yanhong Gao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Weixiong Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | | | - Yonghui Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| |
Collapse
|
7
|
Gellrich L, Heitel P, Heering J, Kilu W, Pollinger J, Goebel T, Kahnt A, Arifi S, Pogoda W, Paulke A, Steinhilber D, Proschak E, Wurglics M, Schubert-Zsilavecz M, Chaikuad A, Knapp S, Bischoff I, Fürst R, Merk D. l-Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARγ. J Med Chem 2020; 63:6727-6740. [DOI: 10.1021/acs.jmedchem.9b02150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leonie Gellrich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Tamara Goebel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Astrid Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Werner Pogoda
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Alexander Paulke
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
8
|
Guo Z, Zhang L, Liu X, Yu Y, Liu S, Chen M, Huang C, Hu G. The enrichment and purification of hexabromocyclododecanes and its effects on thyroid in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109690. [PMID: 31563749 DOI: 10.1016/j.ecoenv.2019.109690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Hexabromocyclododecanes (HBCDs) are the third most highly produced brominated flame retardants (BFRs) all over the world. Based on the current research status of HBCDs, zebrafish were exposed to three dietary concentrations of HBCDs (0, 10, 100, 400 ng/g) for 56 days, and followed by clean food for 28 days. In order to investigate the enrichment and purification of HBCDs in zebrafish, HBCD enantiomers in zebrafish were determined using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). To investigate the effects of long-term exposure of HBCDs on thyroid dysfunction and oxidative stress in zebrafish, the concentrations of thyroid hormone (T3, T4, FT3 and FT4) and the activities of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were measured. RT-PCR was used to reveal the molecular mechanism of HBCDs' influence on thyroid hormone in zebrafish. The result of UPLC-MS/MS showed that there were three main reasons for the existence of α-HBCD as the major isomer in the organism. HBCDs had significant inhibitory effect on T3 and T4 in liver of adult zebrafish after 56 days' exposure. Compared with the control group, the ratio of T3 and T4was significantly higher in the medium and high concentration group. The content of FT3 and FT4 in the liver tissue of zebrafish increased first and then decreased with the increase of exposure concentration. With the increase of exposure concentration, the content of MDA in zebrafish liver decreased firstly and then increased. The activity of SOD and CAT in zebrafish liver showed the opposite trend with MDA. And the concentration of GSH in liver decreased gradually, which showed a significant dose-effect relationship. HBCDs exposure has an inhibitory effect on thyroid hormone receptor gene (TRβ) and adrenocorticotropin-releasing hormone gene (Crh) in zebrafish.
Collapse
Affiliation(s)
- Zhen Guo
- Jinzhou Medical University, Jinzhou, 121001, China; South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Lijuan Zhang
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Xiaoyan Liu
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; Chang'an University, Xi'an, 710064, China
| | - Yunjiang Yu
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Shan Liu
- Chang'an University, Xi'an, 710064, China
| | - Mianbiao Chen
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Chushan Huang
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Guocheng Hu
- Jinzhou Medical University, Jinzhou, 121001, China; South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China.
| |
Collapse
|
9
|
Guo LC, Yu S, Wu D, Huang J, Liu T, Xiao J, Huang W, Gao Y, Li X, Zeng W, Rutherford S, Ma W, Zhang Y, Lin L. Disruption of thyroid hormone regulated proteins and gene expression by polychlorinated biphenyls, polybrominated diphenyl ethers and new flame retardants in residents of an e-waste region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112925. [PMID: 31454572 DOI: 10.1016/j.envpol.2019.07.093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and new flame retardants (NFRs) are known thyroid hormone (TH) disruptors, but their disrupting mechanisms in humans are not completely understood. In this study, we aimed to explore the disrupting mechanisms of the aforementioned chemicals via examining TH-regulated proteins and gene expression in human serum. Adult participants from an e-waste dismantling (exposed group) and a control region (control group) in South China provided blood samples for the research. Some compounds of PCBs, PBDEs, and NFRs showed strong binding affinity to the thyroid-stimulating hormone (TSH), thyroglobulin, thyroxine-binding globulin (TBG), gene expression of TH receptor α (TRα) and β, and iodothyronine deiodinase I (ID1). The highly exposed individuals had lower levels of TBG, TSH, and expression of TRα, but higher expression of ID1 than those of the control group. The disruption of TH-regulated proteins and gene expression suggested the exertion of different and, at times, even contradictory effects on TH disruption. However, no statistically significant difference was found in the TH levels between the exposed and the control group, implying that the TH disruption induced by these chemicals depends on the combined influence of multiple mechanisms. Gene expression appears to be an effective approach for investigations of TH disruption and the potential health effects.
Collapse
Affiliation(s)
- Ling-Chuan Guo
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Shengbing Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jinxu Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weixiong Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yanhong Gao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | | | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yonghui Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| |
Collapse
|
10
|
Chen T, Niu P, Kong F, Wang Y, Bai Y, Yu D, Jia J, Yang L, Fu Z, Li R, Li J, Tian L, Sun Z, Wang D, Shi Z. Disruption of thyroid hormone levels by decabrominated diphenyl ethers (BDE-209) in occupational workers from a deca-BDE manufacturing plant. ENVIRONMENT INTERNATIONAL 2018; 120:505-515. [PMID: 30149342 DOI: 10.1016/j.envint.2018.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
While there is some evidence that exposure to decabrominated diphenyl ethers (BDE-209) affects thyroid function, the results obtained to date have been inconsistent. No studies have been performed on workers in deca-BDE manufacturing who had a high level of exposure to BDE-209 and relatively little exposure to other contaminants. In the present study, the relationship between BDE-209 exposure and thyroid hormone in occupational workers from a deca-BDE manufacturing plant was investigated. The serum and urine levels of polybrominated diphenyl ethers (PBDEs) and serum thyroid hormones were measured in 72 workers recruited from the deca-BDE manufacturing plant. The associations between their thyroid hormone levels and their exposure to BDE-209 were examined using multiple linear regression models. Serum concentrations of BDE-209 ranged from 67.4 to 109,000 ng/g lipid weight (lw), with a median of 3420 ng/g lw, contributing to 93.1% of the total PBDEs. The concentration of BDE-209 in urine was highly correlated with that in the serum (r2 = 0.440, p < 0.001), indicating that urine may be a good non-invasive biomonitoring medium of BDE-209 body burden in occupational workers. BDE-209 in the serum was significantly and positively correlated with total thyroxine (tT4, r = 0.270, p = 0.029) and marginally and positively correlated with total triiodothyronine (tT3, r = 0.232, p = 0.061) in all occupational workers after adjusting for gender, age, BMI, and occupational exposure duration. A 10-fold increase in the serum BDE-209 concentration was associated with an increase in tT4 (8.63 nmol/L) [95% confidence interval (CI): 0.930-16.3] and tT3 (0.106 nmol/L) [95% confidence interval (CI): -0.005-0.219], corresponding to the increase of 7.8% in tT4 level and 5.4% in tT3 level. Associations between urine BDE-209 levels and thyroid hormones were similar to the results for the serum levels. These findings offer new evidence for proving the thyroid disrupting effects of BDE-209, impacting the direction of hyperthyroidism.
