1
|
Sani A, Abdullahi IL, Salisu A, Tukur HM, Maigari AK. A machine learning multimodal profiling of Per- and Polyfluoroalkyls (PFAS) distribution across animal species organs via clustering and dimensionality reduction techniques. Food Res Int 2025; 211:116463. [PMID: 40356129 DOI: 10.1016/j.foodres.2025.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) contamination in aquatic and terrestrial organisms poses significant environmental and health risks. This study quantified 15 PFAS compounds across various tissues (liver, kidney, gill, muscle, skin, lung, blood, breast, feather) from fish (Clarias gariepinus, Oreochromis niloticus, Lates niloticus, Tilapia zilli), livestock (camel, cow, sheep, ram, goat), and birds (pigeon, chicken, turkey). Among the fishes, C. gariepinus exhibited the highest PFAS accumulation, with PFOA (46.5 ng/g) and PFTrDA (50.1 ng/g) dominant in liver and kidney, while O. niloticus showed elevated PFTrDA (56.87 ng/g) and PFUnDA (29.43 ng/g). In livestock, camel liver contained high PFNA (9.22 ng/g), and cow liver had the highest PFOS (8.1 ng/g). Among the birds, pigeon liver showed the highest PFNA (7.83 ng/g). To analyze PFAS distribution patterns, dimensionality reduction and clustering techniques were employed. Principal Component Analysis (PCA) captured 68.28 % of total variance, revealing two distinct clusters whereby fish species are strongly related with higher PFAS concentration, while poultry showed unique PFAS profiles when compared to other types of meat. Clustering of PFOS, PFOA, and other PFAS compounds near the center explained their influence across the general meat types particularly the fish species, while t-Distributed Stochastic Neighbor Embedding (t-SNE) confirmed clear separations in high-dimensional space. Clustering analyses, including K-means, hierarchical clustering, DBSCAN, and Gaussian Mixture Models (GMM), identified well-defined patterns, with DBSCAN and GMM detecting overlapping categories and outliers. Feature importance analysis using a Random Forest model highlighted total PFAS as the most significant predictor, with PFHxA and PFDODA also contributing strongly, while organ type and species played a lesser role. These findings demonstrate the effectiveness of unsupervised learning techniques in characterizing PFAS bioaccumulation patterns across species and tissues, providing valuable information for ecological and toxicological risk assessments.
Collapse
Affiliation(s)
- Ali Sani
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano 3011, Nigeria.
| | - Ibrahim Lawal Abdullahi
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano 3011, Nigeria
| | - Abba Salisu
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano 3011, Nigeria
| | - Habibu Magaji Tukur
- Department of Biology, Yusuf Maitama Sule College of Education and Advanced Studies, Ghari LGA, Kano, Nigeria
| | - Ahmad Kabir Maigari
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, Bayero University, Kano 3011, Nigeria
| |
Collapse
|
2
|
Zhou P, Kong Y, Zhang D, Juhasz A, Zhang Q, Cui X. Influence of non-degradable and degradable microplastics on the bioavailability of per- and polyfluoroalkyl substance in mice: Mechanism exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179381. [PMID: 40222253 DOI: 10.1016/j.scitotenv.2025.179381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) contamination in drinking water and their associated health risks have received extensive global attention. Microplastics (MPs), which commonly coexist with PFAS in the daily diet, remain poorly understood in terms of their effects on PFAS bioavailability. Here, we investigated the effect of non-biodegradable (PS) and biodegradable (PBS) MPs on PFAS bioavailability using a mouse model, with PFAS level in drinking water being at 20 μg/L. High-dose dietary MPs (50 mg/g) significantly increased PFAS bioavailability, especially for PS co-exposure (29.2 ± 5.09 % vs 19.4 ± 3.66 % in control, p < 0.05), while reducing fecal excretion by 0.34 and 0.31-fold (p < 0.05). Mechanistic studies showed that high-dose PS significantly (p < 0.05) increased mouse serum albumin concentrations, which were closely related with the in vivo absorption of PFAS. Both PS and PBS downregulated the expression of efflux proteins (Mrp2 and Mrp4) by 0.10-0.22 fold, thereby increasing PFAS bioavailability. Molecular docking further showed that legacy PFASs (PFOA and PFOS) exhibited higher binding affinities to transport-related proteins than emerging alternatives (HFPO-TA and 6:2 FTSA), explaining their greater susceptibility to MPs co-exposure. These findings provide novel mechanistic insights into the modulation of PFAS bioavailability by co-exposure of MPs. While high MP doses were used to elucidate the mechanism, future studies using environmentally relevant exposure levels are necessary to assess the health risks of PFAS-MP co-exposure and support science-based risk management.
Collapse
Affiliation(s)
- Pengfei Zhou
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengke Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Qian Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xinyi Cui
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Liu C, Zhou B, Huang L, Han D, He M, Zhou M, Xu P, Zhang R. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) and Vitamin Metabolism: A Nutritional Perspective on an Emerging Environmental Health Issue. Nutrients 2025; 17:1660. [PMID: 40431401 PMCID: PMC12113770 DOI: 10.3390/nu17101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals characterized by exceptional stability and potential for bioaccumulation. Ubiquitous in the environment, PFAS can enter the human body through water, air, and dietary sources. Exposure to PFAS has been linked to various adverse health effects, including cancer, endocrine disruption, and reproductive and developmental toxicities. Emerging evidence suggests potential interactions between PFAS exposure and vitamin levels in the human body. This review provides a comprehensive understanding of the associations between PFAS and various vitamins, elucidates potential underlying mechanisms, and offers insights for the development of targeted nutritional interventions.
Collapse
Affiliation(s)
- Chen Liu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
- School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou 310059, China
| | - Biao Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
| | - Lichun Huang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
| | - Dan Han
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
| | - Mengjie He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
| | - Mengyi Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
- School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou 310059, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
- School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou 310059, China
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Hangzhou 310051, China; (C.L.); (B.Z.); (L.H.); (D.H.); (M.H.); (M.Z.)
