1
|
Fort DJ, Wolf JC, Langsch A, Fast B, Junker M, Otter R. Inefficacy of dietary test substance administration in Amphibian Metamorphosis Assay (AMA) studies. J Appl Toxicol 2024; 44:733-746. [PMID: 38151988 DOI: 10.1002/jat.4572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Traditionally, the Amphibian Metamorphosis Assay (AMA; OECD TG 231) is performed by exposing Xenopus laevis tadpoles to test substances dissolved in laboratory water. Recently, the use of dietary administration has been proposed to combat poorly soluble test substances in ecotoxicologically-based regulatory endocrine disruption (ED) studies, specifically the AMA warranting an investigation into the efficacy of dietary administration. An efficacy study comprised of two phases: 1) evaluation of the physical influence of the loading process via solvent and 10, 1, and 0.1 mg/l test substance or surrogate (sunflower oil, SFO) on the Sera® Micron Nature (SMN) diet, and 2) performance of a modified AMA in which Nieuwkoop and Faber (NF) stage 51 X. laevis larvae were exposed to dechlorinated tap water using one concentration of the SFO in the diet for 21 days, was performed. In phase 1, the addition of acetone or acetone with bis(2-propylheptyl) phthalate (DPHP) or SFO to SMN with subsequent solvent purge altered the diet reducing the density of the liquified diet and dietary pellet size following centrifugation indicative of alteration of the physical properties of the diet. Treatments used in the modified AMA were acetone alone and 0.1 mg/l SFO dissolved in acetone. These treatments were evaluated against an SMN benchmark using standard AMA endpoints. Both the acetone-treated SMN and 0.1 mg/l SFO-treated diets significantly reduced survival rates, 67 and 70% relative to the SMN benchmark (100%), decreased developmental stage distribution and snout-vent length-normalized hind limb length relative to the SMN benchmark, and slightly increased the prevalence and severity of thyroid follicular cell hypertrophy. Although the acetone-treated diets may have impacted the hypothalamo-pituitary-thyroid axis, clinical signs of gastrointestinal impaction and tail flexure were also observed in the acetone-treated diets, but not the SMN diet alone. Ultimately, test substance exposure via the diet in an AMA study can produce results that may confound data interpretation, which suggests that the traditional aqueous exposure route is generally more appropriate.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma, USA
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | | | | | | | | |
Collapse
|
2
|
Qi X, Liu Q, Wei Z, Hou X, Jiang Y, Sun Y, Xu S, Yang L, He J, Liu K. Chronic exposure to BDE-47 aggravates acute pancreatitis and chronic pancreatitis by promoting acinar cell apoptosis and inflammation. Toxicol Sci 2024; 199:120-131. [PMID: 38407484 DOI: 10.1093/toxsci/kfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.
Collapse
Affiliation(s)
- Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuyang Hou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yuhong Jiang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yin Sun
- Institute of Pharmaceutical Pharmacology, University of South China, Hengyang, Hunan 421200, China
| | - Shu Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
3
|
Li J, Li Y, Zhu M, Song S, Qin Z. A Multiwell-Based Assay for Screening Thyroid Hormone Signaling Disruptors Using thibz Expression as a Sensitive Endpoint in Xenopus laevis. Molecules 2022; 27:molecules27030798. [PMID: 35164063 PMCID: PMC8838645 DOI: 10.3390/molecules27030798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
There is a need for rapidly screening thyroid hormone (TH) signaling disruptors in vivo considering the essential role of TH signaling in vertebrates. We aimed to establish a rapid in vivo screening assay using Xenopus laevis based on the T3-induced Xenopus metamorphosis assay we established previously, as well as the Xenopus Eleutheroembryonic Thyroid Assay (XETA). Stage 48 tadpoles were treated with a series of concentrations of T3 in 6-well plates for 24 h and the expression of six TH-response genes was analyzed for choosing a proper T3 concentration. Next, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA), two known TH signaling disruptors, were tested for determining the most sensitive TH-response gene, followed by the detection of several suspected TH signaling disruptors. We determined 1 nM as the induction concentration of T3 and thibz expression as the sensitive endpoint for detecting TH signaling disruptors given its highest response to T3, BPA, and TBBPA. And we identified betamipron as a TH signaling agonist, and 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) as a TH signaling antagonist. Overall, we developed a multiwell-based assay for rapidly screening TH signaling disruptors using thibz expression as a sensitive endpoint in X. laevis.