Collapse
Affiliation(s)
- Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fanling Kong
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yi Bai
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dong Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan 250062, Shandong, China
| | - Jiaxin Jia
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luping Yang
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Zhongjian Fu
- Shouguang Center for Disease Control and Prevention, Shouguang 262700, Shandong, China
| | - Renbo Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Lin Tian
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Buchholz DR, Shi YB. Methods for Investigating the Larval Period and Metamorphosis in Xenopus. Cold Spring Harb Protoc 2018; 2018:pdb.top097667. [PMID: 29769395 PMCID: PMC6296376 DOI: 10.1101/pdb.top097667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anuran metamorphosis resembles postembryonic development in mammals, a period around birth when many organs/tissues mature into their adult form as circulating thyroid and stress hormone levels are high. Unlike uterus-enclosed mammalian embryos, tadpoles develop externally and undergo the dramatic changes of hormone-dependent development totally independent of maternal influence, making them a valuable model in which to study vertebrate postembryonic organ development and maturation. Various protocols have been developed and/or adapted for studying metamorphosis in Xenopus laevis and X. tropicalis, two highly related and well-studied frog species. Here, we introduce some of the methods for contemporary cell and molecular studies of gene function and regulation during metamorphosis.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45244;
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892
| |
Collapse
|
12
|
Mughal BB, Fini JB, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocr Connect 2018; 7:R160-R186. [PMID: 29572405 PMCID: PMC5890081 DOI: 10.1530/ec-18-0029] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
This review covers recent findings on the main categories of thyroid hormone-disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone-disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone-disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.
Collapse
Affiliation(s)
- Bilal B Mughal
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Jean-Baptiste Fini
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Barbara A Demeneix
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| |
Collapse
|
13
|
Zheng J, He CT, Chen SJ, Yan X, Guo MN, Wang MH, Yu YJ, Yang ZY, Mai BX. Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-waste recycling workers. ENVIRONMENT INTERNATIONAL 2017; 102:138-144. [PMID: 28245931 DOI: 10.1016/j.envint.2017.02.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. In the present study, the serum concentrations of PBDEs, PCBs, and hydroxylated PCBs, the circulating levels of thyroid hormones (THs), and the mRNA levels of seven TH-regulated genes in peripheral blood leukocytes of e-waste recycling workers were analyzed. The associations of the hormone levels and gene expression with the exposure to these contaminants were examined using multiple linear regression models. There were nearly no associations of the TH levels with PCBs and hydroxylated PCBs, whereas elevated hormone (T4 and T3) levels were associated with certain lower-brominated BDEs. While not statistically significant, we did observe a negative association between highly brominated PBDE congeners and thyroid-stimulating hormone (TSH) levels in the e-waste workers. The TH-regulated gene expression was more significantly associated with the organohalogen compounds (OHCs) than the TH levels in these workers. The TH-regulated gene expression was significantly associated with certain PCB and hydroxylated PCB congeners. However, the expression of most target genes was suppressed by PBDEs (mostly highly brominated congeners). This is the first evidence of alterations in TH-regulated gene expression in humans exposed to OHCs. Our findings indicated that OHCs may interfere with TH signaling and/or exert TH-like effects, leading to alterations in related gene expression in humans. Further research is needed to investigate the mechanisms of action and associated biological consequences of the gene expression disruption by OHCs.
Collapse
Affiliation(s)
- Jing Zheng
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - She-Jun Chen
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiao Yan
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Mi-Na Guo
- College of Natural Resources, University of California-Berkeley, Berkeley, CA, USA
| | - Mei-Huan Wang
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Yun-Jiang Yu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Oziol L, Alliot F, Botton J, Bimbot M, Huteau V, Levi Y, Chevreuil M. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3142-3152. [PMID: 27858277 DOI: 10.1007/s11356-016-8045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.
Collapse
Affiliation(s)
- Lucie Oziol
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Fabrice Alliot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| | - Jérémie Botton
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Team "Early Origin of the Child's Health and Development" (ORCHAD), Paris Descartes University, Paris, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Maya Bimbot
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Viviane Huteau
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Yves Levi
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Marc Chevreuil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
15
|
Wang D, Zhang P, Wang X, Wang Y, Zhou Z, Zhu W. NMR- and LC-MS/MS-based urine metabolomic investigation of the subacute effects of hexabromocyclododecane in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8500-8507. [PMID: 26786581 DOI: 10.1007/s11356-015-5940-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
In the present study, both untargeted and targeted metabolomics approaches were used to evaluate the subacute effects of hexabromocyclododecane (HBCD) on mice urine metabolome. Untargeted metabolomics based on (1)H NMR showed that HBCD exposure disturbed mice metabolism in both dosed groups, especially in high dosed group. The low-dose HBCD led to a decrease in alanine, malonic acid, and trimethylamine (TMA). High-dose HBCD-treated mice developed high levels of citric acid and 2-ketoglutarate, together with decreased alanine, acetate, formate, TMA, 3-hydroxybutyrate, and malonic acid. Targeted metabolomics for metabolic profiling of 20 amino acids identified alanine, lysine, and phenylalanine as significantly disturbed metabolites. These results indicated that subchronic exposure to HBCD caused a disturbance of mice metabolism, especially in TCA cycle, lipid metabolism, gut microbial metabolism, and homeostasis of amino acids, and the application of untargeted and targeted metabolomics combined with conventional toxicology approaches to evaluate the subacute effects of pollutants will provide more comprehensive information and aid in predicting health risk of these pollutants.
Collapse
Affiliation(s)
- Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ping Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xinru Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Técher R, Houde M, Verreault J. Associations between organohalogen concentrations and transcription of thyroid-related genes in a highly contaminated gull population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:289-298. [PMID: 26747993 DOI: 10.1016/j.scitotenv.2015.12.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
A number of studies have reported altered circulating thyroid hormone levels in birds exposed either in controlled settings or in their natural habitat to ubiquitous organohalogen compounds including organochlorines (OCs) and polybrominated diphenyl ether (PBDE) flame retardants. However, limited attention has been paid to underlying homeostatic mechanisms in wild birds such as changes in the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis. The objective of the present study was to investigate the relationships between hepatic concentrations of major organohalogens (PBDEs and OCs), and circulating thyroid hormone (free and total thyroxine (T4) and triiodothyronine (T3)) levels and transcription of 14 thyroid-related genes in three tissues (thyroid, brain, and liver) of an urban-adapted bird exposed to high organohalogen concentrations in the Montreal area (QC, Canada), the ring-billed gull (Larus delawarensis). Positive correlations were found between liver concentrations of several polychlorinated biphenyls (PCBs), PBDEs as well as chlordanes and total plasma T4 levels. Hepatic concentrations of several PBDEs were negatively correlated with mRNA levels of deiodinase type 3, thyroid peroxidase, and thyroid hormone receptor β (TRβ) in the thyroid gland. Liver PCB (deca-CB) correlated positively with mRNA levels of sodium-iodide symporter and TRα. In brain, concentrations of most PBDEs were positively correlated with mRNA levels of organic anion transporter protein 1C1 and transthyretin, while PCBs positively correlated with expression of TRα and TRβ as well as deiodinase type 2. These multiple correlative linkages suggest that organohalogens operate through several mechanisms (direct or compensatory) involving gene transcription, thus potentially perturbing the HPT axis of this highly organohalogen-contaminated ring-billed gull population.