| |
Collapse
|
4
|
Schlezinger JJ, Biswas K, Garcia A, Heiger-Bernays WJ, Bello D. An oat fiber intervention for reducing PFAS body burden: A pilot study in male C57Bl/6 J mice. Toxicol Appl Pharmacol 2025; 495:117188. [PMID: 39647509 PMCID: PMC11798698 DOI: 10.1016/j.taap.2024.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Perfluoroalkyl substances (PFAS) are a major public health concern, in part because several PFAS have elimination half-lives on the order of years and are associated with adverse health outcomes. While PFAS can be transported into bile, their efficient reuptake by intestinal transporter proteins results in minimal fecal elimination. Here, we tested the hypothesis that consumption of oat β-glucan, a dietary supplement known to disrupt the enterohepatic recirculation of bile acids, will reduce PFAS body burdens. Male C57Bl/6 J mice were fed diets based on the "What we eat in America" analysis that were supplemented with inulin or oat β-glucan and exposed via drinking water to a seven PFAS mixture (PFHpA, PFOA, PFNA, Nafion Byproduct-2, PFHxS and PFOS) for 6 weeks. One cohort of mice was euthanized at the end of the exposure, and one cohort continued on the experimental diets for 4 more weeks without additional PFAS exposure. The β-glucan fed mice drank significantly more water than the inulin fed mice, resulting in a significantly higher dose of PFAS. Relative to overall exposure, we observed lower serum concentration trends (p < 0.1) in β-glucan fed mice for PFHpA, PFOA and PFOS. Additionally, β-glucan fed mice had lower adipose:body weight ratios and liver and jejunum triglyceride concentrations. Hepatic mRNA expression of Cyp4a10, Cyp2b10 and Cyp3a11 were elevated in PFAS exposed mice, with only the expression of Cyp3a11 decreasing following depuration. This pilot study generates support for the hypothesis that oat β-glucan supplementation can reduce PFAS body burdens and stimulate healthful effects on lipid homeostasis.
Collapse
Affiliation(s)
| | - Kushal Biswas
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Audrey Garcia
- Department of Environmental Health, Boston University, Boston, MA, USA
| | - Wendy J Heiger-Bernays
- Department of Environmental Health, Boston University, Boston, MA, USA; Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
5
|
Chen R, Muensterman D, Field J, Ng C. Deriving Membrane-Water and Protein-Water Partition Coefficients from In Vitro Experiments for Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:82-91. [PMID: 39757451 PMCID: PMC11740993 DOI: 10.1021/acs.est.4c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
The phospholipid membrane-water partition coefficients (KMW) and equilibrium binding affinities for human serum albumin (HSA) of 60 structurally diverse perfluoroalkyl and polyfluoroalkyl substances (PFAS) were evaluated through laboratory measurements and modeling to enhance our understanding of PFAS distribution in organisms. Per- and polyfluoroalkyl carboxylic acids exhibited a 0.36 ± 0.01 log-unit increase in KMW as the fluorinated carbon chain length increased from C4 to C16, while per- and polyfluoroalkyl sulfonates showed a 0.37 ± 0.02 log-unit increase. The highest HSA affinity range was observed between C6 and C10, with the following structural subclass order: per- and polyfluoroalkyl sulfonates ≈ ether sulfonic acids > polyfluoroalkyl carboxylic acids > fluorotelomer unsaturated carboxylic acids > phosphate diesters ≈ per- and polyfluoroether carboxylic acids. A comparison between association rate constants (KA) and HSA-PFAS molecular docking predictions with AutoDock Vina indicated that modeling could effectively predict the affinity of PFAS to HSA, especially for PFAS carbon chain lengths from C4 to C10. Based on in vitro results, exposure-dependent PFAS partitioning in organisms was modeled by comparing distribution coefficients between PFAS in phospholipid membranes and HSA at different PFAS concentrations and demonstrated that at lower concentrations, PFAS had higher partitioning in HSA, while with increasing concentration, the proportion of binding relative to the aqueous phase shifted toward the phospholipid membrane. Few studies have compared the bioaccumulation of PFAS in phospholipid membranes and HSA. This research reports that protein-water distribution coefficients are higher than membrane-water partitioning coefficients at lower PFAS concentrations, which may have implications for interpreting exposure data and toxicity experiments.
Collapse
Affiliation(s)
- Ruiwen Chen
- Department
of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Derek Muensterman
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jennifer Field
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Carla Ng
- Department
of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Louisse J, Pedroni L, van den Heuvel JJMW, Rijkers D, Leenders L, Noorlander A, Punt A, Russel FGM, Koenderink JB, Dellafiora L. In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3. Toxicology 2024; 509:153961. [PMID: 39343156 DOI: 10.1016/j.tox.2024.153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insights into the active renal excretion potential of PFASs in humans, this work investigated in vitro the transport of three PFCAs (PFHpA, PFOA, PFNA) and three PFSAs (PFBS, PFHxS and PFOS) using OAT1-, OAT2- or OAT3-transduced human embryonic kidney (HEK) cells. Only PFHpA and PFOA showed clear uptake in OAT1-transduced HEK cells, while no transport was observed for PFASs in OAT2-transduced HEK cells. In OAT3-transduced HEK cells only PFHpA, PFOA, PFNA, and PFHxS showed clear uptake. To study the interaction with the transporters, molecular docking and dynamics simulations were performed for PFHpA and PFHxS, for which a relatively short and long half-lives in humans has been reported, respectively. Docking analyses could not always distinguish the in vitro transported from the non-transported PFASs (PFHpA vs. PFHxS), whereas molecular dynamic simulations could, as only a stable interaction of the PFAS with the inner part of transporter mouth was detected for those that were transported in vitro (PFHpA with OAT1, none with OAT2, and PFHpA and PFHxS with OAT3). Altogether, this study presents in vitro and in silico insight with respect to the selected PFASs transport by the human renal secretory transporters OAT1, OAT2, and OAT3, which provides further understanding about the differences between the capability of PFAS congeners to accumulate in humans.
Collapse
Affiliation(s)
- Jochem Louisse
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, the Netherlands.
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Jeroen J M W van den Heuvel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Liz Leenders
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Annelies Noorlander
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan B Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| |
Collapse
|
7
|
Hanvoravongchai J, Laochindawat M, Kimura Y, Mise N, Ichihara S. Clinical, histological, molecular, and toxicokinetic renal outcomes of per-/polyfluoroalkyl substances (PFAS) exposure: Systematic review and meta-analysis. CHEMOSPHERE 2024; 368:143745. [PMID: 39542374 DOI: 10.1016/j.chemosphere.2024.143745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals present in the environment that can negatively affect health. Kidney is the major target organ of PFAS exposure, yet the renal impact of PFAS is not completely understood. Here we review the effects of PFAS exposure on kidney health to identify gaps in our understanding and mark potential avenues for future research. METHODS PubMed and SCOPUS databases were searched for studies that examined the association between PFAS exposure and kidney-related outcomes. We included all epidemiological, animal, and cell studies and categorized outcomes into four categories: clinical, histological, molecular and toxicokinetic. RESULTS We identified 169 studies, including 51 on clinical outcomes, 28 on histological changes, 42 on molecular mechanisms, and 68 on toxicokinetics. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure were associated with kidney dysfunction, chronic kidney diseases, and increased risk of kidney cancer. Various histological changes were reported, especially in tubular epithelial cells, and the etiology of PFAS-induced kidney injury included various molecular mechanisms. Although PFOA and PFOS are not considered genotoxic, they exhibit several characteristics of carcinogens. Toxicokinetics of PFOA and PFOS differed significantly between species, with renal elimination influenced by various factors such as sex, age, and structure of the compound. CONCLUSION Evidence suggests that PFAS, especially PFOA and PFOS, negatively affects kidney health, though gaps in our understanding of such effects call for further research.