Collapse
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-6291-9177
| |
Collapse
|
4
|
Martínez-Guitarte JL, Beltrán EM, González-Doncel M, García-Hortigüela P, Fernández A, Pablos MV. Effect assessment of reclaimed waters and carbamazepine exposure on the thyroid axis of Xenopus laevis: Gene expression modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118226. [PMID: 34563849 DOI: 10.1016/j.envpol.2021.118226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Reclaimed water (RW) obtained from wastewater treatment plants (WWTP) is used for irrigation, groundwater recharge, among other potential uses. Although most pollutants are removed, traces of them are frequently found, which can affect organisms and alter the environment. The presence of a myriad of contaminants in RW makes it a complex mixture with very diverse effects and interactions. A previous study, in which tadpoles were exposed to RW and RW spiked with Carbamazepine (CBZ), presented slight thyroid gland stimulation, as suggested by the development acceleration of tadpoles and histological findings in the gland provoked by RW, regardless of the CBZ concentration. To complement this study, the present work analysed the putative molecular working mechanism by selecting six genes coding for the thyroid-stimulating hormone (TSHβ), thyroid hormone metabolising enzymes (DIO2, DIO3), thyroid receptors (THRA, THRB), and a thyroid hormone-induced DNA binding protein (Kfl9). Transcriptional activity was studied by Real-Time PCR (RT-PCR) in brains, hind limbs, and tails on exposure days 1, 7, and 21. No significant differences were observed between treatments for each time point, but slight alterations were noted when the time response was analysed. The obtained results indicate that the effects of RW or RW spiked with CBZ are negligible for the genes analysed during the selected exposure periods.
Collapse
Affiliation(s)
- José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - Eulalia María Beltrán
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Miguel González-Doncel
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Pilar García-Hortigüela
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Amanda Fernández
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - María Victoria Pablos
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Couderq S, Leemans M, Fini JB. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol 2020; 508:110779. [PMID: 32147522 DOI: 10.1016/j.mce.2020.110779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) play critical roles in profound changes in many vertebrates, notably in mammalian neurodevelopment, although the precise molecular mechanisms of these fundamental biological processes are still being unravelled. Environmental and health concerns prompted the development of chemical safety testing and, in the context of endocrine disruption, identification of thyroid hormone axis disrupting chemicals (THADCs) remains particularly challenging. As various molecules are known to interfere with different levels of TH signalling, screening tests for THADCs may not rely solely on in vitro ligand/receptor binding to TH receptors. Therefore, alternatives to mammalian in vivo assays featuring TH-related endpoints that are more sensitive than circulatory THs and more rapid than thyroid histopathology are needed to fulfil the ambition of higher throughput screening of the myriad of environmental chemicals. After a detailed introduction of the context, we have listed current assays and parameters to assess thyroid disruption following a literature search of recent publications referring to non-mammalian models. Potential THADCs were mostly investigated in zebrafish and the frog Xenopus laevis, an amphibian model extensively used to study TH signalling.