Collapse
Affiliation(s)
- Romy Técher
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| | - Magali Houde
- Environment Canada, St. Lawrence Centre, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
17
|
Macaulay LJ, Chen A, Rock KD, Dishaw LV, Dong W, Hinton DE, Stapleton HM. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor β. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:38-47. [PMID: 26433919 PMCID: PMC4618599 DOI: 10.1016/j.aquatox.2015.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 05/13/2023]
Abstract
6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) is both a polybrominated diphenyl ether (PBDE) flame retardant metabolite and a marine natural product. It has been identified both as a neurotoxicant in cell-based studies and as a developmental toxicant in zebrafish. However, hydroxylated PBDE metabolites are also considered thyroid hormone disruptors due to their structural similarity to endogenous thyroid hormones. The purpose of this study was to evaluate the effects of 6-OH-BDE-47 on a developmental pathway regulated by thyroid hormones in zebrafish. Morphological measurements of development (head trunk angle, otic vesicle length, and eye pigmentation) were recorded in embryos at 30h post fertilization (hpf) and detailed craniofacial morphology was examined in 4 day old larvae using cartilage staining. Exposure to 6-OH-BDE-47 resulted in severe developmental delays. A 100nM concentration resulted in a 26% decrease in head trunk angle, a 54% increase in otic vesicle length, and a 42% decrease in eye pigmentation. Similarly, altered developmental morphology was observed following thyroid receptor β morpholino knockdown, exposure to the thyroid hormone triiodothyronine (T3) or to thyroid disrupting chemicals (TDC; iopanoic acid and propylthiouracil). The threshold for lower jaw deformities and craniofacial cartilage malformations was at doses greater than 50nM. Of interest, these developmental delays and effects were rescued by microinjection of TRβ mRNA during the 1-2 cell stage. These data indicate that OH-BDEs can adversely affect early life development of zebrafish and suggest they may be impacting thyroid hormone regulation in vivo through downregulation of the thyroid hormone receptor.
Collapse
Affiliation(s)
- Laura J Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kylie D Rock
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura V Dishaw
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
18
|
Yang J, Chan KM. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:138-147. [PMID: 25544063 DOI: 10.1016/j.aquatox.2014.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The toxic effects of three polybrominated diphenyl ether (PBDE) congeners (BDE-47, -99, and -209), tetrabromobisphenol A (TBBPA) and bisphenol A (BPA), were evaluated by determining their 24h and 96 h median lethal concentrations using a zebrafish liver cell line, ZFL. It was found that BDE-47, BDE-99 and TBBPA showed comparative cytotoxicity within the range of 1.2-4.2 μM, and were more toxic than BPA (367.1 μM at 24 h and 357.6 μM at 96 h). However, BDE-209 induced only 15% lethality with exposures up to 25 μM. The molecular stresses of BDE-47, -99, TBBPA and BPA involved in thyroid hormone (TH) homeostasis and hepatic metabolism were also investigated. Using a reporter gene system to detect zebrafish thyroid hormone receptor β (zfTRβ) transcriptional activity, the median effective concentration of triiodothyronine (T3) was determined to be 9.2×10(-11) M. BDE-47, BDE-99, TBBPA and BPA alone, however, did not exhibit zfTRβ agonistic activity. BPA displayed T3 (0.1 nM) induced zfTRβ antagonistic activity with a median inhibitory concentration of 19.3 μM. BDE-47, BDE-99 and TBBPA displayed no antagonistic effects of T3-induced zfTRβ activity. Target gene expressions were also examined under acute exposures. The significant inhibition of different types of deiodinases by all of the test chemicals indicated TH circulation disruption. All four chemicals, especially BPA, were able to affect transcripts of phase II hepatic metabolizing enzymes (UGT2A1, SULT1) in vitro. In conclusion, the zfTRβ reporter gene system developed here helps delineate an in vitro model to enable the analysis of the TH disruption effects of environmental pollutants in fish. BPA and the brominated compounds tested were able to disrupt the TH system at the gene expression level, probably through the deiodination pathways.
Collapse
Affiliation(s)
- Jie Yang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Ibhazehiebo K, Koibuchi N. Impact of endocrine-disrupting chemicals on thyroid function and brain development. Expert Rev Endocrinol Metab 2014; 9:579-591. [PMID: 30736196 DOI: 10.1586/17446651.2014.950227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are synthetic or natural substances in the environment. EDCs have been shown to disrupt reproductive, developmental and other homeostatic systems by interfering with the synthesis, secretion, transport, metabolism and action of endogenous hormones including the thyroid hormone (TH) system. Since TH plays a critical role in brain development, the exposure to TH-system disrupting EDCs during development may have serious consequences. In this article, representative previous studies showing the effect of representative EDCs on the TH system are summarized. Then, the molecular mechanisms of action of polychlorinated biphenyls and polybrominated diphenyl ethers on the TH system are discussed further. Particularly, the effect of polychlorinated biphenyls and polybrominated diphenyl ethers on TH-mediated brain development is discussed. Our recent studies may provide a novel idea regarding the effect of EDCs on the TH system.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- a Department of Medical Genetics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Noriyuki Koibuchi
- b Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
20
|
Jarque S, Piña B. Deiodinases and thyroid metabolism disruption in teleost fish. ENVIRONMENTAL RESEARCH 2014; 135:361-375. [PMID: 25462686 DOI: 10.1016/j.envres.2014.09.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Many xenobiotic compounds with endocrine disrupting activity have been described since the late eighties. These compounds are able to interact with natural hormone systems and potentially induce deleterious effects in wildlife, notably piscine species. However, while the characterization of endocrine disruptors with "dioxin-like", estrogenic or androgenic activities is relatively well established, little is known about environmentally relevant pollutants that may act at thyroid system level. Iodothyronine deiodinases, the key enzymes in the activation and inactivation of thyroid hormones, have been suggested as suitable biomarkers for thyroid metabolism disruption. The present article reviews the biotic and abiotic factors that are able to modulate deiodinases in teleosts, a representative model organism for vertebrates. Data show that deiodinases are highly sensitive to several physiological and physical variables, so they should be taken into account to establish natural basal deiodination patterns to further understand responses under chemical exposure. Among xenobiotic compounds, brominated flame retardants are postulated as chemicals of major concern because of their similar structure shared with thyroid hormones. More ambiguous results are shown for the rest of compounds, i.e. polychlorinated biphenyls, perfluorinated chemicals, pesticides, metals and synthetic drugs, in part due to the limited information available. The different mechanisms of action still remain unknown for most of those compounds, although several hypothesis based on observed effects are discussed. Future tasks are also suggested with the aim of moving forward in the full characterization of chemical compounds with thyroid disrupting activity.