Collapse
Affiliation(s)
- Jidapa Hanvoravongchai
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Methasit Laochindawat
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yusuke Kimura
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan.
| |
Collapse
|
8
|
Lykkebo CA, Nguyen KH, Niklas AA, Laursen MF, Bahl MI, Licht TR, Mortensen MS. Diet rich in soluble dietary fibres increases excretion of perfluorooctane sulfonic acid (PFOS) in male Sprague-Dawley rats. Food Chem Toxicol 2024; 193:115041. [PMID: 39395735 DOI: 10.1016/j.fct.2024.115041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Perfluorooctane sulfonic acid (PFOS) belongs to a large group of anthropogenic compounds with high persistency named per- and polyfluorinated substances (PFAS). Widespread use from industry to household appliances and food-contact materials contributes to PFAS exposure with food as the primary source. Association studies suggest that vegetables and fibre rich diet may reduce PFOS levels in humans, but experimental data remain limited. Here, we investigated PFOS uptake and wash-out after seven days of PFOS (3 mg/kg/day) in two groups of rats (N = 12 per group) fed diets either high (HF) or low (LF) in soluble dietary fibres. Two control groups (N = 12/group) were fed the same diets without PFOS. Changes in pH and transit time were monitored alongside intestinal and faecal microbiota composition. We quantified systemic and excreted, linear and branched PFOS. Results revealed significantly lower pH and faster intestinal transit in the HF groups. Importantly, HF rats had lower serum PFOS concentrations and higher PFOS concentrations in caecal content and faeces, indicating a more efficient excretion on the fibre rich diet. In both dietary groups, PFOS affected the gut microbiota composition. Our results suggest that a diet rich in soluble dietary fibres accelerates excretion of PFOS and lowers PFOS concentration in serum.
Collapse
Affiliation(s)
- Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Khanh Hoang Nguyen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Agnieszka Anna Niklas
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | | | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Martin Steen Mortensen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark.
| |
Collapse
|
9
|
Ryu S, Yamaguchi E, Sadegh Modaresi SM, Agudelo J, Costales C, West MA, Fischer F, Slitt AL. Evaluation of 14 PFAS for permeability and organic anion transporter interactions: Implications for renal clearance in humans. CHEMOSPHERE 2024; 361:142390. [PMID: 38801906 PMCID: PMC11774580 DOI: 10.1016/j.chemosphere.2024.142390] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) encompass a diverse group of synthetic fluorinated chemicals known to elicit adverse health effects in animals and humans. However, only a few studies investigated the mechanisms underlying clearance of PFAS. Herein, the relevance of human renal transporters and permeability to clearance and bioaccumulation for 14 PFAS containing three to eleven perfluorinated carbon atoms (ηpfc = 3-11) and several functional head-groups was investigated. Apparent permeabilities and interactions with human transporters were measured using in vitro cell-based assays, including the MDCK-LE cell line, and HEK293 stable transfected cell lines expressing organic anion transporter (OAT) 1-4 and organic cation transporter (OCT) 2. The results generated align with the Extended Clearance Classification System (ECCS), affirming that permeability, molecular weight, and ionization serve as robust predictors of clearance and renal transporter engagement. Notably, PFAS with low permeability (ECCS 3A and 3B) exhibited substantial substrate activity for OAT1 and OAT3, indicative of active renal secretion. Furthermore, we highlight the potential contribution of OAT4-mediated reabsorption to the renal clearance of PFAS with short ηpfc, such as perfluorohexane sulfonate (PFHxS). Our data advance our mechanistic understanding of renal clearance of PFAS in humans, provide useful input parameters for toxicokinetic models, and have broad implications for toxicological evaluation and regulatory considerations.
Collapse
Affiliation(s)
- Sangwoo Ryu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, United States; Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT, 06340, United States
| | - Emi Yamaguchi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT, 06340, United States
| | - Seyed Mohamad Sadegh Modaresi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, United States
| | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, United States
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT, 06340, United States
| | - Mark A West
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT, 06340, United States
| | - Fabian Fischer
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States.
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, United States.
| |
Collapse
|
10
|
Liu WS, Liang SS, Cheng MM, Wu MT, Li SY, Cheng TT, Liu TY, Tsai CY, Lai YT, Lin CH, Wang HT, Tsou HH. How renal toxins respond to renal function deterioration and oral toxic adsorbent in pH-controlled releasing capsule. ENVIRONMENTAL TOXICOLOGY 2024; 39:3930-3943. [PMID: 38572829 DOI: 10.1002/tox.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Division of Nephrology, Department of Medicine, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Shih-Shin Liang
- Institute of Biomedical Science, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Mei Cheng
- Division of nephrology, Department of internal medicine, West Garden Hospital, Taipei, Taiwan
| | - Ming-Tsan Wu
- Department of internal medicine, Fu-Ling clinic, New Taipei City, Taiwan
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Nephrology, and Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Tien Cheng
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Yao Tsai
- Institute of Public Health, Department of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan
- Department of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Ting Lai
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Nursing, College of Medical Technology and Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Hung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Kim Forest Enterprise Co., Ltd., New Taipei City, Taiwan
| |
Collapse
|
11
|
Holder C, Cohen Hubal EA, Luh J, Lee MG, Melnyk LJ, Thomas K. Systematic evidence mapping of potential correlates of exposure for per- and poly-fluoroalkyl substances (PFAS) based on measured occurrence in biomatrices and surveys of dietary consumption and product use. Int J Hyg Environ Health 2024; 259:114384. [PMID: 38735219 PMCID: PMC11874334 DOI: 10.1016/j.ijheh.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widely observed in environmental media and often are found in indoor environments as well as personal-care and consumer products. Humans may be exposed through water, food, indoor dust, air, and the use of PFAS-containing products. Information about relationships between PFAS exposure sources and pathways and the amounts found in human biomatrices can inform source-contribution assessments and provide targets for exposure reduction. This work collected and collated evidence for correlates of PFAS human exposure as measured through sampling of biomatrices and surveys of dietary consumption and use of consumer products and articles. A systematic evidence mapping approach was applied to perform a literature search, conduct title-abstract and full-text screening, and to extract primary data into a comprehensive database for 16 PFAS. Parameters of interest included: sampling dates and locations, cohort descriptors, PFAS measured in a human biomatrix, information about food consumption in 11 categories, use of products/articles in 11 categories, and reported correlation values (and their statistical strength). The literature search and screening process yielded 103 studies with information for correlates of PFAS exposures. Detailed data were extracted and compiled on measures of PFAS correlations between biomatrix concentrations and dietary consumption and other product/article use. A majority of studies (61/103; 59%) were published after 2015 with few (8/103; 8%) prior to 2010. Studies were most abundant for dietary correlates (n = 94) with fewer publications reporting correlate assessments for product use (n = 56), while some examined both. PFOA and PFOS were assessed in almost all studies, followed by PFHxS, PFNA, and PFDA which were included in >50% of the studies. No relevant studies included PFNS or PFPeS. Among the 94 studies of dietary correlates, significant correlations were reported in 83% of the studies for one or more PFAS. The significant dietary correlations most commonly were for seafood, meats/eggs, and cereals/grains/pulses. Among the 56 studies of product/article correlates, significant correlations were reported in 70% of the studies. The significant product/article correlations most commonly were for smoking/tobacco, cosmetics/toiletries, non-stick cookware, and carpet/flooring/furniture and housing. Six of 11 product/article categories included five or fewer studies, including food containers and stain- and water-resistant products. Significant dietary and product/article correlations most commonly were positive. Some studies found a mix of positive and negative correlations depending on the PFAS, specific correlate, and specific response level, particularly for fats/oils, dairy consumption, food containers, and cosmetics/toiletries. Most of the significant findings for cereals/grains/pulses were negative correlations. Substantial evidence was found for correlations between dietary intake and biomatrix levels for several PFAS in multiple food groups. Studies examining product/article use relationships were relatively sparse, except for smoking/tobacco, and would benefit from additional research. The resulting database can inform further assessments of dietary and product use exposure relationships and can inform new research to better understand PFAS source-to-exposure relationships. The search strategy should be extended and implemented to support living evidence review in this rapidly advancing area.
