1
|
Rex M C, Mukherjee A. The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO 2 nanoparticles and polystyrene microplastics on Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122700-122716. [PMID: 37975986 DOI: 10.1007/s11356-023-30910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The ubiquitous presence of TiO2 nanoparticles (nTiO2) and microplastics (MPs) in marine ecosystems has raised serious concerns about their combined impact on marine biota. This study investigated the combined toxic effect of nTiO2 (1 mg/L) and NH2 and COOH surface functionalized polystyrene MPs (PSMPs) (2.5 and 10 mg/L) on Chlorella sp. All the experiments were carried out under both visible light and UV-A radiation conditions to elucidate the impact of light on the combined toxicity of these pollutants. Growth inhibition results indicated that pristine nTiO2 exhibited a more toxic effect (38%) under UV-A radiation when compared to visible light conditions (27%). However, no significant change in the growth inhibitory effects of pristine PSMPs was observed between visible light and UVA radiation conditions. The combined pollutants (nTiO2 + 10 mg/L PSMPs) under UV-A radiation exhibited more growth inhibition (nTiO2 + NH2 PSMPs 66%; nTiO2 + COOH PSMPs 50%) than under visible light conditions (nTiO2 + NH2 PSMPs 55%; TiO2 + COOH PSMPs 44%). Independent action modeling indicated that the mixture of nTiO2 with PSMPs (10 mg/L) exhibited an additive effect on the algal growth inhibition under both the light conditions. The photoactive nTiO2 promoted increased production of reactive oxygen species under UV-A exposure, resulting in cellular damage, lipid peroxidation, and impaired photosynthesis. The effects were more pronounced in case of the mixtures where PSMPs added to the oxidative stress. The toxic effects of the binary mixtures of nTiO2 and PSMPs were further confirmed through the field emission electron microscopy, revealing specific morphological abnormalities. This study provides valuable insights into the potential risks associated with the combination of nTiO2 and MPs in marine environments, considering the influence of environmentally relevant light conditions and the test medium.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | | |
Collapse
|
2
|
Zhang L, Li H, Zhang X, Li Q, Zhu G, Liu FQ. A marine coating: Self-healing, stable release of Cu 2+, anti-biofouling. MARINE POLLUTION BULLETIN 2023; 195:115524. [PMID: 37703634 DOI: 10.1016/j.marpolbul.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
We developed a marine coating consisting of Cu-MOF-74, multi-walled carbon nanotube containing carboxyl groups (MWCNT-COOH) and self-healing polymers, which simultaneously possesses self-healing and anti-biofouling properties. Cu-MOF-74 can stably release Cu2+ by virtue of the coordination dissociative mechanism. Studies have proved that MWCNT can inhibit the growth of bacteria, so adding the MWCNT can help to reduce the amount of the copper ions and ensure the antibacterial effect of the coating. In addition, the cross-linked network and abundant -COOH provided by the polymers and MWCNT-COOH further prevent the loss of copper ions. Moreover, the coating we prepared has good performance of self-healing at room temperature or slightly heated because the polymers possess abundant non-covalent hydrogen bonds. Finally, the coating not only has superior antibacterial property, but also effectively prevents the adhesion of macrofouling organism. Therefore, the coating has a longer service life and its environmental friendliness has also been improved.
Collapse
Affiliation(s)
- Liuqin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huali Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Qiuping Li
- Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
| | - Guangyu Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
3
|
Das S, Mukherjee A. Combined effects of P25 TiO 2 nanoparticles and disposable face mask leachate on microalgae Scenedesmus obliquus: analysing the effects of heavy metals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1428-1437. [PMID: 37534914 DOI: 10.1039/d3em00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Disposable surgical face masks extensively used during the COVID-19 outbreak would release microplastics into the aquatic environment. The increasing usage of titanium dioxide nanoparticles (nTiO2) in various consumer items has led to its ubiquitous presence in freshwater systems. This study determined the quantity and kind of microplastics discharged from disposable surgical face masks. The mask-leached microplastics were identified to be polypropylene of varying shapes and sizes, spanning from 1 μm to 15 μm. In addition, heavy metals like Cd, Cr, and Hg leached from the face masks were quantified. Four concentrations of nTiO2, 0.5, 1, 2, and 4 mg L-1, were mixed with leached solution from the face masks to perform the combined toxicity test on freshwater algae, Scenedesmus obliquus. A dose-dependent decrease in algal cell viability was observed upon treatment with various concentrations of nTiO2 individually. The mixtures of nTiO2 and the leached solution from the face masks exhibited significantly more toxicity in the algal cells than in their pristine forms. nTiO2 promoted increased production of oxidative stress and antioxidant enzyme activities resulting in cellular damage and decreased photosynthesis. These impacts were elevated when the algal cells were treated with the binary mixture. Furthermore, the heavy metal ions leached from face masks also contributed to the toxic effects. Our study shows that the leachates from disposable surgical face masks, combined with nTiO2, may pose a severe environmental threat.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
4
|
Prokopiuk V, Yefimova S, Onishchenko A, Kapustnik V, Myasoedov V, Maksimchuk P, Butov D, Bespalova I, Tkachenko A. Assessing the Cytotoxicity of TiO 2-x Nanoparticles with a Different Ti 3+(Ti 2+)/Ti 4+ Ratio. Biol Trace Elem Res 2023; 201:3117-3130. [PMID: 36029428 DOI: 10.1007/s12011-022-03403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/22/2022] [Indexed: 12/31/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles are promising biomedical agents characterized by good biocompatibility. In this study, we explored the cytotoxicity of TiO2-x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio and analyzed the efficiency of eryptosis indices as a tool in nanotoxicology. Two types of TiO2-x nanoparticles (NPs) were synthesized by the hydrolysis of titanium alkoxide varying the nitric acid content in the hydrolysis mixture. Transmission electron microscopy (TEM) images show that 1-TiO2-x and 2-TiO2-x NPs are 5 nm in size, whereas X-ray photoelectron spectroscopy (XPS) reveals different Ti3+ (Ti2+)/Ti4+ ratios in the crystal lattices of synthesized NPs. 1-TiO2-x nanoparticles contained 54% Ti4+, 38% Ti3+, and 8% Ti2+, while the relative amount of Ti4+ and Ti3+ in the crystal lattice of 2-TiO2-x nanoparticles was 63% and 37%, respectively. Cell viability and cell motility induced by TiO2-x nanoparticles were investigated on primary fibroblast cultures. Eryptosis modulation by the nanoparticles along with cell death mechanisms was studied on rat erythrocytes. We report that both TiO2-x nanoparticles do not decrease the viability of fibroblasts simultaneously stimulating cell migration. Data from in vitro studies on erythrocytes indicate that TiO2-x nanoparticles trigger eryptosis via ROS- (1-TiO2-x) and Ca2+-mediated mechanisms (both TiO2-x nanoparticles) suggesting that evaluation of eryptosis parameters is a more sensitive nanotoxicological approach for TiO2-x nanoparticles than cultured fibroblast assays. TiO2-x nanoparticles are characterized by low toxicity against fibroblasts, but they induce eryptosis, which is shown to be a promising tool for nanotoxicity screening. The Ti3+ (Ti2+)/Ti4+ ratio at least partly determines the cytotoxicity mechanisms for TiO2-x nanoparticles.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Valeriy Kapustnik
- Department of Internal and Occupational Diseases, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Pavel Maksimchuk
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Dmytro Butov
- Department of Phthisiology and Pulmonology, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Irina Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
| |
Collapse
|
5
|
Nigam H, Jain R, Malik A, Singh V. Effect of different polystyrene nano-plastic concentrations on Chlorella pyrenoidosa. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Li M, Zhang Y, Feng S, Zhang X, Xi Y, Xiang X. Bioaccumulation and biomagnification effects of nano-TiO 2 in the aquatic food chain. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1023-1034. [PMID: 35831721 DOI: 10.1007/s10646-022-02572-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production of nano-TiO2 has attracted extensive concerns about the ecological consequence and health risk of these compounds in natural ecosystem. However, little is known about its toxicity on zooplankton, especially its possibility to access to the food chain via dietary exposure. To address this concern, the toxic and cumulative effects of nano-TiO2 on an aquatic food chain were explored through two trophic levels independently or jointly including producer and consumer. The results revealed that exposure to suspensions of nanomaterials had negative effects on both producers and consumers. Specifically, nanoparticles reduced the density of algal cells in a concentration-dependent way, and hatching life expectancy, average lifespan, net reproductive rate, and population intrinsic growth rate of rotifers decreased significantly with the concentration of nanomaterials increased (P < 0.05). Notably, nanoparticles accumulated in algal cells and were transferred to consumers through dietary exposure. Biomagnification of nano-TiO2 was observed in this simplified food chain, as many of the biomagnification factor (BMF) values in this study were >1. Exposure concentration, exposure time and their interactions play a strong part in the accumulation of nanoparticles in algae and rotifers. Overall, the present findings confirmed that nano-TiO2 was deleterious to plankton, posing a significant environmental threat to aquatic ecosystems. Graphical abstract.