Collapse
Affiliation(s)
- Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, CZ62500 Brno, Czech Republic.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Cary TL, Ortiz-Santaliestra ME, Karasov WH. Immunomodulation in post-metamorphic northern leopard frogs, Lithobates pipiens, following larval exposure to polybrominated diphenyl ether. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5910-5919. [PMID: 24735054 DOI: 10.1021/es405776m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pollutants and disease are factors implicated in amphibian population declines, and it is hypothesized that these factors exert a synergistic adverse effect, which is mediated by pollutant-induced immunosuppression. Polybrominated diphenyl ethers (PBDEs) are ubiquitous pollutants that can exert immunotoxicity, making them of interest to test effects on amphibian immune function. We orally exposed Lithobates (Rana) pipiens tadpoles to environmentally realistic levels (0-634 ng/g wet diet) of a pentabromodiphenyl ether mixture (DE-71) from as soon as they became free-swimming through metamorphic climax. To assess adaptive immune response in juvenile frogs, we used an enzyme-linked immunosorbent assay to measure specific IgY production following immunization with keyhole limpet hemocyanin (KLH). Specific KLH antibody response was significantly decreased in juvenile frogs that had been exposed to PBDEs as tadpoles. When assessing innate immune responses, we found significantly different neutrophil counts among treatments; however, phagocytic activity of neutrophils was not significantly different. Secretion of antimicrobial skin peptides (AMPs) nonsignificantly decreased with increasing PBDE concentrations, and no significant effect of PBDE treatment was observed on efficacy of AMPs to inhibit chytrid fungus (Batrachochytrium dendrobatidis) growth. Our findings demonstrate that environmentally realistic concentrations of PBDEs are able to alter immune function in frogs; however, further research is needed to determine how these alterations impact disease susceptibility in L. pipiens.
Collapse
Affiliation(s)
- Tawnya L Cary
- Department of Zoology and ‡Department of Forest & Wildlife Ecology, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
22
|
Kopras E, Potluri V, Bermudez ML, Williams K, Belcher S, Kasper S. Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease. Endocr Relat Cancer 2014; 21:T1-12. [PMID: 24280134 PMCID: PMC11037424 DOI: 10.1530/erc-13-0360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development and fate of the stem cell are regulated by extrinsic signals from the environment. Endocrine-disrupting chemicals which perturb hormonal signaling in utero and during early childhood may cause deregulation of multiple developmental processes, ranging from breakdown of stem cell niche architecture, developmental reprograming and altered stem cell fate to impaired organ and gonad development and sexual differentiation. Therefore, study of the environmental effects on stem cell integrity and normal development is a new and emerging focus for developmental biologists and cell toxicologists. When combined with new human and mouse stem cell-based models, stem cell differentiation dynamics can be studied in more biologically relevant ways. In this study, we review the current status of our understanding of the molecular mechanisms by which endocrine disruptors alter embryonic stem cell and adult stem/progenitor cell fate, organ development, cancer stem cell activity, and tumorigenesis.
Collapse
Affiliation(s)
- Elizabeth Kopras
- Department of Environmental Heath, University of Cincinnati, 3223 Eden Avenue, Cincinnati, Ohio 45267-0056, USA Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
23
|
Shi C, Meng Q, Wood DW. Analysis of the roles of mutations in thyroid hormone receptor-β by a bacterial biosensor system. J Mol Endocrinol 2014; 52:55-66. [PMID: 24174637 DOI: 10.1530/jme-13-0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in thyroid hormone receptors (TRs) often lead to metabolic and developmental disorders, but patients with these mutations are difficult to treat with existing thyromimetic drugs. In this study, we analyzed six clinically observed mutations in the ligand-binding domain of the human TRβ using an engineered bacterial hormone biosensor. Six agonist compounds, including triiodothyronine (T3), thyroxine (T4), 3,5,3'-triiodothyroacetic acid (Triac), GC-1, KB-141, and CO-23, and the antagonist NH-3 were examined for their ability to bind to each of the TRβ mutants. The results indicate that some mutations lead to the loss of ability to bind to native ligands, ranging from several fold to several hundred fold, while other mutations completely abolish the ability to bind to any ligand. Notably, the effect of each ligand on each TRβ mutant in this bacterial system is highly dependent on both the mutation and the ligand; some ligands were bound well by a wide variety of mutants, while other ligands lost their affinity for all but the WT receptor. This study demonstrates the ability of our bacterial system to differentiate agonist compounds from antagonist compounds and shows that one of the TRβ mutations leads to an unexpected increase in antagonist ability relative to other mutations. These results indicate that this bacterial sensor can be used to rapidly determine ligand-binding ability and character for clinically relevant TRβ mutants.
Collapse
Affiliation(s)
- Changhua Shi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
24
|
Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicol Appl Pharmacol 2013; 268:256-63. [DOI: 10.1016/j.taap.2013.01.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/23/2022]
|
25
|
Ren XM, Guo LH. Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:702-8. [PMID: 23467608 DOI: 10.1039/c3em00023k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used in large quantities as flame retardant additives in commercial products. Bio-monitoring data show that PBDE concentrations have increased rapidly in the bodies of wildlife and human over the last few decades. Based on the studies on experimental animals, the toxicological endpoints of exposure to PBDEs are likely to be thyroid homeostasis disruption, neuro-developmental deficits, reproductive ineffectiveness and even cancer. Unfortunately, the available molecular toxicological evidence for these endpoints is still very limited. This review focuses on the recent studies on the molecular mechanisms of PBDE toxicities carried out through the hormone receptor pathways, including thyroid hormone receptor, estrogen receptor, androgen receptor, progesterone receptor and aryl hydrocarbon receptor pathways. The general approach in the mechanistic investigation is to examine the in vitro direct binding of a PBDE with a receptor, the in vitro recruitment of a co-activator or co-repressor by the ligand-bound receptor, and the participation of the ligand in the receptor-mediated transcription pathways in cells. It is hoped that further studies in this area would provide more insights into the potential risks of PBDEs to human health.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
26
|
Hombach-Klonisch S, Danescu A, Begum F, Amezaga MR, Rhind SM, Sharpe RM, Evans NP, Bellingham M, Cotinot C, Mandon-Pepin B, Fowler PA, Klonisch T. Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep. Mol Cell Endocrinol 2013; 367:98-108. [PMID: 23291342 PMCID: PMC3581773 DOI: 10.1016/j.mce.2012.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022]
Abstract
Ewes were exposed to sewage sludge-fertilized pastures in a study designed investigate pre-conceptual and/or gestational exposure to environmental chemicals. The in utero impact on fetal thyroid morphology and function at day 110 (of 145) of pregnancy was then determined. Pre-conceptual exposure increased the relative thyroid organ weights in male fetuses. The number of thyroid follicles in thyroids of fetuses after pre-conceptual or gestational exposure was reduced. This correlated with an increase in Ki67 positive cells. Pre-conceptual exposure to sewage sludge reduced small blood vessels in fetal thyroids. Thyroid tissues of exposed fetuses contained regions where mature angio-follicular units were reduced exhibiting decreased immunostaining for sodium-iodide symporter (NIS). Fetal plasma levels of fT3 and fT4 in exposed animals, however, were not different from controls suggesting compensatory changes in the thyroid gland to maintain homeostasis in exposed fetuses. The regional aberrations in thyroid morphology may impact on the post-natal life of the exposed offspring.