Collapse
Affiliation(s)
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| | | | | | - Lisa Jo Melnyk
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA.
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| |
Collapse
|
12
|
Shi T, Li D, Li D, Sun J, Xie P, Wang T, Li R, Li Z, Zou Z, Ren X. Individual and joint associations of per- and polyfluoroalkyl substances (PFAS) with gallstone disease in adults: A cross-sectional study. CHEMOSPHERE 2024; 358:142168. [PMID: 38685323 DOI: 10.1016/j.chemosphere.2024.142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Disturbances in the enterohepatic circulation are important biological mechanisms for causing gallstones and also have important effects on the metabolism of Per- and polyfluoroalkyl substances (PFAS). Moreover, PFAS is associated with sex hormone disorder which is another important cause of gallstones. However, it remains unclear whether PFAS is associated with gallstones. In this study, we used logistic regression, restricted cubic spline (RCS), quantile g-computation (qg-comp), Bayesian kernel machine regression (BKMR), and subgroup analysis to assess the individual and joint associations of PFAS with gallstones and effect modifiers. We observed that the individual associations of perfluorodecanoic acid (PFDeA) (OR: 0.600, 95% CI: 0.444 to 0.811), perfluoroundecanoic acid (PFUA) (OR: 0.630, 95% CI: 0.453 to 0.877), n-perfluorooctane sulfonic acid (n-PFOS) (OR: 0.719, 95% CI: 0.571 to 0.906), and perfluoromethylheptane sulfonic acid isomers (Sm-PFOS) (OR: 0.768, 95% CI: 0.602 to 0.981) with gallstones were linearly negative. Qg-comp showed that the PFAS mixture (OR: 0.777, 95% CI: 0.514 to 1.175) was negatively associated with gallstones, but the difference was not statistically significant, and PFDeA had the highest negative association. Moreover, smoking modified the association of perfluorononanoic acid (PFNA) with gallstones. BKMR showed that PFDeA, PFNA, and PFUA had the highest groupPIP (groupPIP = 0.93); PFDeA (condPIP = 0.82), n-perfluorooctanoic acid (n-PFOA) (condPIP = 0.68), and n-PFOS (condPIP = 0.56) also had high condPIPs. Compared with the median level, the joint association of the PFAS mixture with gallstones showed a negative trend; when the PFAS mixture level was at the 70th percentile or higher, they were negatively associated with gallstones. Meanwhile, when other PFAS were fixed at the 25th, 50th, and 75th percentiles, PFDeA had negative associations with gallstones. Our evidence emphasizes that PFAS is negatively associated with gallstones, and more studies are needed in the future to definite the associations of PFAS with gallstones and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Di Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjuan Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zixuan Zou
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; Institute for Health Statistics and Intelligent Analysis, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
13
|
Gonkowski S, Ochoa-Herrera V. Poly- and perfluoroalkyl substances (PFASs) in amphibians and reptiles - exposure and health effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106907. [PMID: 38564994 DOI: 10.1016/j.aquatox.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito (USFQ), Quito, 170901, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Abstract
Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Luke J. Bonanni
- NYU Langone Health, Grossman School of Medicine, New York, NY, USA
| | - Jonathan D. Newman
- NYU Langone Health, Division of Cardiovascular Disease, New York, NY, USA
| |
Collapse
|
15
|
Zhang Y, Sun Q, Mustieles V, Martin L, Sun Y, Bibi Z, Torres N, Coburn-Sanderson A, First O, Souter I, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Predictors of Serum Per- and Polyfluoroalkyl Substances Concentrations among U.S. Couples Attending a Fertility Clinic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5685-5694. [PMID: 38502775 DOI: 10.1021/acs.est.3c08457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Previous studies have examined the predictors of PFAS concentrations among pregnant women and children. However, no study has explored the predictors of preconception PFAS concentrations among couples in the United States. This study included 572 females and 279 males (249 couples) who attended a U.S. fertility clinic between 2005 and 2019. Questionnaire information on demographics, reproductive history, and lifestyles and serum samples quantified for PFAS concentrations were collected at study enrollment. We examined the PFAS distribution and correlation within couples. We used Ridge regressions to predict the serum concentration of each PFAS in females and males using data of (1) socio-demographic and reproductive history, (2) diet, (3) behavioral factors, and (4) all factors included in (1) to (3) after accounting for temporal exposure trends. We used general linear models for univariate association of each factor with the PFAS concentration. We found moderate to high correlations for PFAS concentrations within couples. Among all examined factors, diet explained more of the variation in PFAS concentrations (1-48%), while behavioral factors explained the least (0-4%). Individuals reporting White race, with a higher body mass index, and nulliparous women had higher PFAS concentrations than others. Fish and shellfish consumption was positively associated with PFAS concentrations among both females and males, while intake of beans (females), peas (male), kale (females), and tortilla (both) was inversely associated with PFAS concentrations. Our findings provide important data for identifying sources of couples' PFAS exposure and informing interventions to reduce PFAS exposure in the preconception period.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012, Spain
- University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - John C Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| |
Collapse
|
16
|
Møller JJ, Lyngberg AC, Hammer PEC, Flachs EM, Mortensen OS, Jensen TK, Jürgens G, Andersson A, Soja AMB, Lindhardt M. Substantial decrease of PFAS with anion exchange resin treatment - A clinical cross-over trial. ENVIRONMENT INTERNATIONAL 2024; 185:108497. [PMID: 38367552 DOI: 10.1016/j.envint.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are heat and stain resisting chemicals. They are persistent, bioaccumulating and spread ubiquitously. Many hotspots where humans are exposed to high levels of PFAS have been reported. A few small observational studies in humans suggest that treatment with an Anion Exchange Resin (AER) decreases serum PFAS. This first clinical controlled crossover study aimed to assess whether AER decreases perfluorooctanesulfonic acid (PFOS) in highly exposed adults. METHODS An open label 1:1 randomized treatment sequence crossover study with allocation to oral AER (cholestyramine 4 g three times daily) or observation for 12 weeks was conducted among citizens from a PFAS hotspot. Main inclusion criteria was serum PFOS > 21 ng/mL. Primary endpoint was change in serum PFOS levels between treatment and observational period. RESULTS In total, 45 participants were included with a mean age of 50 years (SD 13). Serum PFOS baseline median was 191 ng/mL (IQR: 129-229) and decreased with a mean of 115 ng/mL (95 % CI: 89-140) on treatment, and 4.3 ng/mL in observation period corresponding to a decrease of 60 % (95 % CI: 53-67; p < 0.0001). PFHxS, PFOA, PFNA and PFDA decreased during treatment between 15 and 44 %. No serious adverse events were reported. CONCLUSIONS Oral treatment with AER significantly lowered serum PFOS concentrations suggesting a possible treatment for enhancing elimination of PFOS in highly exposed adults.