Collapse
Affiliation(s)
- Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Yongzhi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241000, Anhui, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China.
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241000, Anhui, China.
| |
Collapse
|
7
|
Ono Y, Iwahashi H. Titanium dioxide nanoparticles impart protection from ultraviolet irradiation to fermenting yeast cells. Biochem Biophys Rep 2022; 30:101221. [PMID: 35685033 PMCID: PMC9171698 DOI: 10.1016/j.bbrep.2022.101221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
|
8
|
Ren L, Huang J, Ding K, Wang Y, Yang Y, Zhang L, Wu H. Comparative Study of Algal Responses and Adaptation Capability to Ultraviolet Radiation with Different Nutrient Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5485. [PMID: 35564879 PMCID: PMC9104955 DOI: 10.3390/ijerph19095485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Frequent outbreaks of harmful algal blooms (HABs) represent one of the most serious outcomes of eutrophication, and light radiation plays a critical role in the succession of species. Therefore, a better understanding of the impact of light radiation is essential for mitigating HABs. In this study, Chlorella pyrenoidosa and non-toxic and toxic Microcystis aeruginosa were mono-cultured and co-cultured to explore algal responses under different nutrient regimes. Comparisons were made according to photosynthetically active radiation (PAR), UV-B radiation exerted oxidative stresses, and negative effects on the photosynthesis and growth of three species under normal growth conditions, and algal adaptive responses included extracellular polymeric substance (EPS) production, the regulation of superoxide dismutase (SOD) activity, photosynthetic pigments synthesis, etc. Three species had strain-specific responses to UV-B radiation and toxic M. aeruginosa was more tolerant and showed a higher adaptation capability to UV-B in the mono-cultures, including the lower sensitivity and better self-repair efficiency. In addition to stable μmax in PAR ad UV-B treatments, higher EPS production and enhanced production of photosynthetic pigments under UV-B radiation, toxic M. aeruginosa showed a better recovery of its photosynthetic efficiency. Nutrient enrichment alleviated the negative effects of UV-B radiation on three species, and the growth of toxic M. aeruginosa was comparable between PAR and UV-B treatment. In the co-cultures with nutrient enrichment, M. aeruginosa gradually outcompeted C. pyrenoidosa in the PAR treatment and UV-B treatment enhanced the growth advantages of M. aeruginosa, when toxic M. aeruginosa showed a greater competitiveness. Overall, our study indicated the adaptation of typical algal species to ambient UV-B radiation and the stronger competitive ability of toxic M. aeruginosa in the UV-radiated waters with severer eutrophication.
Collapse
Affiliation(s)
- Lingxiao Ren
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Jing Huang
- Three Gorges Beijing Enterprises Nanjing Water Group Co., Ltd., Nanjing 210000, China;
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Yi Wang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China;
| | - Lijuan Zhang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Haoyu Wu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| |
Collapse
|
9
|
Öztay D, İnan B, Koçer AT, Özçimen D. Effect of metallic nanoparticles on microalgal growth and lipid accumulation for biodiesel production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Zhang C, Li H, Li Y, Li Z, Mo F, Deng N, Xu J, Wang P. Toxicity of BPNSs against Chlorella vulgaris: Oxidative damage, physical damage and self-protection mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:63-72. [PMID: 35149438 DOI: 10.1016/j.plaphy.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Black phosphorus nanosheets (BPNSs) has extensive application prospect in the fields of optoelectronics and biomedicine, due to its unique physicochemical properties. Therefore, a systematic toxic study is necessary to assess its environmental safety. Herein, BPNSs was prepared by liquid exfoliation procedure, the primary producer Chlorella vulgaris (C. vulgaris) was used as a test subject. After the exposure for 120 h at 15, 45 and 75 mg/L BPNSs, the cell viabilities were 45.05%, 18.86% and 4.60% for each treatment group, respectively. The extent of lipid peroxidation and peroxidative damage in C. vulgaris was confirmed by measuring reactive oxygen species (ROS) levels, superoxide dismutase (SOD) and catalase (CAT) activities, followed by determination of malondialdehyde (MDA) content. Morphological analysis results (i.e., SEM and TEM) showed that BPNSs adhered to the cell surface and enter the cell to severely damage cell structure. Furthermore, BPNSs were shown to accelerate apoptosis in C. vulgaris by flow cytometry analysis. Finally, GC-MS was used to explore the metabolic regulatory mechanism of C. vulgaris in response to BPNSs stress. The results of this study can provide theoretical support for subsequent studies on the potential enrichment risk of BPNSs in the water environmental food chain.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Fan Mo
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Pengkai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
11
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
12
|
Mejía-Giraldo JC, Scaiano JC, Gallardo-Cabrera C, Puertas-Mejía MA. Photoprotection and Photostability of a New Lignin-Gelatin- Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants (Basel) 2021; 10:1904. [PMID: 34943007 PMCID: PMC8750119 DOI: 10.3390/antiox10121904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a new hybrid biomaterial that could photo-stabilize and improve the photoprotective capacity of a Baccharis antioquensis extract. Different combinations of lignin/gelatin/natural extract were applied to prepare hybrid biomaterial nanoparticles (NPs), which were then incorporated into an emulsion. The in vitro photoprotection and photostability were evaluated. The methanolic extract showed high phenolic content (646.4 ± 9.5 mg GAE/g dry extract) and a DPPH radical assay revealed that the antiradical capacity of the extract (0.13 to 0.05 g extract/mmol DPPH) was even better than that of BHT. The particle size of the hybrid biomaterial ranged from 100 to 255 nm; a polydispersity index (PdI) between 0.416 and 0.788 is suitable for topical use in dermocosmetic products. The loading capacity of the extract ranged from 27.0 to 44.5%, and the nanoparticles (NPs) showed electrostatic stability in accordance with the zeta potential value. We found that the formulation based on lignin: extract (1:1 ratio) and gelatin: lignin: extract (0.5:0.5:1 ratio) demonstrated photoprotection qualities with a sun protection factor (SPF) ranging from 9.4 to 22.6. In addition, all the hybrid NP-formulations were time-stable with %SPFeff and %UVAPFeff greater than 80% after exposure to 2 h of radiation. These results suggest that the hybrid biopolymer-natural extract improved the photoprotection and photostability properties, as well as the antiradical capacity, of the B. antioquensis extract, and may be useful for trapping high polyphenol content from natural extracts, with potential application in cosmeceutical formulations.
