1
|
Liu Y, Wen Y, Cai H, Song X, Wang X, Zhang Z. Stress of polyethylene and polylactic acid microplastics on pakchoi(Brassica rapa subsp. chinensis) and soil bacteria: Biochar mitigation. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137301. [PMID: 39847935 DOI: 10.1016/j.jhazmat.2025.137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
It remains essential to investigate the differences in phytotoxic effects between conventional and biodegradable microplastics (MPs). Furthermore, the mechanisms by which biochar mitigates the toxic effects of MPs on crops and soil remain poorly understood. The results of this research indicated that, compared to control treatment (CK), the application of 2 % polyethylene (PE) alone led to a significant reduction in the fresh weight of pakchoi by 36.8 % (P < 0.05). In examining the activities of antioxidant, as well as the concentrations of MDA and GSH in pakchoi, the 2 % PE treatment exhibited the highest levels. In contrast, the treatment that received a mixed application of biochar and MPs did not surpass the levels observed in the microplastic-only application. The combination of 0.2 % polylactic acid (PLA) with biochar resulted in a substantial increase in Chao1 index, with improvements of 46.4 % to CK. The findings also suggested that biochar can significantly impact bacterial diversity in soil with MPs, thereby altering the functions and metabolic pathways. Consequently, this modification partly influences the growth characteristics of pakchoi. Notably, PE demonstrated a higher level of toxicity to both plants and soil microorganisms than PLA at same applied quantity. These findings open avenues for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China.
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
2
|
Fan H, Hong X, Wang H, Gao F, Su Z, Yao H. Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137208. [PMID: 39842126 DOI: 10.1016/j.jhazmat.2025.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants. The study analyzed their effects on plant growth, soil properties, and rhizosphere microbial communities. BMP treatments significantly reduced tomato biomass, height, and chlorophyll content compared to the control. PLA0.1 decreased the chlorophyll a/b ratio, while PLA1 increased it. Elemental analysis showed PLA1 increased phosphorus, calcium, and potassium in leaves, whereas all BMPs reduced nitrogen levels. BMPs also altered soil nitrogen and DOC levels, significantly shifting rhizosphere microbial communities, with a notable increase in Betaproteobacteria abundance. Ecological network analysis revealed that BMPs disrupted key microbial modules linked to plant growth. Beneficial modules positively associated with biomass and nutrient uptake were reduced under BMP treatments, whereas harmful microbial taxa in module 3, associated to poor plant health, were promoted. These shifts suggest that BMPs disrupt microbial ecological relationships critical for optimal plant growth. The findings highlight the potential negative impacts of BMPs on tomato growth through changes in microbial dynamics and soil properties.
Collapse
Affiliation(s)
- Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xincheng Hong
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hehua Wang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
3
|
Kralj K, Chen Z. Arbuscular mycorrhizal fungi improve treatment performance and vegetative resilience in constructed wetlands exposed to microplastics. ENVIRONMENTAL RESEARCH 2025; 270:121049. [PMID: 39920963 DOI: 10.1016/j.envres.2025.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Microplastics are increasingly present in municipal wastewater and wastewater treatment plant effluent, prompting the use of constructed wetlands (CWs) for additional treatment. Enhancing CWs with arbuscular mycorrhizal fungi (AMF), known to aid nutrient removal and alleviate plant pollution stress, is gaining interest. This study is the first to examine the influence of two microplastic polymers (polyethylene microspheres and polyester microfibers) at concentrations of 0.1 and 1 mg/L on nutrient removal, plant health, and microbial composition in AMF-inoculated CWs. The results indicate that AMF inoculation combined with microplastic treatments significantly enhances nutrient removal in wetlands, achieving a 45.7% increase in total nitrogen removal and a 25.3% increase in phosphate removal. The effects of microplastics on plant health vary depending on the inoculation status, with an increase in lipid peroxidation (73.4% ± 25.4), and a decrease in the effective quantum yield of PSII (13.4% ± 5) observed in all treatments. High concentrations of polyester microfibers significantly altered the microbial community, increasing AMF colonization frequency and microbial richness, decreasing evenness and the abundance of denitrifying genera, and creating distinct clusters in beta diversity analysis. AMF inoculation maintained higher species richness and evenness, contributing to the resilience of CWs to microplastic pollution. Overall, AMF-inoculated wetlands and plants showed superior treatment performance, highlighting the successful bio-augmentation potential of this approach.