Collapse
Affiliation(s)
- Janne Julie Møller
- Department of Occupational and Social Medicine, University Hospital of Holbaek, Denmark
| | | | | | | | - Ole Steen Mortensen
- Department of Occupational and Social Medicine, University Hospital of Holbaek, Denmark; Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Gesche Jürgens
- Clinical Pharmacology Unit, Zealand University Hospital, Roskilde, Denmark
| | - Axel Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Merete Boas Soja
- Department of Internal Medicine 1, University Hospital - Holbaek, Holbaek, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lindhardt
- Department of Internal Medicine 1, University Hospital - Holbaek, Holbaek, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Rosato I, Bonato T, Fletcher T, Batzella E, Canova C. Estimation of per- and polyfluoroalkyl substances (PFAS) half-lives in human studies: a systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 242:117743. [PMID: 38008199 DOI: 10.1016/j.envres.2023.117743] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) constitute a heterogeneous group of synthetic compounds widely used in industrial applications. The estimation of PFAS half-life (t1/2) is essential to quantify their persistence, their toxicity and mechanism of action in humans. OBJECTIVES The purpose of this review is to summarize the evidence on PFAS half-lives in humans from the available literature, and to investigate the limitations and uncertainties characterizing half-life estimation. METHODS The search was conducted on PubMed, Scopus, and Embase databases up to July 03, 2023 and was aimed at identifying all papers that estimated PFAS half-life in human populations. We excluded studies on temporal trends or providing estimates of half-life based solely on renal clearance. As persistent and ongoing exposures can influence half-life estimation, we decided to include only studies that were conducted after the main source of exposure to PFAS had ceased. A random-effects meta-analysis was conducted on studies that reported perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) half-life estimation. Risk of bias was evaluated using the OHAT tool. RESULTS A total of 13 articles were included in the review, with 5 studies conducted in exposed general populations and 8 studies conducted in exposed workers; the estimated mean half-life ranged from 1.48 to 5.1 years for PFOA, from 3.4 to 5.7 years for total PFOS, and from 2.84 to 8.5 years for PFHxS. High heterogeneity among studies was observed; potential reasons include the variability among the investigated populations, discrepancies in considering ongoing exposures, variability in PFAS isomeric compositions, accounting for background exposure, time since exposure stopped and methods used for half-life estimation. DISCUSSION Despite the efforts made to better understand PFAS toxicokinetics, further studies are needed to identify important characteristics of these persistent chemicals. Biomonitoring studies should focus on persistent and unaccounted sources of exposure to PFAS and on individual characteristics potentially determining half-life, to ensure accurate estimates.
Collapse
Affiliation(s)
- Isabella Rosato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Tiziano Bonato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy.
| |
Collapse
|
18
|
Furukawa K, Okamoto-Matsuda K, Harada KH, Minata M, Hitomi T, Kobayashi H, Koizumi A. Role of ABCB1 and ABCB4 in renal and biliary excretion of perfluorooctanoic acid in mice. Environ Health Prev Med 2024; 29:21. [PMID: 38522903 DOI: 10.1265/ehpm.23-00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is one of the major per- and polyfluoroalkyl substances. The role of ATP-binding cassette (ABC) transporters in PFOA toxicokinetics is unknown. METHODS In this study, two ABC transporters, ABCB1 and ABCB4, were examined in mice with single intravenous PFOA administration (3.13 µmol/kg). To identify candidate renal PFOA transporters, we used a microarray approach to evaluate changes in gene expression of various kidney transporters in Abcb4 null mice. RESULTS Biliary PFOA concentrations were lower in Abcb4 null mice (mean ± standard deviation: 0.25 ± 0.12 µg/mL) than in wild-type mice (0.87 ± 0.02 µg/mL). Immunohistochemically, ABCB4 expression was confirmed at the apical region of hepatocytes. However, renal clearance of PFOA was higher in Abcb4 null mice than in wild-type mice. Among 642 solute carrier and ABC transporters, 5 transporters showed significant differences in expression between wild-type and Abcb4 null mice. These candidates included two major xenobiotic transporters, multidrug resistance 1 (Abcb1) and organic anion transporter 3 (Slc22a8). Abcb1 mRNA levels were higher in Abcb4 null mice than in wild-type mice in kidney. In Abcb4 null mice, Abcb1b expression was enhanced in proximal tubules immunohistochemically, while that of Slc22a8 was not. Finally, in Abcb1a/b null mice, there was a significant decrease in the renal clearance of PFOA (0.69 ± 0.21 vs 1.1 mL ± 0.37/72 h in wild-type mice). A homology search of ABCB1 showed that several amino acids are mutated in humans compared with those in rodents and monkeys. CONCLUSIONS These findings suggest that, in the mouse, Abcb4 and Abcb1 are excretory transporters of PFOA into bile and urine, respectively.