Collapse
Affiliation(s)
- Juan C. Mejía-Giraldo
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Cecilia Gallardo-Cabrera
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Miguel A. Puertas-Mejía
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| |
Collapse
|
13
|
Wang X, Huang K, Gao J, Szeto YT, Jiang C, Zhu J, Zhang J, Liu J. Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148247. [PMID: 34147792 DOI: 10.1016/j.scitotenv.2021.148247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) constitute new class of materials recently used by researchers in the field of controlling cyanobacteria. However, the use of MOFs in combination with allelochemicals for cyanobacteria inhibition had not been investigated before. The present study is aimed towards the investigation of the effect and mechanism of cyanobacteria inhibition by combining MOF with allelochemical (ferulic acid, FA) for the first time. In this study, the results showed that the synergistic effect of Zn2+ and FA from Zn-MOF-FA could inhibit cyanobacteria to a greater extent than the corresponding dosage of Zn2+ and FA. The inhibition ratio of Microcystis aeruginosa has been found to be more than 50% when the Zn-MOF-FA concentration exceeds 2 mg·L-1 after four days exposure. Zn-MOF-FA at 1 mg·L-1 did not completely inhibit M. aeruginosa, and the inhibition effect has been of only temporary type. The inhibitory effect of Zn-MOF-FA on algae has mainly been attributed to the hindrance of electron transfer and energy capture in the photosynthetic system and the oxidative damage caused by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Xiaoxiong Wang
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, PR China
| | - Kaiwen Huang
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, PR China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Jingsi Gao
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, PR China.
| | - Yim Tong Szeto
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong Special Administrative Region
| | - Chengchun Jiang
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, PR China
| | - Jia Zhu
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, PR China
| | - Jinsong Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, PR China; Shenzhen Water (Group) Co., Ltd., Shenzhen 518031, Guangdong, PR China
| | - Jianqiang Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|
14
|
Basei G, Zabeo A, Rasmussen K, Tsiliki G, Hristozov D. A Weight of Evidence approach to classify nanomaterials according to the EU Classification, Labelling and Packaging Regulation criteria. NANOIMPACT 2021; 24:100359. [PMID: 35559818 DOI: 10.1016/j.impact.2021.100359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 06/15/2023]
Abstract
In the context of the European Union (EU) Horizon 2020 GRACIOUS project (Grouping, Read-Across, Characterisation and classification framework for regulatory risk assessment of manufactured nanomaterials and Safer design of nano-enabled products), we proposed a quantitative Weight of Evidence (WoE) approach for hazard classification of nanomaterials (NMs). This approach is based on the requirements of the European Regulation on Classification, Labelling and Packaging of Substances and Mixtures (the CLP regulation), which implements the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) in the European Union. The goal of this WoE methodology is to facilitate classification of NMs according to CLP criteria, following the decision trees defined in ECHA's CLP regulatory guidance. In the WoE, results from heterogeneous studies are weighted according to data quality and completeness criteria, integrated, and then evaluated by expert judgment to obtain a hazard classification, resulting in a coherent and justifiable methodology. Moreover, the probabilistic nature of the proposed approach enables highlighting the uncertainty in the analysis. The proposed methodology involves the following stages: (1) collection of data for different NMs related to the endpoint of interest: each study related to each NM is referred as a Line of Evidence (LoE); (2) computation of weighted scores for each LoE: each LoE is weighted by a score calculated based on data quality and completeness criteria defined in the GRACIOUS project; (3) comparison and integration of the weighed LoEs for each NM: A Monte Carlo resampling approach is adopted to quantitatively and probabilistically integrate the weighted evidence; and (4) assignment of each NM to a hazard class: according to the results, each NM is assigned to one of the classes defined by the CLP regulation. Furthermore, to facilitate the integration and the classification of the weighted LoEs, an online R tool was developed. Finally, the approach was tested against an endpoint relevant to CLP (Aquatic Toxicity) using data retrieved from the eNanoMapper database, results obtained were consistent to results in REACH registration dossiers and in recent literature.
Collapse
|
15
|
Bhullar S, Goyal N, Gupta S. Rapid green-synthesis of TiO 2 nanoparticles for therapeutic applications. RSC Adv 2021; 11:30343-30352. [PMID: 35480249 PMCID: PMC9041147 DOI: 10.1039/d1ra05588g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles (NPs) with sizes ranging from 2 nm to 1 μm find various applications in the field of theranostics. Moreover, if eco-friendly methods are opted for the synthesis of biocompatible and less toxic NPs, then that's a huge success. Titanium dioxide nanoparticles (TiO2 NPs) have been vigorously studied for their use in medical implants, photodynamic therapy, drug delivery, biosensing and as antimicrobial agents. The present study reports the green-synthesis of TiO2 NPs for the first-time using extracts of black pepper (Piper nigrum), coriander (Coriandrum sativum) and clove (Syzygium aromaticum). All three samples of TiO2 NPs were synthesized via a modified sol-gel method under similar environmental conditions. Similar treatments were given to the samples. The procedure adopted for the synthesis ensures the use of non-toxic materials, no production of toxic by-products and rapid synthesis of the TiO2 NPs. The NPs were characterized by X-ray diffraction, high resolution-transmission electron microscopy, energy dispersive spectroscopy, field emission scanning electron microscopy and selected area electron diffraction which confirmed the formation, morphology, crystallinity and size of the TiO2 NPs. These characterizations displayed the similarity index of all three samples. However, photoluminescence and vibrating sample magnetometer studies highlighted the differences among the three samples. All three samples of NPs obtained had a size range of 5-20 nm. Further, the findings showed that different plant extracts result in TiO2 NPs with moderately different characteristics. Furthermore, the samples were analysed for their drug-encapsulation efficiency using UV-visible spectrophotometry. Among all three samples, the NPs synthesised using black pepper exhibited the maximum encapsulation efficiency. The study concludes that the plant's bio-profile is responsible for bringing about changes in the traits of the resulting nanoparticles. Thus, the extracts from different plants have the ability to manipulate the properties of the synthesized NPs. These findings can help to understand the role and importance of the plants in synthesizing NPs for biomedical applications. A further detailed study in this field can help researchers to understand the influence of the plant's biochemistry in shaping the NPs.