Collapse
Key Words
- ecs, environmental chemicals
- edcs, endocrine-disrupting compounds
- nis, sodium-iodide symporter
- ft3, free triiodothyronine
- ft4, free thyroxine
- th, thyroid hormone
- tsh, thyroid stimulating hormone
- tr, thyroid hormone receptor
- ttr, transthyretin
- hpt, hypothalamic-pituitary-thyroid axis
- pcbs, polychlorinated biphenyls
- pbde, polybrominated diphenyl ether
- dehp, di(2-ethylhexyl) phthalate
- cv, coefficient of variation
- dab, 3,3′-diaminobenzidine tetrahydrochloride
- hrp, horseradish peroxidase
- rt, room temperature
- he, hematoxylin-eosin
- gnrh, gonadotropin releasing hormone
- gd, gestational day
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- endocrine disruptors
- thyroid gland
- sheep
- fetal
- sewage sludge
- development
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci U S A 2013; 110:E766-75. [PMID: 23382204 DOI: 10.1073/pnas.1210626110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TRα1 and TRβ1, the two main thyroid hormone receptors in mammals, are transcription factors that share similar properties. However, their respective functions are very different. This functional divergence might be explained in two ways: it can reflect different expression patterns or result from different intrinsic properties of the receptors. We tested this second hypothesis by comparing the repertoires of 3,3',5-triiodo-L-thyronine (T3)-responsive genes of two neural cell lines, expressing either TRα1 or TRβ1. Using transcriptome analysis, we found that a substantial fraction of the T3 target genes display a marked preference for one of the two receptors. So when placed alone in identical situations, the two receptors have different repertoires of target genes. Chromatin occupancy analysis, performed at a genome-wide scale, revealed that TRα1 and TRβ1 cistromes were also different. However, receptor-selective regulation of T3 target genes did not result from receptor-selective chromatin occupancy of their promoter regions. We conclude that modification of TRα1 and TRβ1 intrinsic properties contributes in a large part to the divergent evolution of the receptors' function, at least during neurodevelopment.
Collapse
|
28
|
Hu X, Shi W, Zhang F, Cao F, Hu G, Hao Y, Wei S, Wang X, Yu H. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 173:210-215. [PMID: 23202652 DOI: 10.1016/j.envpol.2012.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 05/20/2023]
Abstract
The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential.
Collapse
Affiliation(s)
- Xinxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Springer C, Dere E, Hall SJ, McDonnell EV, Roberts SC, Butt CM, Stapleton HM, Watkins DJ, McClean MD, Webster TF, Schlezinger JJ, Boekelheide K. Rodent thyroid, liver, and fetal testis toxicity of the monoester metabolite of bis-(2-ethylhexyl) tetrabromophthalate (tbph), a novel brominated flame retardant present in indoor dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1711-9. [PMID: 23014847 PMCID: PMC3548273 DOI: 10.1289/ehp.1204932] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/26/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a replacement for polybrominated diphenyl ethers (PBDEs) in commercial flame retardant mixtures such as Firemaster 550. It is also used in a commercial mixture called DP 45. Mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) is a potentially toxic metabolite. OBJECTIVES We used in vitro and rodent in vivo models to evaluate human exposure and the potential metabolism and toxicity of TBPH. METHODS Dust collected from homes, offices, and cars was measured for TBPH by gas chromatography followed by mass spectrometry. Pregnant rats were gavaged with TBMEHP (200 or 500 mg/kg) or corn oil on gestational days 18 and 19, and dams and fetuses were evaluated histologically for toxicity. We also assessed TBMEHP for deiodinase inhibition using rat liver microsomes and for peroxisome proliferator-activated receptor (PPAR) α and γ activation using murine FAO cells and NIH 3T3 L1 cells. RESULTS TBPH concentrations in dust from office buildings (median, 410 ng/g) were higher than in main living areas in homes (median, 150 ng/g). TBPH was metabolized by purified porcine esterases to TBMEHP. Two days of TBMEHP exposure in the rat produced maternal hypothyroidism with markedly decreased serum T3 (3,3´,5-triiodo-l-thyronine), maternal hepatotoxicity, and increased multinucleated germ cells (MNGs) in fetal testes without antiandrogenic effects. In vitro, TBMEHP inhibited deiodinase activity, induced adipocyte differentiation in NIH 3T3 L1 cells, and activated PPARα- and PPARγ-mediated gene transcription in NIH 3T3 L1 cells and FAO cells, respectively. CONCLUSIONS TBPH a) is present in dust from indoor environments (implying human exposure) and b) can be metabolized by porcine esterases to TBMEHP, which c) elicited maternal thyrotoxic and hepatotoxic effects and d) induced MNGs in the fetal testes in a rat model. In mouse NIH 3T3 L1 preadipocyte cells, TBMEHP inhibited rat hepatic microsome deiodinase activity and was an agonist for PPARs in murine FAO and NIH 3T3 L1 cells.
Collapse
Affiliation(s)
- Cecilia Springer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sinha AK, Diricx M, Chan LP, Liew HJ, Kumar V, Blust R, De Boeck G. Expression pattern of potential biomarker genes related to growth, ion regulation and stress in response to ammonia exposure, food deprivation and exercise in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:93-105. [PMID: 22750116 DOI: 10.1016/j.aquatox.2012.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Waterborne ammonia has become a persistent pollutant of aquatic habitats. During certain periods (e.g. winter), food deprivation may occur simultaneously in natural water. Additionally, under such stressful circumstances, fish may be enforced to swim at a high speed in order to catch prey, avoid predators and so on. Consequently, fish need to cope with all these stressors by altering physiological processes which in turn are controlled by their genes. In this present study, toxicogenomic analyses using real time PCR was used to characterize expression patterns of potential biomarker genes controlling growth, ion regulation and stress responses in common carp subjected to elevated ammonia (1 mg/L; Flemish water quality guideline for surface water) following periods of feeding (2% body weight) and fasting (unfed for 7 days prior to sampling). Both feeding groups of fish were exposed to high environment ammonia (HEA) for 0 h (control), 3h, 12h, 1 day, 4 days, 10 days, 21 days and 28 days, and were sampled after performing swimming at different speeds (routine versus exhaustive). Results show that the activity and expression of Na(+)/K(+)-ATPase, an important branchial ion regulatory enzyme, was increased after 4-10 days of exposure. Effect of HEA was also evident on expression patterns of other ion-regulatory hormone and receptor genes; prolactin and cortisol receptor mRNA level(s) were down-regulated and up-regulated respectively after 4, 10 and 21 days. Starvation and exhaustive swimming, the additional challenges in present study significantly further enhanced the HEA effect on the expression of these two genes. mRNA transcript of growth regulating hormone and receptor genes such as Insulin-like growth factor I, growth hormone receptor, and the thyroid hormone receptor were reduced in response to HEA and the effect of ammonia was exacerbated in starved fish, with levels that were remarkably reduced compared to fed exposed fish. However, the expression of the growth hormone gene itself was up-regulated under the same conditions. Expression of somatolactin remained unaltered. Stress representative genes, cytochrome oxidase subunit 1 showed an up-regulation in response to HEA and starvation while the mRNA level of heat shock protein 70 was increased in response to all the three stressors. The expression kinetics of the studied genes could permit to develop a "molecular biomarker system" to identify the underlying physiological processes and impact of these stressors before effects at population level occur.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Marvin CH, Tomy GT, Armitage JM, Arnot JA, McCarty L, Covaci A, Palace V. Hexabromocyclododecane: current understanding of chemistry, environmental fate and toxicology and implications for global management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8613-23. [PMID: 21913722 DOI: 10.1021/es201548c] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hexabromocyclododecane (HBCD) is a globally produced brominated flame retardant (BFR) used primarily as an additive FR in polystyrene and textile products and has been the subject of intensified research, monitoring and regulatory interest over the past decade. HBCD is currently being evaluated under the Stockholm Convention on Persistent Organic Pollutants. HBCD is hydrophobic (i.e., has low water solubility) and thus partitions to organic phases in the aquatic environment (e.g., lipids, suspended solids). It is ubiquitous in the global environment with monitoring data generally exhibiting the expected relationship between proximity to known sources and levels; however, temporal trends are not consistent. Estimated degradation half-lives, together with data in abiotic compartments and long-range transport potential indicate HBCD may be sufficiently persistent and distributed to be of global concern. The detection of HBCD in biota in the Arctic and in source regions and available bioaccumulation data also support the case for regulatory scrutiny. Toxicity testing has detected reproductive, developmental and behavioral effects in animals where exposures are sufficient. Recent toxicological advances include a better mechanistic understanding of how HBCD can interfere with the hypothalamic-pituitary-thyroid axis, affect normal development, and impact the central nervous system; however, levels in biota in remote locations are below known effects thresholds. For many regulatory criteria, there are substantial uncertainties that reduce confidence in evaluations and thereby confound management decision-making based on currently available information.