Collapse
Affiliation(s)
- Kazuyoshi Furukawa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
| | - Kahori Okamoto-Matsuda
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
| | - Mutsuko Minata
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
- Public Health and Welfare Institute, Public Interest Incorporated Association Kyoto Hokenkai
| |
Collapse
|
19
|
Niu S, Cao Y, Chen R, Bedi M, Sanders AP, Ducatman A, Ng C. A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76002. [PMID: 37418334 PMCID: PMC10328216 DOI: 10.1289/ehp11885] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and have been shown to cause various adverse health impacts. In animals, sex- and species-specific differences in PFAS elimination half-lives have been linked to the activity of kidney transporters. However, PFAS molecular interactions with kidney transporters are still not fully understood. Moreover, the impact of kidney disease on PFAS elimination remains unclear. OBJECTIVES This state-of-the-science review integrated current knowledge to assess how changes in kidney function and transporter expression from health to disease could affect PFAS toxicokinetics and identified priority research gaps that should be addressed to advance knowledge. METHODS We searched for studies that measured PFAS uptake by kidney transporters, quantified transporter-level changes associated with kidney disease status, and developed PFAS pharmacokinetic models. We then used two databases to identify untested kidney transporters that have the potential for PFAS transport based on their endogenous substrates. Finally, we used an existing pharmacokinetic model for perfluorooctanoic acid (PFOA) in male rats to explore the influence of transporter expression levels, glomerular filtration rate (GFR), and serum albumin on serum half-lives. RESULTS The literature search identified nine human and eight rat kidney transporters that were previously investigated for their ability to transport PFAS, as well as seven human and three rat transporters that were confirmed to transport specific PFAS. We proposed a candidate list of seven untested kidney transporters with the potential for PFAS transport. Model results indicated PFOA toxicokinetics were more influenced by changes in GFR than in transporter expression. DISCUSSION Studies on additional transporters, particularly efflux transporters, and on more PFAS, especially current-use PFAS, are needed to better cover the role of transporters across the PFAS class. Remaining research gaps in transporter expression changes in specific kidney disease states could limit the effectiveness of risk assessment and prevent identification of vulnerable populations. https://doi.org/10.1289/EHP11885.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuexin Cao
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison P. Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Ducatman
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Zhang Y, Mustieles V, Wang YX, Sun Y, Agudelo J, Bibi Z, Torres N, Oulhote Y, Slitt A, Messerlian C. Folate concentrations and serum perfluoroalkyl and polyfluoroalkyl substance concentrations in adolescents and adults in the USA (National Health and Nutrition Examination Study 2003-16): an observational study. Lancet Planet Health 2023; 7:e449-e458. [PMID: 37286242 PMCID: PMC10901144 DOI: 10.1016/s2542-5196(23)00088-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a family of highly fluorinated aliphatic compounds, which are widely used in commercial applications, including food packaging, textiles, and non-stick cookware. Folate might counteract the effects of environmental chemical exposures. We aimed to explore the relationship between blood folate biomarker concentrations and PFAS concentrations. METHODS This observational study pooled cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2016 cycles. NHANES is a population-based national survey that measures the health and nutritional status of the US general population every 2 years by means of questionnaires, physical examination, and biospecimen collection. Folate concentrations in red blood cells and in serum, and perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) concentrations in serum were examined. We used multivariable regression models to assess the percentage change in serum PFAS concentrations in relation to changes in folate biomarker concentrations. We additionally used models with restricted cubic splines to investigate the shape of these associations. FINDINGS This study included 2802 adolescents and 9159 adults who had complete data on PFAS concentrations, folate biomarkers, and covariates, were not pregnant, and had never had a cancer diagnosis at the time of the survey. The mean age was 15·4 years (SD 2·3) for adolescents and 45·5 years (17·5) for adults. The proportion of male participants was slightly higher in adolescents (1508 [54%] of 2802 participants) than in adults (3940 [49%] of 9159 participants). We found negative associations between red blood cell folate concentrations and serum concentrations of PFOS (percentage change for a 2·7 fold-increase in folate level -24·36%, 95% CI -33·21 to -14·34) and PFNA (-13·00%, -21·87 to -3·12) in adolescents, and PFOA (-12·45%, -17·28 to -7·35), PFOS (-25·30%, -29·67 to -20·65), PFNA (-21·65%, -26·19 to -16·82), and PFHxS (-11·70%, -17·32 to 5·70) in adults. Associations for serum folate concentrations and PFAS were in line with those found for red blood cell folate levels, although the magnitude of the effects was lower. Restricted cubic spline models suggested linearity of the observed associations, particularly for associations in adults. INTERPRETATION In this large-scale, nationally representative study, we found consistent inverse associations for most examined serum PFAS compounds in relation to folate concentrations measured in either red blood cells or serum among both adolescents and adults. These findings are supported by mechanistic in-vitro studies that show the potential of PFAS to compete with folate for several transporters implicated in PFAS toxicokinetics. If confirmed in experimental settings, these findings could have important implications for interventions to reduce the accumulated PFAS body burden and mitigate the related adverse health effects. FUNDING United States National Institute of Environmental Health Sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Yi-Xin Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | | - Zainab Bibi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Carmen Messerlian
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
21
|
McAdam J, Bell EM. Determinants of maternal and neonatal PFAS concentrations: a review. Environ Health 2023; 22:41. [PMID: 37161484 PMCID: PMC10170754 DOI: 10.1186/s12940-023-00992-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for their properties such as stain and water resistance. The substances have been associated with adverse health outcomes in both pregnant mothers and infants, including pre-eclampsia and low birthweight. A growing body of research suggests that PFAS are transferred from mother to fetus through the placenta, leading to in utero exposure. A systematic review was performed using the PubMed database to search for studies evaluating determinants of PFAS concentrations in blood matrices of pregnant mothers and neonates shortly after birth. Studies were included in this review if an observational study design was utilized, exposure to at least one PFAS analyte was measured, PFAS were measured in maternal or neonatal matrices, at least one determinant of PFAS concentrations was assessed, and results such as beta estimates were provided. We identified 35 studies for inclusion in the review and evaluated the PFAS and determinant relationships among the factors collected in these studies. Parity, breastfeeding history, maternal race and country of origin, and household income had the strongest and most consistent evidence to support their roles as determinants of certain PFAS concentrations in pregnant mothers. Reported study findings on smoking status, alcohol consumption, and pre-pregnancy body mass index (BMI) suggest that these factors are not important determinants of PFAS concentrations in pregnant mothers or neonates. Further study into informative factors such as consumer product use, detailed dietary information, and consumed water sources as potential determinants of maternal or neonatal PFAS concentrations is needed. Research on determinants of maternal or neonatal PFAS concentrations is critical to estimate past PFAS exposure, build improved exposure models, and further our understanding on dose-response relationships, which can influence epidemiological studies and risk assessment evaluations. Given the potential for adverse outcomes in pregnant mothers and neonates exposed to PFAS, it is important to identify and understand determinants of maternal and neonatal PFAS concentrations to better implement public health interventions in these populations.