Collapse
Affiliation(s)
- Shilpy Bhullar
- Department of Physics, Centre of Advanced Study in Physics, Panjab University Chandigarh-160014 India
| | - Navdeep Goyal
- Department of Physics, Centre of Advanced Study in Physics, Panjab University Chandigarh-160014 India
| | - Shikha Gupta
- Department of Physics, Goswami Ganesh Dutta Sanatan Dharma College Sector-32C Chandigarh-160032 India
| |
Collapse
|
16
|
Wu S, Gaillard JF, Gray KA. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146496. [PMID: 34030287 DOI: 10.1016/j.scitotenv.2021.146496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
The last decade has witnessed tremendous growth in the commercial use of metal-based engineered nanomaterials (ENMs) for a wide range of products and processes. Consequently, direct and indirect release into environmental systems may no longer be considered negligible or insignificant. Yet, there is an active debate as to whether there are real risks to human or ecological health with environmental exposure to ENMs. Previous research has focused primarily on the acute effects of individual ENMs using pure cultures under controlled laboratory environments, which may not accurately reveal the ecological impacts of ENMs under real environmental conditions. The goal of this review is to assess our current understanding of ENM effects as we move from exposure of single to multiple ENMs or microbial species. For instance, are ENMs' impacts on microbial communities predicted by their intrinsic physical or chemical characteristics or their effects on single microbial populations; how do chronic ENM interactions compare to acute toxicity; does behavior under simplified laboratory conditions reflect that in environmental media; finally, is biological stress modified by interactions in ENM mixtures relative to that of individual ENM? This review summarizes key findings and our evolving understanding of the ecological effects of ENMs under complex environmental conditions on microbial systems, identifies the gaps in our current knowledge, and indicates the direction of future research.
Collapse
Affiliation(s)
- Shushan Wu
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| | | | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| |
Collapse
|
17
|
Duan N, Li Q, Meng X, Wang Z, Wu S. Preparation and characterization of k-carrageenan/konjac glucomannan/TiO 2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chem 2021; 364:130441. [PMID: 34198036 DOI: 10.1016/j.foodchem.2021.130441] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Accepted: 06/19/2021] [Indexed: 01/13/2023]
Abstract
A nano-composite film was prepared from k-carrageenan (KC), konjac glucomannan (KGM) and TiO2 nanoparticles (NPs) by solvent casting method. The morphology and structure of the KC/KGM based nano-composite films prepared from different weight ratio of TiO2 NPs were characterized by SEM, XRD and FT-IR techniques. The addition of TiO2 NPs to KC/KGM films improved the mechanical, thermal, structural, and barrier properties of nano-composite films. In particular, the film containing 7 wt% of TiO2 NPs exhibited effective photocatalytic anti-fungal activity (79%) for Penicillium viridicatum after irradiating 6 h through generating reactive oxygen species thus destroying the fungi. Benefitting from the improved characteristics investigated above, the nano-composite films showed a favorable effect on strawberry storage. Overall, the fabricated KC/KGM/TiO2 nano-composite films have a broad application in the field of food preservation and packaging applications.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qian Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangyi Meng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Volpe C, Vadstein O, Andersen G, Andersen T. Nanocosm: a well plate photobioreactor for environmental and biotechnological studies. LAB ON A CHIP 2021; 21:2027-2039. [PMID: 34008610 DOI: 10.1039/d0lc01250e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytoplankton are key primary producers at the bottom of the aquatic food chain. They are a highly diverse group of organisms essential for the functioning of our ecosystems and because of their characteristics, their biomass is considered for various commercial applications. A full appreciation of their abundance, diversity and potential is only feasible by using systems that enable simultaneous testing of strains and/or variables in a fast and easy way. A major bottleneck is the lack of a cost-effective method with the capacity for complex experimental set-ups that enable fast and reproducible screening and analysis. In this study, we present nanocosm, a versatile LED-based micro-scale photobioreactor (PBR) that allows simultaneous testing of multiple variables such as temperature and light within the same plate. Every well can be independently controlled for intensity, temporal variation and light type (RGB, white, UV). We show that our systems guarantee homogeneous conditions because of controlled temperature and evaporation and adjustments for light crosstalk. By ensuring controlled environmental conditions the nanocosm is suitable for running factorial experimental designs where each well can be used as an independent micro-PBR. To validate culture performances, we assess well-to-well reproducibility and our results show minimal well-to-well variability for all the conditions tested. Possible modes of operation and application are discussed together with future development of the system.
Collapse
Affiliation(s)
- Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
| | | | - Tom Andersen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, N-0316, Oslo, Norway
| |
Collapse
|
19
|
Dedman CJ, King AM, Christie-Oleza JA, Davies GL. Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. ENVIRONMENTAL SCIENCE. NANO 2021; 8:1236-1255. [PMID: 34046180 PMCID: PMC8136324 DOI: 10.1039/d0en00883d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/06/2021] [Indexed: 05/26/2023]
Abstract
Nano-sized titanium dioxide (nTiO2) represents the highest produced nanomaterial by mass worldwide and, due to its prevalent industrial and commercial use, it inevitably reaches the natural environment. Previous work has revealed a negative impact of nTiO2 upon marine phytoplankton growth, however, studies are typically carried out at concentrations far exceeding those measured and predicted to occur in the environment currently. Here, a series of experiments were carried out to assess the effects of both research-grade nTiO2 and nTiO2 extracted from consumer products upon the marine dominant cyanobacterium, Prochlorococcus, and natural marine communities at environmentally relevant and supra-environmental concentrations (i.e., 1 μg L-1 to 100 mg L-1). Cell declines observed in Prochlorococcus cultures were associated with the extensive aggregation behaviour of nTiO2 in saline media and the subsequent entrapment of microbial cells. Hence, higher concentrations of nTiO2 particles exerted a stronger decline of cyanobacterial populations. However, within natural oligotrophic seawater, cultures were able to recover over time as the nanoparticles aggregated out of solution after 72 h. Subsequent shotgun proteomic analysis of Prochlorococcus cultures exposed to environmentally relevant concentrations confirmed minimal molecular features of toxicity, suggesting that direct physical effects are responsible for short-term microbial population decline. In an additional experiment, the diversity and structure of natural marine microbial communities showed negligible variations when exposed to environmentally relevant nTiO2 concentrations (i.e., 25 μg L-1). As such, the environmental risk of nTiO2 towards marine microbial species appears low, however the potential for adverse effects in hotspots of contamination exists. In future, research must be extended to consider any effect of other components of nano-enabled product formulations upon nanomaterial fate and impact within the natural environment.