Collapse
Affiliation(s)
- Christopher H Marvin
- Water Science and Technology Directorate, Environment Canada , Burlington, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N, Koibuchi N. Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:168-75. [PMID: 20870570 PMCID: PMC3040602 DOI: 10.1289/ehp.1002065] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 09/22/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants and are becoming a ubiquitous environmental contaminant. Adverse effects in the developing brain are of great health concern. OBJECTIVE We investigated the effect of PBDEs/hydroxylated PBDEs (OH-PBDEs) on thyroid hormone (TH) receptor (TR)-mediated transcription and on TH-induced dendrite arborization of cerebellar Purkinje cells. METHODS We examined the effect of PBDEs/OH-PBDEs on TR action using a transient transfection-based reporter gene assay. TR-cofactor binding was studied by the mammalian two-hybrid assay, and TR-DNA [TH response element (TRE)] binding was examined by the liquid chemiluminescent DNA pull-down assay. Chimeric receptors generated from TR and glucocorticoid receptor (GR) were used to identify the functional domain of TR responsible for PBDE action. The change in dendrite arborization of the Purkinje cell in primary culture of newborn rat cerebellum was also examined. RESULTS Several PBDE congeners suppressed TR-mediated transcription. The magnitude of suppression correlated with that of TR-TRE dissociation. PBDEs suppressed transcription of chimeric receptors containing the TR DNA binding domain (TR-DBD). We observed no such suppression with chimeras containing GR-DBD. In the cerebellar culture, PBDE significantly suppressed TH-induced Purkinje cell dendrite arborization. CONCLUSIONS Several PBDE congeners may disrupt the TH system by partial dissociation of TR from TRE acting through TR-DBD and, consequently, may disrupt normal brain development.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Address correspondence to T. Iwasaki, Department of Integrative Physiology, Division of Biological Regulations, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan. Telephone: 81-27-220-7923. Fax: 81-27-220-7926. E-mail:
| | - Junko Kimura-Kuroda
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
33
|
Messarah M, Saoudi M, Boumendjel A, Boulakoud MS, Feki AE. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:33-41. [PMID: 21787667 DOI: 10.1016/j.etap.2010.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 08/04/2010] [Accepted: 09/01/2010] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine whether the effects of thyroid dysfunction induce oxidative stress in the blood and heart of male Wistar rats. Rats were randomly divided into three groups: group I served as control rats. Group II was treated daily with 0.05% benzythiouracile (BTU) administered in drinking water. Rats of group III have received l-thyroxine sodium salt (0.0012%), in drinking water. The results showed that thyroid dysfunction rats had poor growth performance. On the other hand, in hyperthyroid rats, a marked decrease compared with control occurred of some hematological parameters such red blood cell number (RBC), haemoglobin (Hb) concentration and haematocrit (Ht). There was also a significant increase in erythrocyte numbers and heart TBARS concentrations in hypothyroid rats compared with control. These results were associated with a fall in the total antioxidant status (TAS) in the serum of the hyperthyroid rats. Alteration of the antioxidant system in the hypo-/hyperthyroidism-induced rats was confirmed by the significant increase of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and a decline in glutathione (GSH) content in both tissues were detected in hyperthyroid group compared to controls. On the other hand, serum transaminase activities (aspartate transaminase (AST); alanine transaminase (ALT)) were elevated indicating hepatic cellular damage after treatment with exogenous L-thyroxine. Moreover, serum lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT) and creatine phosphokinase (CPK) activities were increased in the hyperthyroidism rats. These results indicated that excessive thyroxin (long term) ingestion had an adverse effect on animal health and performance. We conclude that thyroid dysfunction induces oxidative stress and modifies some biochemical parameters of erythrocytes, heart and liver disease; our results show the occurrence of a state of oxidizing stress in relation to hyperthyroidism.
Collapse
Affiliation(s)
- Mahfoud Messarah
- Animal Ecophysiology Laboratory, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, Annaba, Algeria.
| | | | | | | | | |
Collapse
|
34
|
Currás-Collazo MC. Nitric oxide signaling as a common target of organohalogens and other neuroendocrine disruptors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:495-536. [PMID: 21790323 DOI: 10.1080/10937404.2011.578564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Organohalogen compounds such as polychlorinated biphenyls (PCB) and polybrominated diphenyl ethers (PBDE) are global environmental pollutants and highly persistent, bioaccumulative chemicals that produce adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination is a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. Toxicological studies on organohalogen pollutants primarily focused on sex steroid and thyroid hormone actions, and findings have largely shaped the way one envisions their disruptive effects occurring. Organohalogens exert additional effects on other systems including other complex endocrine systems that may be disregulated at various levels of organization. Over the last 20 years evidence has mounted in favor of a critical role of nitric oxide (NO) in numerous functions ranging from neuroendocrine functions to learning and memory. With its participation in multiple systems and action at several levels of integration, NO signaling has a pervasive influence on nervous and endocrine functions. Like blockers of NO synthesis, PCBs and PBDEs produce multifaceted effects on physiological systems. Based on this unique set of converging information it is proposed that organohalogen actions occur, in part, by hijacking processes associated with this ubiquitous bioactive molecule. The current review examines the emerging evidence for NO involvement in selected organohalogen actions and includes recent progress from our laboratory that adds to our current understanding of the actions of organohalogens within hypothalamic neuroendocrine circuits. The thyroid, vasopressin, and reproductive systems as well as processes associated with long-term potentiation were selected as sample targets of organohalogens that rely on regulation by NO. Information is provided about other toxicants with demonstrated interference of NO signaling. Our focus on the convergence between NO system and organohalogen toxicity offers a novel approach to understanding endocrine and neuroendocrine disruption that is particularly problematic for developing organisms. This new working model is proposed as a way to encourage future study in elucidating common mechanisms of action that are selected with a better operational understanding of the systems affected.