Collapse
Affiliation(s)
- Stephan Couderq
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Michelle Leemans
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Jean-Baptiste Fini
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
6
|
Li JB, Li YY, Shen YP, Zhu M, Li XH, Qin ZF. 2,2',4,4'-tetrabromodipheny ether (BDE-47) disrupts gonadal development of the Africa clawed frog (Xenopus laevis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105441. [PMID: 32045789 DOI: 10.1016/j.aquatox.2020.105441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that BDE-47, one of the most abundant polybrominated diphenyl ethers (PBDEs) congeners, has a weak estrogenic activity, but it has remained unclear whether BDE-47 disrupts gonadal development and causes male-to-female sex reversal in lower vertebrates, with limited and controversial data. The present study aimed to determine the effects of BDE-47 on gonadal development in Xenopus laevis, a model amphibian species for studying adverse effects of estrogenic chemicals on reproductive development. X. laevis at stage 45/46 were exposed to BDE-47 (0.5, 5, 50 nM) in semi-static system, with 1 nM 17β-estradiol (E2) as the positive control. When reaching stage 53, tadpoles were examined for gonadal morphology, histology and sex-dimorphic gene expression. The phenotypic sex (gonadal morphology and histology) of each BDE-47-treated tadpole matched its genetic sex, showing no sex-reversal, whereas one half of genetic males treated with E2 displayed ovarian-like features. However, some genetic males (26%) in the 50 nM BDE-47 treatment group were found to contain more germ cells clumping together in the medulla, along with an increasing tendency of the gonad length/kidney length ratio in males, resembling feminizing outcomes of E2. These observations seem to suggest that BDE-47 exerted weak feminizing effects. However, BDE-47 induced increases in expression of both female-biased genes and male-biased genes in two sexes, which disagrees with feminizing outcomes, suggesting complicated effects of BDE-47 on gonadal development. Taken together, all results demonstrate that nanomolar BDE-47 disrupted gonadal development and exerted weak feminizing effects, but not resulted in male-to-female sex reversal in X. laevis.
Collapse
Affiliation(s)
- Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Fort DJ, Mathis M, Fort C, Fort TD, Guiney PD, Weeks JA. Polybrominated Diphenylether (DE-71) Exposure Skews Phenotypic Sex Ratio, and Alters Steroid Hormone Levels and Steroidogenic Enzyme Activities in Juvenile Silurana tropicalis. Toxicol Sci 2019; 172:63-74. [PMID: 31393593 DOI: 10.1093/toxsci/kfz181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 11/12/2022] Open
Abstract
The impact of the brominated flame-retardant mixture, DE-71, on gonadal steroidogenesis during sexual differentiation in Silurana tropicalis was examined. A partial lifecycle study exposing S. tropicalis to varying concentrations of DE-71 (0.0, 0.65, 1.3, 2.5, and 5.0 μg/L [nominal]) was conducted from early gastrula-stage embryo to 150 d post-metamorphosis (dpm). Exposure of S. tropicalis to DE-71 induced liver necrosis and induced abnormal ovary development characterized by previtellogenic oocyte necrosis and arrested development of vitellogenic oocytes in females in a concentration-dependent manner. Decreased mean plasma DHT and T, gonad T, and increased mean plasma E2 levels were found in 150 dpm DE-71-treated male S. tropicalis compared to controls. Plasma E2 levels in females were not significantly altered compared to control S. tropicalis, although lower plasma and gonad T were detected. Mean gonadal CYP 19 aromatase activity in both male and female S. tropicalis exposed to DE-71 was not appreciably affected. Decreased mean male 5α-reductase and CYP17 activities in both male and females were observed compared to control frogs. Overall, these studies suggested that PBDE exposure induced liver necrosis and abnormal ovary development; and reduced circulating and gonadal androgens resulting in a phenotypic skew in sex ratio toward the female sex in S. tropicalis.