Collapse
Affiliation(s)
- Craig J Dedman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Warwick Gibbet Hill Coventry CV4 7EQ UK
| | - Aaron M King
- UCL Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Joseph A Christie-Oleza
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry CV4 7AL UK
- Department of Biology, University of the Balearic Islands Ctra. Valldemossa, km 7.5 CP: 07122 Palma Spain
- IMEDEA (CSIC-UIB) CP: 07190 Esporles Spain
| | - Gemma-Louise Davies
- UCL Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
20
|
Finding Nano: Challenges Involved in Monitoring the Presence and Fate of Engineered Titanium Dioxide Nanoparticles in Aquatic Environments. WATER 2021. [DOI: 10.3390/w13050734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse effects, a comprehensive understanding of the behaviour and fate of TiO2 in different environments is crucial. Advances in analytical and modelling methods continue to improve researchers’ ability to quantify and determine the state of nano-TiO2 in various environments. However, due to the complexity of environmental and nanoparticle factors and their interplay, this remains a challenging and poorly resolved feat. This paper aims to provide a focused summary of key particle and environmental characteristics that influence the behaviour and fate of sunscreen-derived TiO2 in swimming pool water and natural aquatic environments and to review the current state-of-the-art of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) approaches to detect and characterise TiO2 nanoparticles in aqueous media. Furthermore, it critically analyses the capability of existing fate and transport models to predict environmental TiO2 levels. Four particle and environmental key factors that govern the fate and behaviour of TiO2 in aqueous environments are identified. A comparison of SP-ICP-MS studies reveals that it remains challenging to detect and characterise engineered TiO2 nanoparticles in various matrices and highlights the need for the development of new SP-ICP-MS pre-treatment and analysis approaches. This review shows that modelling studies are an essential addition to experimental studies, but they still lack in spatial and temporal resolution and mostly exclude surface transformation processes. Finally, this study identifies the use of Bayesian Network-based models as an underexplored but promising modelling tool to overcome data uncertainties and incorporates interconnected variables.
Collapse
|
21
|
Roy B, Suresh PK, Chandrasekaran N, Mukherjee A. Antibiotic tetracycline enhanced the toxic potential of photo catalytically active P25 titanium dioxide nanoparticles towards freshwater algae Scenedesmus obliquus. CHEMOSPHERE 2021; 267:128923. [PMID: 33190912 DOI: 10.1016/j.chemosphere.2020.128923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) often co-exist with the other co-contaminants like antibiotics. The antibiotics can potentially modify the toxic effects of the co-contaminants like the NPs in the environment. Hence, the present study aims to understand the toxic potential of a binary mixture of tetracycline (TC) and TiO2 NPs to a model freshwater alga - Scenedesmus obliquus. Since, TiO2 NPs are known to be photo-catalytically active, non-irradiated (NI-TiO2 NPs), UVA pre-irradiated (UVA-TiO2 NPs), and UVB pre-irradiated (UVB-TiO2 NPs) TiO2 NPs was mixed separately with TC and their toxicity evaluated. It was observed that the cell viability for the three experimental groups decreased significantly (p < 0.001) with respect to the individual NPs-treated algae. Abbott's model suggested that the interaction between TC and Ni-TiO2 NPs was additive for all the concentrations of NI-TiO2 NPs tested. However, in the case of both the UV pre-irradiated NPs, the interaction was additive for the lower concentration (1.56 μM) and synergistic for both the higher concentrations (3.13, and 6.26 μM). At the concentrations tested the cell membrane damage and intracellular uptake of NPs increased significantly (p < 0.05) for the mixture in comparison with the individual NPs treated algae. This study suggested that even a non-lethal concentration of TC (EC10 = 0.135 μM) increased the toxic potential of the TiO2 NPs significantly and when this antibiotic was used in combination with the UV pre-irradiated NPs, toxicity even increased to a higher level.
Collapse
Affiliation(s)
- Barsha Roy
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | - P K Suresh
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | | | | |
Collapse
|
22
|
Pérez-Hernández H, Pérez-Moreno A, Sarabia-Castillo CR, García-Mayagoitia S, Medina-Pérez G, López-Valdez F, Campos-Montiel RG, Jayanta-Kumar P, Fernández-Luqueño F. Ecological Drawbacks of Nanomaterials Produced on an Industrial Scale: Collateral Effect on Human and Environmental Health. WATER, AIR, AND SOIL POLLUTION 2021; 232:435. [PMID: 34658457 PMCID: PMC8507508 DOI: 10.1007/s11270-021-05370-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
Currently, hundreds of different nanomaterials with a broad application in products that make daily lives a little bit easier, in every aspect, are being produced on an industrial scale at thousands of tons per year. However, several scientists, researchers, politics, and ordinary citizens have stated their concern regarding the life cycle, collateral effects, and final disposal of these cutting-edge materials. This review summarizes, describes, and discusses all manuscripts published in the Journal Citation Reports during the last 10 years, which studied the toxicity or the effects of nanomaterials on human and environmental health. It was observed that 23.62% of the manuscripts analyzed found no ecological or human risks; 54.39% showed that several nanomaterials have toxicological effects on the ecosystems, human, or environmental health. In comparison, only 21.97% stated the nanomaterials had a beneficial impact on those. Although only 54.39% of the manuscripts reported unfavorable effects of nanomaterials on ecosystems, human, or environmental health, it is relevant because the potential damage is invaluable. Therefore, it is imperative to make toxicological studies of nanomaterials with holistic focus under strictly controlled real conditions before their commercialization, to deliver to the market only innocuous and environmentally friendly products.
Collapse
Affiliation(s)
- H. Pérez-Hernández
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, 24500 Campeche, Mexico
| | - A. Pérez-Moreno
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - C. R. Sarabia-Castillo
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - S. García-Mayagoitia
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - G. Medina-Pérez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo C. P. 43000 México
| | - F. López-Valdez
- Agricultural Biotechnology Group, Research Center for Applied Biotechnology (CIBA), Instituto Politécnico Nacional, 90700 Tlaxcala, Mexico
| | - R. G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo C. P. 43000 México
| | - P. Jayanta-Kumar
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326 Republic of Korea
| | - F. Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| |
Collapse
|
23
|
Li Z, Juneau P, Lian Y, Zhang W, Wang S, Wang C, Shu L, Yan Q, He Z, Xu K. Effects of Titanium Dioxide Nanoparticles on Photosynthetic and Antioxidative Processes of Scenedesmus obliquus. PLANTS 2020; 9:plants9121748. [PMID: 33321890 PMCID: PMC7763043 DOI: 10.3390/plants9121748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023]
Abstract
The effects of the photocatalytic toxicity of titanium dioxide nanoparticle (nano-TiO2) on phytoplankton are well understood. However, as UV light intensity decreases sharply with the depth of the water column, the effects of nano-TiO2 itself on deeper water phytoplankton, such as green algae, need further research. In this research, we investigated the effects of three sizes of TiO2 (10, 50 and 200 nm) on the photosynthetic and antioxidative processes of Scenedesmus obliquus in the absence of UV light. We found that 50 nm and 10 nm TiO2 (10 mg/L) inhibited growth rates and the maximal photosystem II quantum yield compared to the control in Scenedesmus obliquus. The minimal and maximal fluorescence yields, and the contents of reactive oxygen species and lipid peroxidation, increased, indicating that photosynthetic energy/electrons transferred to oxygen and induced oxidative stress in nano-TiO2-treated samples. In addition, we found that aggregations of algae and 10 nm TiO2 were present, which could induce cell membrane disruption, and vacuoles were induced to cope with nano-TiO2 stress in Scenedesmus obliquus. These results enhance our understanding of the effects of nano-TiO2 on the photosynthetic and antioxidative processes of green algae, and provide basic information for evaluating the ecotoxicity of nano-TiO2 in freshwater ecosystems.