Collapse
Affiliation(s)
- Jordan McAdam
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
22
|
Zhang Y, Mustieles V, Sun Q, Coull B, McElrath T, Rifas-Shiman SL, Martin L, Sun Y, Wang YX, Oken E, Cardenas A, Messerlian C. Association of Early Pregnancy Perfluoroalkyl and Polyfluoroalkyl Substance Exposure With Birth Outcomes. JAMA Netw Open 2023; 6:e2314934. [PMID: 37256622 PMCID: PMC10233420 DOI: 10.1001/jamanetworkopen.2023.14934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
Importance Prenatal perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to adverse birth outcomes. Previous research showed that higher folate concentrations are associated with lower blood PFAS concentrations in adolescents and adults. Further studies are needed to explore whether prenatal folate status mitigates PFAS-related adverse birth outcomes. Objective To examine whether prenatal folate status modifies the negative associations between pregnancy PFAS concentrations, birth weight, and gestational age previously observed in a US cohort. Design, Setting, and Participants In a prospective design, a prebirth cohort of mothers or pregnant women was recruited between April 1999 and November 2002, in Project Viva, a study conducted in eastern Massachusetts. Statistical analyses were performed from May 24 and October 25, 2022. Exposure Plasma concentrations of 6 PFAS compounds were measured in early pregnancy (median gestational week, 9.6). Folate status was assessed through a food frequency questionnaire and measured in plasma samples collected in early pregnancy. Main Outcomes and Measures Birth weight and gestational age, abstracted from delivery records; birth weight z score, standardized by gestational age and infant sex; low birth weight, defined as birth weight less than 2500 g; and preterm birth, defined as birth at less than 37 completed gestational weeks. Results The cohort included a total of 1400 mother-singleton pairs. The mean (SD) age of the mothers was 32.21 (4.89) years. Most of the mothers were White (73.2%) and had a college degree or higher (69.1%). Early pregnancy plasma perfluorooctanoic acid concentration was associated with lower birth weight and birth weight z score only among mothers whose dietary folate intake (birth weight: β, -89.13 g; 95% CI, -166.84 to -11.42 g; birth weight z score: -0.13; 95% CI, -0.26 to -0.003) or plasma folate concentration (birth weight: -87.03 g; 95% CI, -180.11 to 6.05 g; birth weight z score: -0.14; 95% CI, -0.30 to 0.02) were below the 25th percentile (dietary: 660 μg/d, plasma: 14 ng/mL). No associations were found among mothers in the higher folate level groups, although the tests for heterogeneity did not reject the null. Associations between plasma perfluorooctane sulfonic acid and perfluorononanoate (PFNA) concentrations and lower birth weight, and between PFNA and earlier gestational age were noted only among mothers whose prenatal dietary folate intake or plasma folate concentration was in the lowest quartile range. No associations were found among mothers in higher folate status quartile groups. Conclusions and Relevance In this large, US prebirth cohort, early pregnancy exposure to select PFAS compounds was associated with adverse birth outcomes only among mothers below the 25th percentile of prenatal dietary or plasma folate levels.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Instituto de Investigación Biosanitaria Ibs, Consortium for Biomedical Research in Epidemiology and Public Health Grenada, Spain
| | - Qi Sun
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas McElrath
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Leah Martin
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yang Sun
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Emily Oken
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston
| |
Collapse
|
23
|
Zhang Y, Mustieles V, Wang YX, Sun Y, Slitt A, Messerlian C. Red Blood Cell Folate Modifies the Association between Serum Per- and Polyfluoroalkyl Substances and Antibody Concentrations in U.S. Adolescents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2445-2456. [PMID: 36715557 PMCID: PMC10539038 DOI: 10.1021/acs.est.2c07152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exposure has been associated with reduced antibody levels. Higher red blood cell (RBC) folate was previously associated with lower serum PFAS concentrations in adolescents. This study included 819 adolescents aged 12-19 years who had detectable rubella and measles antibody levels in serum from the U.S. National Health and Nutrition Examination Survey 2003-2004 and 2009-2010 cycles. We found inverse associations between serum PFOS and PFHxS and rubella antibodies, between PFOA and mumps antibodies, and between PFAS mixtures and rubella and mumps antibodies, only among adolescents with RBC folate concentrations <66th percentile (lower folate group) while not among adolescents with higher RBC folate levels (upper folate group). Specifically, per quartile increase in serum concentrations of the total PFAS mixture was associated with a 9.84% (95% CI: -15.57%, -3.74%) decrease in rubella antibody and an 8.79% (95% CI: -14.39%, -2.82%) decrease in the mumps antibody concentrations only in the lower folate group, while null associations were found for the upper folate group. If confirmed in mechanistic studies or prospective epidemiologic studies, these findings may have important implications for using folate as a mitigation measure against immune-related PFAS effects.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain. Instituto de Investigación Biosanitaria Ibs GRANADA, Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| |
Collapse
|
24
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Ma G, Ducatman A. Perfluoroalkyl Substance Serum Concentrations and Cholesterol Absorption-Inhibiting Medication Ezetimibe. TOXICS 2022; 10:799. [PMID: 36548632 PMCID: PMC9781455 DOI: 10.3390/toxics10120799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are human-made compounds with a widespread presence in human blood and other organs. PFAS have been associated with multiple health effects, including higher serum cholesterol and LDL cholesterol. OBJECTIVE Potential population differences in serum PFAS attributable to ezetimibe, a medication that inhibits cholesterol absorption, are of interest for several reasons. The "C8" Health Project survey data from six contaminated water districts in the mid-Ohio Valley of the United States provide a wide enough range of serum PFAS and a sufficient number of ezetimibe takers to explore this topic. METHODS A total of 44,126 adult participants of the C8 Health Survey were included in the community-based study. The status of taking (1075) or non-taking of ezetimibe, alone or in combination with another lipid-lowering agent, was acquired. The geometric mean serum concentrations of the four most commonly detected serum PFAS were compared based on the status of ezetimibe use. RESULTS There is no significant difference in serum concentrations of perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorononanoic acid (PFNA) between ezetimibe users and non-users after adjustment for age, sex, body mass index, estimated glomerular filtration rate (eGFR), cigarette smoking, education, and average household income. CONCLUSION The sterol absorption-inhibiting medication ezetimibe does not appear to affect serum PFAS concentrations. We sought but did not find direct evidence that ezetimibe could inhibit PFAS uptake nor inferential evidence that inter-individual differences in sterol absorption could provide a confounding factor explanation for the association of serum total- and LDL-cholesterol with serum PFAS.