Collapse
Affiliation(s)
| | | | - Chelsea Fort
- Fort Environmental Laboratories, Inc. Stillwater, OK.,Current Address - Office of the Chief Medical Examiner of Oklahoma - Central Division, Oklahoma City, OK
| | - Troy D Fort
- Fort Environmental Laboratories, Inc. Stillwater, OK.,Current Address - Cognitive and Neurobiological Approaches to Plasticity (CNAP), Department of Psychological Sciences, Kansas State University, Manhattan, KS
| | - Patrick D Guiney
- S.C. Johnson & Son, Racine, WI.,Current Address - University of Wisconsin, Stoughton, WI
| | - John A Weeks
- S.C. Johnson & Son, Racine, WI.,Current Address - Weeks Entox, Knoxville, TN
| |
Collapse
|
8
|
Liang S, Liang S, Yin N, Faiola F. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:353-362. [PMID: 30849655 DOI: 10.1016/j.ecoenv.2019.02.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 05/25/2023]
Abstract
The liver is one of the major targets of hormones, including thyroid hormones (THs), and many industrial chemicals, such as endocrine-disrupting chemicals. Those compounds may permeate the placenta barrier and pose a risk for embryonic development. Therefore, it is necessary to assess the toxic effects of those kind of industrial chemicals during liver development. In this study, to mimic liver specification in vitro, we differentiated human embryonic stem cells (ESCs) into functional hepatocyte-like cells. We performed this differentiation process in presence of two THs, triiodothyronine (T3) and thyroxine (T4), with the purpose of identifying biomarkers for toxicity screening. TH exposure (3, 30 and 300 nM) yielded to hepatocytes with impaired glycogen storage ability and abnormal lipid droplets' accumulation. Global gene expression analysis by RNA-seq identified a number of genes responsible for hepatic differentiation and function which were affected by 30 nM T3 and T4. Those differentially expressed genes were used to assess the potential developmental liver toxicity of two famous environmental pollutants, 2, 2, 4, 4-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209), at 10 nM to 1 μM treatments. Our findings demonstrate that BDE-47 and BDE-209, dysregulated pathways such as "chemical carcinogenesis", "steroid hormone biosynthesis" and "drug metabolism-cytochrome P450". Moreover, we were able to identify a set of 17 biomarkers, very useful to predict the potential developmental hepatotoxicity of industrial chemicals.
Collapse
Affiliation(s)
- Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Wang C, Yang L, Hu Y, Zhu J, Xia R, Yu Y, Shen J, Zhang Z, Wang SL. Isoliquiritigenin as an antioxidant phytochemical ameliorates the developmental anomalies of zebrafish induced by 2,2',4,4'-tetrabromodiphenyl ether. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:390-398. [PMID: 30802654 DOI: 10.1016/j.scitotenv.2019.02.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE47) is the most abundant PBDE congeners in biological samples. It has strong tendencies to bioaccumulate and potentially endangers development of mammals through oxidative stress. Isoliquiritigenin (ISL), an emerging natural chalcone-type flavonoid, possesses various biological and pharmacological properties, including antioxidant, anti-allergic, anti-inflammatory, anti-tumor and estrogenic activities. The purpose of the study is to explore the antioxidant effect of ISL on the amelioration of developmental anomalies induced by BDE47. Zebrafish (Danio rerio) embryos were exposed to BDE47 (1 and 10 μM) and/or ISL (4 μM) for 4 to 120 hours post fertilization (hpf), and the morphology, development, behavior, oxidative stress status and related genes expression were assessed. The results showed that BDE47 contributed to dose-dependent growth retardation and deformities, including delayed hatching, spinal curvature, reduced body length, increased death rate, aberrant behaviors and impaired dark-adapted vision, which were significantly mitigated by ISL. Besides, ISL ameliorated excessive ROS accumulation, and exaggerated the expressions of apoptosis-related genes p53, Bcl-2, caspase 3 and caspase 9 induced by BDE47, suggesting that ISL protected zebrafish from the developmental toxicity of BDE47 by inactivation of programmed apoptosis and activation of antioxidant signaling pathways. Taken together, developing ISL as a dietary supplement might be a promising preventive strategy for the amelioration of developmental toxicity induced by environmental pollutants.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Lu Yang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
10
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
11
|