Collapse
Affiliation(s)
- Zhou Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Wei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
- Correspondence: (Z.H.); (K.X.)
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
- Correspondence: (Z.H.); (K.X.)
| |
Collapse
|
24
|
Roy B, P.K. S, Chandrasekaran N, Mukherjee A. UVB pre-irradiation of titanium dioxide nanoparticles is more detrimental to freshwater algae than UVA pre-irradiation. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104076. [DOI: 10.1016/j.jece.2020.104076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
25
|
Nitrogen-Doped Titanium Dioxide Nanoparticles Modified by An Electron Beam for Improving Human Breast Cancer Detection by Raman Spectroscopy: A Preliminary Study. Diagnostics (Basel) 2020; 10:diagnostics10100757. [PMID: 32993195 PMCID: PMC7600689 DOI: 10.3390/diagnostics10100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Titanium dioxide (TiO2) is commonly used as a pigment in paints, paper products, polymer compositions, and cosmetic products, and even as a food additive or drug coating material. In recent times, it has also been used in photovoltaic cells, semiconductors, biomedical devices, and air purification. In this paper, the potential application of nitrogen-doped TiO2 nanoparticles modified by an electron beam for improving human breast cancer detection by Raman spectroscopy is presented. Raman spectroscopy (RS) is a promising noninvasive analytical technique in cancer detection that enables us to retrieve a molecular signature of the biochemical composition of cancerous tissue. However, RS still has some challenges in signal detection, mainly related to strong concurrent background fluorescence from the analyzed tissue. The Raman signal scattering is several orders of magnitude smaller than the fluorescence intensity, and strong fluorescence masks a much weaker Raman signal. The Raman results demonstrate that the N-doped TiO2 electron beam-irradiated nanoparticles amplify the Raman scattering. The intrinsic properties of the adsorbed molecules from human breast tissue and the surface properties of the N-doped TiO2 electron beam-irradiated nanoparticles (the excited electron–hole pair at the surface) have a significant effect on the enhanced Raman signal intensity.
Collapse
|
26
|
Varnagiris S, Urbonavicius M, Sakalauskaite S, Daugelavicius R, Pranevicius L, Lelis M, Milcius D. Floating TiO 2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137600. [PMID: 32135289 DOI: 10.1016/j.scitotenv.2020.137600] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The anatase phase TiO2 films with nanocrystalline structure were successfully deposited on a water-floating non-expanded polystyrene (PS) beads via magnetron sputtering. The combination of UVB light and PS beads with TiO2 film was used for decomposition of methylene blue as well as inactivation tests for intact and EDTA-treated Escherichia coli bacteria. Crystal structure, elemental composition, elemental mapping, surface morphology and chemical bonds of TiO2 film were investigated. E. coli inactivation experiments showed that such floating photocatalyst could destroy >90% bacteria in 45 min under UVB irradiation. Results demonstrated that combination of TiO2 and UVB light leads to disruption of the outer membrane which causes effective inactivation of E. coli bacteria.
Collapse
Affiliation(s)
- Sarunas Varnagiris
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania.
| | - Marius Urbonavicius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
| | - Sandra Sakalauskaite
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Rimantas Daugelavicius
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Martynas Lelis
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
| | - Darius Milcius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
| |
Collapse
|
27
|
Ren Y, Geng R, Lu Q, Tan X, Rao R, Zhou H, Yang X, Liu W. Involvement of TGF-β and ROS in G1 Cell Cycle Arrest Induced by Titanium Dioxide Nanoparticles Under UVA Irradiation in a 3D Spheroid Model. Int J Nanomedicine 2020; 15:1997-2010. [PMID: 32273698 PMCID: PMC7102912 DOI: 10.2147/ijn.s238145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Background As one of the most widely produced engineered nanomaterials, titanium dioxide nanoparticles (nano-TiO2) are used in biomedicine and healthcare products, and as implant scaffolds; therefore, the toxic mechanism of nano-TiO2 has been extensively investigated with a view to guiding application. Three-dimensional (3D) spheroid models can simplify the complex physiological environment and mimic the in vivo architecture of tissues, which is optimal for the assessment of nano-TiO2 toxicity under ultraviolet A (UVA) irradiation. Methods and Results In the present study, the toxicity of nano-TiO2 under UVA irradiation was investigated in 3D H22 spheroids cultured in fibrin gels. A significant reduction of approximately 25% in spheroid diameter was observed following treatment with 100 μg/mL nano-TiO2 under UVA irradiation after seven days of culture. Nano-TiO2 under UVA irradiation triggered the initiation of the TGF-β/Smad signaling pathway, increasing the expression levels of TGF-β1, Smad3, Cdkn1a, and Cdkn2b at both the mRNA and protein level, which resulted in cell cycle arrest in the G1 phase. In addition, nano-TiO2 under UVA irradiation also triggered the production of reactive oxygen species (ROS), which were shown to be involved in cell cycle regulation and the induction of TGF-β1 expression. Conclusion Nano-TiO2 under UVA irradiation induced cell cycle arrest in the G1 phase and the formation of smaller spheroids, which were associated with TGF-β/Smad signaling pathway activation and ROS generation. These results reveal the toxic mechanism of nano-TiO2 under UVA irradiation, providing the possibility for 3D spheroid models to be used in nanotoxicology studies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Runqing Geng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qunwei Lu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
28
|
Kosowska K, Szatkowski P. Influence of ZnO, SiO 2 and TiO 2 on the aging process of PLA fibers produced by electrospinning method. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2020; 140:1769-1778. [PMID: 32435152 PMCID: PMC7223675 DOI: 10.1007/s10973-019-08890-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/09/2019] [Indexed: 05/10/2023]
Abstract
The aim of this work was to study the effect of ceramics particles addition (SiO2, ZnO, TiO2) on the ultraviolet (UV) aging of poly(lactic acid) nonwovens fabricated using electrospinning method. The resistance to aging is a key factor for outdoor and medical applications (UV light sterilization). Nonwovens were placed in special chamber with UV light. Changes of physicochemical properties were recorded using differential scanning calorimetry and attenuated total reflection Fourier-transform infrared spectroscopy. The fibers' morphology was studied by using scanning electron microscopy. Obtained results clearly showed that only PLA fibers with ZnO particles gained an increase in UV resistance. The paper presents a description of structural changes taking place under the influence of UV aging processes and describes the mechanisms of this process and the effect of ceramic addition on the lifetime of such materials.