Collapse
Affiliation(s)
- Ge Ma
- RWJ Barnabas Health Newark Beth Israel Medical Center, Newark, NJ 07112, USA
| | - Alan Ducatman
- School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
26
|
Zare Jeddi M, Soltanmohammadi R, Barbieri G, Fabricio ASC, Pitter G, Dalla Zuanna T, Canova C. To which extent are per-and poly-fluorinated substances associated to metabolic syndrome? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:211-228. [PMID: 34036763 DOI: 10.1515/reveh-2020-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS), ubiquitous persistent environmental contaminants, has led to substantial global concern due to their potential environmental and human health effects. Several epidemiological studies have assessed the possible association between PFAS exposure and risk of metabolic syndrome (MetS), however, the results are ambiguous. The aim of this study was to assess the current human epidemiologic evidence on the association between exposure to PFAS and MetS. We performed a systematic search strategy using three electronic databases (PubMed, Scopus, and Web of Science) for relevant studies concerning the associations of PFAS with MetS and its clinical relevance from inception until January 2021. We undertook meta-analyses where there were five or more studies with exposure and outcomes assessments that were reasonably comparable. The pooled odd ratios (ORs) were calculated using random effects models and heterogeneity among studies was assessed by I2 index and Q test. A total of 12 cross-sectional studies (10 studies on the general population and two studies in the occupational settings) investigated the association between PFAS exposure and MetS. We pooled data from seven studies on the general population for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) and five studies for perfluorohexanesulfonate (PFHxS) and perfluorononanoic acid (PFNA). Predominately, most studies reported no statistically significant association between concentrations of PFAS and MetS. In the meta-analysis, the overall measure of effect was not statistically significant, showing no evidence of an association between concentrations of PFOA, PFOS, PFNA, and PFHxS and the risk of MetS. Based on the results of the meta-analysis, current small body of evidence does not support association between PFAS and MetS. However, due to limited number of studies and substantial heterogeneity, results should be interpreted with caution. Further scrutinizing cohort studies are needed to evaluate the association between various and less well-known PFAS substances and their mixture with MetS and its components in both adults and children in different settings.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Rozita Soltanmohammadi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Aline S C Fabricio
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Teresa Dalla Zuanna
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| |
Collapse
|
27
|
Wang P, Liu D, Yan S, Cui J, Liang Y, Ren S. Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant Mechanisms. TOXICS 2022; 10:toxics10050265. [PMID: 35622678 PMCID: PMC9144769 DOI: 10.3390/toxics10050265] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent, widely present organic pollutant. PFOS can enter the human body through drinking water, ingestion of food, contact with utensils containing PFOS, and occupational exposure to PFOS, and can have adverse effects on human health. Increasing research shows that the liver is the major target of PFOS, and that PFOS can damage liver tissue and disrupt its function; however, the exact mechanisms remain unclear. In this study, we reviewed the adverse effects of PFOS on liver tissue and cells, as well as on liver function, to provide a reference for subsequent studies related to the toxicity of PFOS and liver injury caused by PFOS.
Collapse
|
28
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Physiologically based pharmacokinetic (PBPK) modeling of perfluorohexane sulfonate (PFHxS) in humans. Regul Toxicol Pharmacol 2021; 129:105099. [PMID: 34933042 DOI: 10.1016/j.yrtph.2021.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, man-made compounds prevalent in the environment and consistently identified in human biomonitoring samples. In particular, perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) have been identified at U.S. Air Force installations. The study of human toxicokinetics and physiologically based pharmacokinetic (PBPK) modeling of PFHxS has been less robust and has been limited in scope and application as compared to PFOS and PFOA. The primary goal of the current effort was to develop a PBPK model describing PFHxS disposition in humans that can be applied to retrospective, current, and future human health risk assessment of PFHxS. An existing model developed for PFOS and PFOA was modified and key parameter values for exposure and toxicokinetics were calibrated for PFHxS prediction based on human biomonitoring data, particularly general population serum levels from the U.S. Centers for Disease Prevention and Control (CDC) National Health and Nutrition Examination Survey (NHANES). Agreement between the model and the calibration and evaluation data was excellent and recapitulated observed trends across sex, age, and calendar years. Confidence in the model is greatest for application to adults in the 2000-2018 time frame and for shorter-term future projections.
Collapse
|
30
|
Zou W, Shi B, Zeng T, Zhang Y, Huang B, Ouyang B, Cai Z, Liu M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front Pharmacol 2021; 12:746208. [PMID: 34912216 PMCID: PMC8666590 DOI: 10.3389/fphar.2021.746208] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
The kidneys are a pair of important organs that excretes endogenous waste and exogenous biological agents from the body. Numerous transporters are involved in the excretion process. The levels of these transporters could affect the pharmacokinetics of many drugs, such as organic anion drugs, organic cationic drugs, and peptide drugs. Eleven drug transporters in the kidney (OAT1, OAT3, OATP4C1, OCT2, MDR1, BCRP, MATE1, MATE2-K, OAT4, MRP2, and MRP4) have become necessary research items in the development of innovative drugs. However, the levels of these transporters vary between different species, sex-genders, ages, and disease statuses, which may lead to different pharmacokinetics of drugs. Here, we review the differences of the important transports in the mentioned conditions, in order to help clinicians to improve clinical prescriptions for patients. To predict drug-drug interactions (DDIs) caused by renal drug transporters, the molecular docking method is used for rapid screening of substrates or inhibitors of the drug transporters. Here, we review a large number of natural products that represent potential substrates and/or inhibitors of transporters by the molecular docking method.
Collapse
Affiliation(s)
- Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Birui Shi
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yan Zhang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Ouyang
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Cai
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Liu
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Calvert L, Green MP, De Iuliis GN, Dun MD, Turner BD, Clarke BO, Eamens AL, Roman SD, Nixon B. Assessment of the Emerging Threat Posed by Perfluoroalkyl and Polyfluoroalkyl Substances to Male Reproduction in Humans. Front Endocrinol (Lausanne) 2021; 12:799043. [PMID: 35356147 PMCID: PMC8959433 DOI: 10.3389/fendo.2021.799043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Per-fluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated chemicals used widely in industry and consumer products. Due to their extensive use and chemical stability, PFAS are ubiquitous environmental contaminants and as such, form an emerging risk factor for male reproductive health. The long half-lives of PFAS is of particular concern as the propensity to accumulate in biological systems prolong the time taken for excretion, taking years in many cases. Accordingly, there is mounting evidence supporting a negative association between PFAS exposure and an array of human health conditions. However, inconsistencies among epidemiological and experimental findings have hindered the ability to definitively link negative reproductive outcomes to specific PFAS exposure. This situation highlights the requirement for further investigation and the identification of reliable biological models that can inform health risks, allowing sensitive assessment of the spectrum of effects of PFAS exposure on humans. Here, we review the literature on the biological effects of PFAS exposure, with a specific focus on male reproduction, owing to its utility as a sentinel marker of general health. Indeed, male infertility has increasingly been shown to serve as an early indicator of a range of co-morbidities such as coronary, inflammatory, and metabolic diseases. It follows that adverse associations have been established between PFAS exposure and the incidence of testicular dysfunction, including pathologies such as testicular cancer and a reduction in semen quality. We also give consideration to the mechanisms that render the male reproductive tract vulnerable to PFAS mediated damage, and discuss novel remediation strategies to mitigate the negative impact of PFAS contamination and/or to ameliorate the PFAS load of exposed individuals.
Collapse
Affiliation(s)
- Leah Calvert
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
| | - Mark P. Green
- School of BioSciences, Faculty of Science, University of Melbourne, VIC, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
| | - Matthew D. Dun
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Brett D. Turner
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
- Priority Research Centre for Geotechnical Science and Engineering, University of Newcastle, Callaghan, NSW, Australia
| | - Bradley O. Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew L. Eamens
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
| | - Shaun D. Roman
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
- *Correspondence: Brett Nixon,
| |
Collapse
|