Collapse
Affiliation(s)
- Margarita C Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
35
|
Kodavanti PRS, Curras-Collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 2010; 31:479-96. [PMID: 20609372 DOI: 10.1016/j.yfrne.2010.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 02/08/2023]
Abstract
Organohalogen compounds are global environmental pollutants. They are highly persistent, bioaccumulative, and cause adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination may be a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. This review focuses on PCBs and PBDEs as old and new organohalogens, respectively, and their effects on two neuroendocrine systems; thyroid hormones and the arginine vasopressin system (AVP). Regarding neuroendocrine effects of organohalogens, there is considerable information on the thyroid system as a target and evidence is now accumulating that the AVP system and associated functions are also susceptible to disruption. AVP-mediated functions such as osmoregulation, cardiovascular function as well as social behavior, sexual function and learning/memory are discussed. For both thyroid and AVP systems, the timing of exposure seems to play a major role in the outcome of adverse effects. The mechanism of organohalogen action is well understood for the thyroid system. In comparison, this aspect is understudied in the AVP system but some similarities in neural processes, shown to be targeted by these pollutants, serve as promising possibilities for study. One challenge in understanding modes of action within neuroendocrine systems is their complexity stemming, in part, from interdependent levels of organization. Further, because of the interplay between neuroendocrine and neural functions and behavior, further investigation into organohalogen-mediated effects is warranted and may yield insights with wider scope. Indeed, the current literature provides scattered evidence regarding the role of organohalogen-induced neuroendocrine disruption in the neuroplasticity related to both learning functions and brain structure but future studies are needed to establish the role of endocrine disruption in nervous system function and development.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, B 105-06, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
36
|
Suvorov A, Bissonnette C, Takser L, Langlois MF. Does 2,2',4,4'-tetrabromodiphenyl ether interact directly with thyroid receptor? J Appl Toxicol 2010; 31:179-84. [PMID: 20737425 DOI: 10.1002/jat.1580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/08/2010] [Accepted: 06/29/2010] [Indexed: 11/10/2022]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a flame-retardant chemical appearing at increasing concentrations and frequency in the environment and human samples. A number of health effects of exposure to BDE-47 have been observed, thyroid disruption being the most sensitive. Our objective was to examine BDE-47 interaction with thyroid receptor beta (TRβ). We used a variety of approaches, including in vitro binding assays, luciferase reporter-gene transcriptional assays, and analysis of expression of thyroid responsive genes in rat offspring exposed perinatally to BDE-47. We found that BDE-47 alone or in mixture with 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153) does not compete with [(125)I]T(3) for TRβ-binding even at 4000 fold higher concentrations. Also, BDE-47 does not affect thyroid responsive genes through TRβ in in vitro studies of transcription regulation. A subset of thyroid responsive genes were significantly differentially expressed in liver and frontal lobe brain samples of exposed pups, however, the action of BDE-47 was neither agonistic or antagonistic to that of thyroid hormone. We conclude that BDE-47 does not interact directly with TRβ1 nor does it influence its transcriptional activity. Developmental exposure of rats to BDE-47 leads to differential expression of thyroid responsive genes in liver and brain due to unknown mechanism.
Collapse
Affiliation(s)
- Alexander Suvorov
- Département Pédiatrie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
37
|
Chou CT, Hsiao YC, Ko FC, Cheng JO, Cheng YM, Chen TH. Chronic exposure of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:388-395. [PMID: 20416957 DOI: 10.1016/j.aquatox.2010.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/02/2010] [Accepted: 03/17/2010] [Indexed: 05/29/2023]
Abstract
In the present study, we used zebrafish (Danio rerio) as a model to address possible effects of chronic exposure of polybrominated diphenyl ether (PBDE) flame retardants on locomotion behavior, body size, and gonad development in fish. Zebrafish were fed food dosed with PBDE-47 (control, solvent control, low, medium, and high dose groups) from 21 days post hatch (dph) to 90 dph. Fish locomotion parameters, including maximum swimming speed, total distance moved, and percent time active, were assessed using a video-based animal movement analysis system. At the end of the exposure, all fish were euthanized for length and weight measurement, and then subjected to either whole fish histological analysis or tissue PBDE-47 measurement. Survival, body size, and gonad histology were similar between the five groups. However, both total swimming distance and percent time active were negatively correlated with tissue PBDE-47 concentration and were significantly lower in the high dose group. Tissue levels of PBDE-47 in the exposed fish were comparable to that reported in previous field studies. In summary, this study showed that developmental exposure of PBDE-47 at an ecologically relevant level altered locomotion behavior without affecting body size or gonad development of zebrafish.
Collapse
Affiliation(s)
- Chun-Ting Chou
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, 2 Houwan Rd., Checheng, Pingtung, Taiwan ROC
| | | | | | | | | | | |
Collapse
|
38
|
Jugan ML, Levi Y, Blondeau JP. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol 2009; 79:939-47. [PMID: 19913515 DOI: 10.1016/j.bcp.2009.11.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/25/2009] [Accepted: 11/03/2009] [Indexed: 02/07/2023]
Abstract
Endocrine disruptors are man-made chemicals that can disrupt the synthesis, circulating levels, and peripheral action of hormones. The disruption of sex hormones was subject of intensive research, but thyroid hormone synthesis and signaling are now also recognized as important targets of endocrine disruptors. The neurological development of mammals is largely dependent on normal thyroid hormone homeostasis, and it is likely to be particularly sensitive to disruption of the thyroid axis. Here, we survey the main thyroid-disrupting chemicals, such as polychlorinated biphenyls, perchlorates, and brominated flame-retardants, that are characteristic disruptors of thyroid hormone homeostasis, and look at their suspected relationships to impaired development of the human central nervous system. The review then focuses on disrupting mechanisms known to be directly or indirectly related to the transcriptional activity of the thyroid hormone receptors.