Collapse
Affiliation(s)
- Karolina Kosowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
29
|
Fan G, Bao M, Wang B, Wu S, Luo L, Li B, Lin J. Inhibitory Effects of Cu 2O/SiO 2 on the Growth of Microcystis aeruginosa and Its Mechanism. NANOMATERIALS 2019; 9:nano9121669. [PMID: 31766783 PMCID: PMC6955810 DOI: 10.3390/nano9121669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 11/17/2022]
Abstract
In this study, a novel nanomaterial Cu2O/SiO2 was synthesized based on nano-SiO2, and the inhibitory effects of different concentrations of Cu2O/SiO2 on the growth of Microcystis aeruginosa (M. aeruginosa) were studied. At the same time, the mechanism of Cu2O/SiO2 inhibiting the growth of M. aeruginosa was discussed from the aspects of Cu2+ release, chlorophyll a destruction, oxidative damage, total protein, and the phycobiliprotein of algae cells. The results showed that low doses of Cu2O/SiO2 could promote the growth of M. aeruginosa. When the concentration of Cu2O/SiO2 reached 10 mg/L, it exhibited the best inhibitory effect on M. aeruginosa, and the relative inhibition rate reached 294% at 120 h. In terms of the algae inhibition mechanism, Cu2O/SiO2 will release Cu2+ in the solution and induce metal toxicity to algae cells. At the same time, M. aeruginosa might suffer oxidative damage by the free radicals, such as hydroxyl radicals released from Cu2O/SiO2, affecting the physiological characteristics of algae cells. Moreover, after the addition of Cu2O/SiO2, a decrease in the content of chlorophyll a, total soluble protein, and phycobiliprotein was found, which eventually led to the death of M. aeruginosa. Therefore, Cu2O/SiO2 can be used as an algaecide inhibitor for controlling harmful cyanobacteria blooms.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fujian 350116, China; (M.B.); (J.L.)
- Correspondence: (G.F.); (B.W.)
| | - Minchen Bao
- College of Civil Engineering, Fuzhou University, Fujian 350116, China; (M.B.); (J.L.)
| | - Bo Wang
- IER Environmental Protection Engineering Technology Co., Ltd., Shenzhen 518071, China; (S.W.); (L.L.); (B.L.)
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Correspondence: (G.F.); (B.W.)
| | - Shimin Wu
- IER Environmental Protection Engineering Technology Co., Ltd., Shenzhen 518071, China; (S.W.); (L.L.); (B.L.)
| | - Lingxi Luo
- IER Environmental Protection Engineering Technology Co., Ltd., Shenzhen 518071, China; (S.W.); (L.L.); (B.L.)
| | - Binhui Li
- IER Environmental Protection Engineering Technology Co., Ltd., Shenzhen 518071, China; (S.W.); (L.L.); (B.L.)
| | - Jiuhong Lin
- College of Civil Engineering, Fuzhou University, Fujian 350116, China; (M.B.); (J.L.)
| |
Collapse
|
30
|
Preparation and Formula Analysis of Anti-Biofouling Titania–Polyurea Spray Coating with Nano/Micro-Structure. COATINGS 2019. [DOI: 10.3390/coatings9090560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes the preparation and formula analysis of anti-biofouling Titania–polyurea (TiO2–SPUA) spray coating, which uses nano-scale antibacterial and photocatalytic agents, titanium dioxide, to construct regularly hydrophobic surface texture on the polyurea coating system. Through formulating analysis of anti-biofouling performance, it is found the causal factors include antibacterial TiO2, surface wettability and morphology in order of their importance. The most optimized formula group is able to obtain uniform surface textures, high contact angle (91.5°), low surface energy (32.5 mJ/m2), and strong hardness (74 A). Moreover, this newly fabricated coating can effectively prevent Pseudomonas aeruginosa and biofilm from enriching on the surface, and there is no toxins release from the coating itself, which makes it eco-friendly, even after long-time exposure. These studies provide insights to the relative importance of physiochemical properties of Titania–polyurea spray coatings for further use in marine, as well as bio medical engineering.
Collapse
|
31
|
Fan G, Bao M, Zheng X, Hong L, Zhan J, Chen Z, Qu F. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:529-538. [PMID: 30641423 DOI: 10.1016/j.jhazmat.2018.12.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/01/2018] [Accepted: 12/19/2018] [Indexed: 05/10/2023]
Abstract
Metal-organic Frameworks (MOFs) as a new type of nanomaterials are extensively used in various fields of environment pollution remediation. However, the MOFs are rarely applied in the removal of cyanobacterial blooms, and more fundamental investigation is warrant for more insights into mechanisms for algae inhibition. In this study, Cu-MOF-74 was synthesized by a simple hydrothermal method, and its inhibitory effect on the growth of Microcystis aeruginosa was studied. Furthermore, its mechanisms were explored with respect to metal ion release, agglomeration, shading and algal cell membrane breakage, production of extracellular hydroxyl radical and intracellular reactive oxygen species. The results showed that the inhibition rate of M. aeruginosa was 372% after 24-h exposure when the concentration of Cu-MOF-74 exceeded 1 mg/L. However, the addition of Cu-MOF-74 at the concentration lower than 0.1 mg/L promoted the algal growth. The inhibition of algal growth by Cu-MOF-74 was basically attributed to the presence of hydroxyl radical and intracellular reactive oxygen species, with the released Cu2+ and cell aggregation involved to some extent. Overall, nanocrystalline Cu-MOF-74 is of great potential in the control of harmful cyanobacterial blooms and the inhibition is specific to the concentration of Cu-MOF-74.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002 Fujian, China.
| | - Minchen Bao
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Xiaomei Zheng
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Liang Hong
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Jiajun Zhan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Zhong Chen
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
32
|
Degradable and Photocatalytic Antibacterial Au-TiO₂/Sodium Alginate Nanocomposite Films for Active Food Packaging. NANOMATERIALS 2018; 8:nano8110930. [PMID: 30413087 PMCID: PMC6266112 DOI: 10.3390/nano8110930] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
A degradable and antibacterial sodium alginate film containing functional Au-TiO2 nanocomposites for food packaging was successfully developed. The Au-TiO2 nanocomposites are synthesized hydrothermally and mixed with the alginate solution to form the film by a casting method. The Au-TiO2 nanocomposites enable the film with excellent visible light absorption and transfer ability with the light absorption rang covering UV–visible wavelength (300–800 nm) and induce the increase of the film water contact angle from 40° to 74°, which contributes to the film shape stability. Furthermore, compared to the TiO2 nanoparticle-incorporated film, the antibacterial ability of Au-TiO2/sodium alginate composite film is improved approximately by 60% and 50% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively, in light conditions. The antibacterial property of the film arises from the increased production of reactive oxygen species (ROS) induced by the surface plasmonic resonance of Au nanoparticles. The degradable and antibacterial properties render the composite film of great application potential in food packaging industry.