Cowell WJ, Sjödin A, Jones R, Wang Y, Wang S, Whyatt RM, Factor-Litvak P, Bradwin G, Hassoun A, Oberfield S, Herbstman JB. Pre- and Postnatal Polybrominated Diphenyl Ether Concentrations in Relation to Thyroid Parameters Measured During Early Childhood. Thyroid 2019; 29:631-641. [PMID: 30907253 PMCID: PMC6533780 DOI: 10.1089/thy.2018.0417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Penta-brominated diphenyl ethers (PentaBDEs) are endocrine-disrupting chemicals that structurally resemble thyroid hormones and were widely used as flame retardants in household consumer products from 1975 to 2004. Polybrominated diphenyl ethers (PBDEs) cross the placenta, and evidence suggests that for many children, body burdens may peak during the toddler years. This study aimed to understand the impact of exposure timing by examining both pre- and postnatal exposure to BDE-47, the predominant penta-brominated diphenyl ether congener detected in humans, in relation to thyroid hormone parameters measured during early childhood. Methods: The Columbia Center for Children's Environmental Health Mothers and Newborns Study is a prospective birth cohort of African American and Dominican maternal-child pairs. Pregnant women were recruited from two prenatal clinics in Northern Manhattan and the South Bronx between 1998 and 2006. Participants included 158 children with (i) plasma PBDE concentrations measured at birth and in the toddler years (age 2-3 years), and (ii) serum thyroid parameters measured at three and/or five years of age. Outcomes included concentrations of serum thyrotropin, free thyroxine, and total thyroxine. Results: Children with high exposure to BDE-47 during the prenatal period (-17% [confidence interval -29 to -2]) or toddler age (-19% [confidence interval -31 to -5]) had significantly lower geometric mean thyrotropin levels compared to children with low BDE-47 exposure throughout early life. Associations with thyroxine were also inverse; however, they did not reach statistical significance at the p = 0.05 level. Sex-stratified models suggest associations with postnatal exposure may be stronger among boys compared to girls. Conclusions: The thyroid regulatory system may be sensitive to BDE-47 during pre- and postnatal periods.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ya Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Robin M. Whyatt
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Gary Bradwin
- Department of Laboratory Medicine, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts
| | - Abeer Hassoun
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Pediatrics, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Sharon Oberfield
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Pediatrics, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Julie B. Herbstman
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
- Address correspondence to: Julie Herbstman, PhD, Columbia Center for Children's Environmental Health, 12th Floor, Mailman School of Public Health, 722 West 168th Street, New York, NY 10032
| |
Collapse
|
12
|
Prezioso G, Giannini C, Chiarelli F. Effect of Thyroid Hormones on Neurons and Neurodevelopment. Horm Res Paediatr 2019; 90:73-81. [PMID: 30157487 DOI: 10.1159/000492129] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/15/2018] [Indexed: 11/19/2022] Open
Abstract
This review focuses on the current knowledge of the effects of thyroid hormones on central nervous system differentiation and development in animals and the human fetal brain. The outcomes of children with congenital hypothyroidism and of newborns with hypothyroid pregnant mothers are emphasized, focusing on how therapies could affect and especially improve the outcomes.
Collapse
|
13
|
Thornton LM, Path EM, Nystrom GS, Venables BJ, Sellin Jeffries MK. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas). FISH & SHELLFISH IMMUNOLOGY 2018; 80:80-87. [PMID: 29859315 DOI: 10.1016/j.fsi.2018.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Exposures to polybrominated diphenyl ethers (PBDEs) have been shown to alter immune function in adult organisms across a variety of taxa. However, few if any studies have investigated the long-term consequences of early life stage PBDE exposures on immune function in fish. This study sought to determine the effects of early life stage BDE-47 exposure on pathogen resistance in the fathead minnow (Pimephales promelas) following an extended depuration period (≥180 d). Minnows were exposed to BDE-47 via a combination of maternal transfer and diet through 34 days post fertilization (dpf), raised to adulthood (>215 dpf) on a clean diet, then subjected to pathogen resistance trials. Early life stage exposures to BDE-47 did not affect the ability of females to survive from Yersinia ruckeri infection. However, the survival of BDE-47 exposed males was significantly reduced relative to controls, indicating that developmental exposures to BDE-47 altered male immunity. Because BDE-47 is a known thyroid hormone disruptor and thyroid hormone disruptors have the potential to adversely impact immune development and function, metrics indicative of thyroid disruption were evaluated, as were immune parameters known to be altered in response to thyroid disruption. BDE-47 exposed minnows exhibited signs of thyroid disruption (i.e., reduced growth); however, no alterations were observed in immune parameters known to be influenced by thyroid hormones (i.e., thymus size, expression of genes associated with lymphoid development) suggesting that the observed alterations in immunocompetence may occur through alternative mechanisms. Regardless of the mechanisms responsible, the results of this study demonstrate the potential for early life stage PBDE exposures to adversely impact immunity and illustrate that the immunological consequences of PBDE exposures are sex dependent.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elise M Path
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Gunnar S Nystrom
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|