Collapse
Affiliation(s)
- Mary-Line Jugan
- Univ Paris-Sud 11, Faculté de Pharmacie, Laboratoire Santé Publique-Environnement, 92290 Châtenay-Malabry, France.
| | | | | |
Collapse
|
39
|
Li W, Zha J, Spear PA, Li Z, Yang L, Wang Z. Changes of thyroid hormone levels and related gene expression in Chinese rare minnow (Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 92:50-57. [PMID: 19223083 DOI: 10.1016/j.aquatox.2009.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 05/27/2023]
Abstract
Thyroid hormones (THs) play an important role in the development and metabolism of fish through their influences on genetic transcription and are targets for endocrine disruptive agents in the aquatic environment. Amitrole is a pesticide potentially interfering with thyroid hormone regulation. In this study, the rare minnow (Gobiocypris rarus) was exposed to different levels of 3-amino-1,2,4-triazole (amitrole) and allowed to recover in clean water. Plasma TH levels and the expression of TH-related genes, including transthyretin (ttr), deiodinases (d1 and d2), and the thyroid hormone receptor (tralpha) from the livers and brains were evaluated. After exposure, the plasma TH levels did not change. Histopathological observations showed that livers were degenerated at 10,000 ng/l and these damages could be recovered by the withdrawal of amitrole. However, the ttr, d1, and d2 mRNA levels in the livers of males were significantly up-regulated in all exposure groups (p<0.05). The ttr and d2 mRNA levels were significantly up-regulated at 10,000 ng/l and 10, 100, and 1000 ng/l in the livers of females, respectively (p<0.05). In the brains of males, a twofold increase of d2 mRNA levels at > or = 100 ng/l and a fivefold decrease of tralpha mRNA levels at > or = 10 ng/l were observed (p<0.05), whereas no significant differences were observed in the expression of d2 and tralpha in the brains of females. After a recovery period, the ttr, d1, and d2 mRNA levels in the livers of males returned to control levels, but the tralpha mRNA levels were irreversibly decreased at all treatments (p<0.05). In addition, the d2 mRNA levels in the livers of females were significantly induced at > or = 100 ng/l. Moreover, the d2 mRNA levels in the brains of males and females were up-regulated at 10,000 ng/l. These results indicated that amitrole exposure could result in alternations of ttr, d1, d2, and tralpha gene expression in different tissues of the rare minnow. The expression of these TH-related genes in males was more sensitive to amitrole than those of females. Recovery in clean water was associated with the selective regulation of TH-related gene transcription in the rare minnow. Therefore, these TH-related genes can serve as biomarkers to screen the effects of thyroid disruption chemicals in rare minnow.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | |
Collapse
|
40
|
Olsvik PA, Lie KK, Sturve J, Hasselberg L, Andersen OK. Transcriptional effects of nonylphenol, bisphenol A and PBDE-47 in liver of juvenile Atlantic cod (Gadus morhua). CHEMOSPHERE 2009; 75:360-7. [PMID: 19167021 DOI: 10.1016/j.chemosphere.2008.12.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/03/2008] [Accepted: 12/12/2008] [Indexed: 05/07/2023]
Abstract
The transcriptional levels of 10 genes were quantified in liver of Atlantic cod exposed to environmental relevant concentrations of three model toxicants; two alkylphenols (30 microg/L nonylphenol (NP) and 50 microg/L bisphenol A (BPA)) and one brominated flame-retardant congener (5 microg/L PBDE-47). The fish were exposed to the toxicants for 3 weeks, with n=6 in each group (a total of 24 fish were used). NP exposure produced a significant reduction of five CYPs genes (CYP1A (P<0.01), CYP2C33-like (P<0.001), CYP2Y3 (P<0.001), CYP2P1-like (P<0.01) and CYP3C1-like (P<0.01)). A significant reduction was also seen for three CYPs after BPA exposure (CYP2C33-like, CYP2Y3 and CYP3C1-like (P<0.01 for all)). PBDE-47 exposure produced a significant reduction of CYP1A, CYP2C33-like and CYP3C1-like (P<0.05 for all). The genes encoding Phase II enzymes responded in a different manner; NP exposure resulted in a 4.6-fold increase of GST pi (P<0.001), whereas BPA exposure gave no effects on these enzyme genes. PBDE-47 exposure resulted in a 3.3-fold reduction of UGT (P<0.05). No effects were seen on the antioxidant genes GSH-Px and GR for any of the three toxicants. Thus, all three toxicants seem to down regulate several CYPs, giving rise to distinct mRNA expression patterns suggesting that these toxicants act on the same receptors or via the same pathways.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), Nordnesboder 2, N-5005 Bergen, Norway.
| | | | | | | | | |
Collapse
|
41
|
Lema SC, Dickey JT, Schultz IR, Swanson P. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1694-9. [PMID: 19079722 PMCID: PMC2599765 DOI: 10.1289/ehp.11570] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/01/2008] [Indexed: 05/05/2023]
Abstract
BACKGROUND Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDEs may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. OBJECTIVE We examined the effects of dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47)-commonly the highest concentrated PBDE in human tissues-on plasma TH levels and on gene transcripts for glycoprotein hormone alpha-subunit (GPHalpha) and thyrotropin beta-subunit (TSHbeta) in the pituitary gland, the auto-induced TH receptors alpha and beta in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. METHODS Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 microg/pair/day or 12.3 microg/pair/day) for 21 days. RESULTS Minnows exposed to PBDE-47 had depressed plasma thyroxine (T(4)), but not 3,5,3'-triiodothyronine (T(3)). This decline in T(4) was accompanied by elevated mRNA levels for TStHbeta (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor alpha in the brain of females and decreased mRNA for TH receptor beta in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. CONCLUSIONS Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants.
Collapse
Affiliation(s)
- Sean C. Lema
- Physiology Program, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
- Address correspondence to S.C. Lema, Biology and Marine Biology, University of North Carolina-Wilmington, 601 S. College Rd., Wilmington, NC 28403 USA. Telephone: (910) 962–2514. Fax: (910) 962-4066. E-mail:
| | - Jon T. Dickey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Irvin R. Schultz
- Marine Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, Sequim, Washington, USA
| | - Penny Swanson
- Physiology Program, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
42
|
Marchesini GR, Meimaridou A, Haasnoot W, Meulenberg E, Albertus F, Mizuguchi M, Takeuchi M, Irth H, Murk AJ. Biosensor discovery of thyroxine transport disrupting chemicals. Toxicol Appl Pharmacol 2008; 232:150-60. [DOI: 10.1016/j.taap.2008.06.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 06/16/2008] [Accepted: 06/25/2008] [Indexed: 11/29/2022]
|
43
|
Legler J. New insights into the endocrine disrupting effects of brominated flame retardants. CHEMOSPHERE 2008; 73:216-22. [PMID: 18667224 DOI: 10.1016/j.chemosphere.2008.04.081] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/27/2008] [Accepted: 04/28/2008] [Indexed: 05/24/2023]
Abstract
The objective of this review is to provide an overview of recent studies demonstrating the endocrine disrupting (ED) effects of brominated flame retardants (BFRs), while highlighting interesting data presented at the recent international BFR workshop in Amsterdam in April, 2007. A review written in 2002 was used as a starting point and about 60 publications published since 2003 were reviewed. New insights into the in vivo effects of BFRs on thyroid hormone, estrogen and androgen pathways in both mammalian and non-mammalian models are provided, and novel (in vitro) findings on the mechanisms underlying ED effects are highlighted. Special attention is also given to reports on neurotoxicological effects at relatively low doses of BFRs, although an endocrine-related mechanism is disputable. Convincing evidence has been published showing that BFRs and importantly, BFR metabolites, have the potential to disrupt endocrine systems at multiple target sites. While some studies suggest a wide margin of safety between effect concentrations in rodent models and levels encountered in humans and the environment, other studies demonstrate that exposure to low doses relevant for humans and wildlife at critical time points in development can result in profound effects on both endocrine pathways and (neuro)development.
Collapse
Affiliation(s)
- Juliette Legler
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, Amsterdam, The Netherlands.
| |
Collapse
|