Collapse
|
33
|
Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem Biol Interact 2018. [DOI: 10.1016/j.cbi.2017.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
JAK/STAT and TGF-ß activation as potential adverse outcome pathway of TiO 2NPs phototoxicity in Caenorhabditis elegans. Sci Rep 2017; 7:17833. [PMID: 29259193 PMCID: PMC5736661 DOI: 10.1038/s41598-017-17495-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are widely used nanoparticles, whose catalytic activity is mainly due to photoactivation. In this study, the toxicity of TiO2NPs was investigated on the nematode Caenorhabditis elegans, with and without UV activation. Comparative analyses across the four treatments revealed that UV-activated TiO2NPs led to significant reproductive toxicity through oxidative stress. To understand the underlying molecular mechanism, transcriptomics and metabolomics analyses were conducted, followed by whole-genome network-based pathway analyses. Differential expression analysis from microarray data revealed only 4 DEGs by exposure to TiO2NPs alone, compared to 3,625 and 3,286 DEGs by UV alone and UV-activated TiO2NPs, respectively. Pathway analyses suggested the possible involvement of the JAK/STAT and TGF-ß pathways in the phototoxicity of TiO2NPs, which correlated with the observation of increased gene expression of those pathways. Comparative analysis of C. elegans response across UV activation and TiO2NPs exposure was performed using loss-of-function mutants of genes in these pathways. Results indicated that the JAK/STAT pathway was specific to TiO2NPs, whereas the TGF-ß pathway was specific to UV. Interestingly, crosstalk between these pathways was confirmed by further mutant analysis. We consider that these findings will contribute to understand the molecular mechanisms of toxicity of TiO2NPs in the natural environment.
Collapse
|
35
|
Li Y, Wang J, Zhao F, Bai B, Nie G, Nel AE, Zhao Y. Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Safety analysis of engineered nanomaterials (ENMs) presents a formidable challenge regarding environmental health and safety, due to their complicated and diverse physicochemical properties. Although large amounts of data have been published regarding the potential hazards of these materials, we still lack a comprehensive strategy for their safety assessment, which generates a huge workload in decision-making. Thus, an integrated approach is urgently required by government, industry, academia and all others who deal with the safe implementation of nanomaterials on their way to the marketplace. The rapid emergence and sheer number of new nanomaterials with novel properties demands rapid and high-content screening (HCS), which could be performed on multiple materials to assess their safety and generate large data sets for integrated decision-making. With this approach, we have to consider reducing and replacing the commonly used rodent models, which are expensive, time-consuming, and not amenable to high-throughput screening and analysis. In this review, we present a ‘Library Integration Approach’ for high-content safety analysis relevant to the ENMs. We propose the integration of compositional and property-based ENM libraries for HCS of cells and biologically relevant organisms to be screened for mechanistic biomarkers that can be used to generate data for HCS and decision analysis. This systematic approach integrates the use of material and biological libraries, automated HCS and high-content data analysis to provide predictions about the environmental impact of large numbers of ENMs in various categories. This integrated approach also allows the safer design of ENMs, which is relevant to the implementation of nanotechnology solutions in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - André E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Yadav HM, Thorat ND, Yallapu MM, Tofail SAM, Kim JS. Functional TiO2 nanocoral architecture for light-activated cancer chemotherapy. J Mater Chem B 2017; 5:1461-1470. [DOI: 10.1039/c6tb02324j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To achieve light-triggered drug release in cancer chemotherapy, we developed multimodal titanium dioxide (TiO2) nanocorals modified with methoxy polyethylene glycol (mPEG).
Collapse
Affiliation(s)
- Hemraj M. Yadav
- Department of Materials Science & Engineering
- University of Seoul
- South Korea
| | - Nanasaheb D. Thorat
- Materials & Surface Science Institute Bernal Institute
- University of Limerick
- Limerick
- Ireland
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research
- University of Tennessee Health Science Center
- Memphis
- USA
| | - Syed A. M. Tofail
- Materials & Surface Science Institute Bernal Institute
- University of Limerick
- Limerick
- Ireland
| | - Jung-Sik Kim
- Department of Materials Science & Engineering
- University of Seoul
- South Korea
| |
Collapse
|
37
|
Brancher M, Franco D, de Melo Lisboa H. Photocatalytic oxidation of H2S in the gas phase over TiO2-coated glass fiber filter. ENVIRONMENTAL TECHNOLOGY 2016; 37:2852-2864. [PMID: 26998728 DOI: 10.1080/09593330.2016.1167250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
To promote the photocatalytic oxidation (PCO) of hydrogen sulfide (H2S) in the gas phase, TiO2-coated glass fiber filters were packed in an annular photoreactor. Glass fibers coated with TiO2 thin films were characterized structurally and morphologically by field emission gun scanning electron microscopy (FEG-SEM), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Flow rate and H2S inlet concentration were evaluated to determine the performance of the reactor. Removal efficiencies up to 99% were achieved for flow rate of 25 L h(-1) (residence time of 121 s) and H2S inlet concentration from 12 to 14 ppmv. The long-term experiment presented H2S removal of 89% for 16 h. After 28 h of continuous use, H2S degradation was observed at 64%, which suggests that the photocatalyst was losing activity due to deactivation. Moreover, the kinetics of the PCO of H2S according to the Langmuir-Hinshelwood (L-H) approach along with the mass balance of a plug-flow reactor was modeled. The reaction constant (k) was calculated at approximately 10.5 μmol m(-3) s(-1) and the adsorption constant (K) of approximately 5263 m(-3) mol with linearity (R2) of 0.98.
Collapse
Affiliation(s)
- Marlon Brancher
- a Laboratório de Controle da Qualidade do Ar (LCQAr), Departamento de Engenharia Sanitária e Ambiental (ENS) , Universidade Federal de Santa Catarina (UFSC) , Florianópolis , Brasil
| | - Davide Franco
- a Laboratório de Controle da Qualidade do Ar (LCQAr), Departamento de Engenharia Sanitária e Ambiental (ENS) , Universidade Federal de Santa Catarina (UFSC) , Florianópolis , Brasil
| | - Henrique de Melo Lisboa
- a Laboratório de Controle da Qualidade do Ar (LCQAr), Departamento de Engenharia Sanitária e Ambiental (ENS) , Universidade Federal de Santa Catarina (UFSC) , Florianópolis , Brasil
| |
Collapse
|
38
|
Zhang F, Wang Z, Wang S, Fang H, Chen M, Xu D, Tang L, Wang D. Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: Role of low molecular weight natural organic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:113-120. [PMID: 26840524 DOI: 10.1016/j.envpol.2016.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Understanding how engineered nanoparticles (ENPs) interact with natural organic acids is important to ecological risk assessment of ENPs, but this interaction remains poorly studied. Here, we investigate the dispersion stability, ion release, and toxicity of yttrium oxide nanoparticles (nY2O3) suspensions after exposure to two low molecular weight natural organic acids (LOAs), namely benzoic acid and gallic acid. We find that in the presence of LOAs the nY2O3 suspensions become more stable with surface zeta potential more positive or negative, accompanied by small agglomerated size. LOA interaction with nY2O3 is shown to promote the release of dissolved yttrium from the nanoparticles, depending on the concentrations of LOAs. Toxic effects of the nY2O3 suspensions incubated with LOAs on Scenedesmus obliquus as a function of their mixture levels show three types of signs: stimulation, inhibition, and alleviation. The mechanism of the effects of LOAs on the nY2O3 toxicity may be mainly associated with the degree of agglomeration, particle-induced oxidative stress, and dissolved yttrium. Our results stressed the importance of LOA impacts on the fate and toxicity of ENPs in the aquatic environment.
Collapse
Affiliation(s)
- Fan Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Lili Tang
- Jiangsu Environmental Monitoring Centre, Nanjing 210036, PR China
| | - Degao Wang
- Department of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| |
Collapse
|