Collapse
Affiliation(s)
- Kristina Kralj
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
4
|
Liu H, Ciric L, Bhatti M. Effects of nanoplastics and compound pollutants containing nanoplastics on plants, microorganisms and rhizosphere systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118084. [PMID: 40158378 DOI: 10.1016/j.ecoenv.2025.118084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Nanoplastics (NPs) are the most widespread and least detectable type of plastic pollutant due to their extremely small particle size. The root system of plants has become an important pathway for NPs to enter the food chain from the natural environment. By combining with heavy metals or organic pollutants, NPs can exhibit greater biological toxicity compared to single pollutants. Although many studies have focused on the phytotoxicity and microbial toxicity of NPs separately, to the best of our knowledge, no review summarizes the toxicity of NPs from the perspective of the plant rhizosphere system with a combination of pollutants. By summarizing samples from 2015 to 2025, this review highlights that NPs can affect photosynthesis, gene transcription, and enzyme activity in both plants and microorganisms. NPs with large particle size can also disrupt the chemical balance of the rhizosphere environment and intensify competition for nutrients between plants and microorganisms, ultimately affecting the geochemical cycle. NPs of different particle sizes and concentrations can poison various biological structures, from surface layers to genetic material. In compound pollutants, where NPs combine with other contaminants, they can further disrupt elemental cycles in plants, reduce microbial community diversity, and increase the accumulation of other pollutants in the rhizosphere system compared to single pollutants. These findings provide new insights into the biotoxicity of NPs and the degradation of compound pollutants containing NPs. In addition, combined with the research results of this review, some research prospects on the relationship between NPs and rhizosphere systems are given.
Collapse
Affiliation(s)
- Haoran Liu
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Manpreet Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Mercado SAS, Parada CZ. Bioassay of toxicity of acid mine drainage treated and untreated with lime ash using the bioindicator Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8547-8554. [PMID: 40088383 DOI: 10.1007/s11356-025-36247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Acid mine drainage (AMD) is an important source of environmental pollution that affects water quality and biodiversity in areas near mining activities. This study evaluated the efficiency of the treatment of AMD with lime ash, through physicochemical analysis and toxicity tests on the bioindicator Pisum sativum L. Samples of AMD were collected in a mining area of Norte de Santander and characterized physicochemically in terms of Al, Cu, Fe, Mn, Zn, and Pb concentrations, as well as pH. The AMD was treated with lime ash to evaluate its ability to neutralize pH (2.3 ± 0.1-7.2 ± 0.7) and remove metals. Toxicity tests showed that the lime ash treatment was able to neutralize pH and significantly reduce metal concentrations, with removal efficiencies greater than 97.2%. In addition, P. sativum showed improved germination, root growth, mitotic index, and a reduction in the frequency of chromosomal abnormalities after treatment. This approach proves to be an effective strategy to reduce AMD contamination, improving physicochemical parameters and decreasing toxicity in model organisms. Further long-term studies are recommended to optimize the process and ensure its effectiveness in the restoration of ecosystems affected by mining.
Collapse
|
6
|
Haroon M, Khan WU, Munir B, Ahmad SR, Rehman A, Akram W, Munir A, Sardar R, Yasin NA. Seed priming with alpha-tocopherol alleviates microplastic stress in Brassica rapa through modulations in morphological, physiological and biochemical attributes. CHEMOSPHERE 2025; 371:144060. [PMID: 39756708 DOI: 10.1016/j.chemosphere.2024.144060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Microplastics (MPs) have been regarded as emerging pollutants globally, and understanding of the injurious impacts of MPs on food crops is still scarce. MPs toxicity can disrupt the growth and physic-chemical characteristics of turnip seedlings. Hence, sustainable remediation techniques by employing growth regulators can alleviate harmful impacts and confer MPs tolerance in vegetables. It was aimed to explore the impact of α-tocopherol for the alleviation of MPs toxicity in Brassica rapa seedlings. During present investigation, seed priming was executed with 25, 50 and 100 mg L-1α-tocopherol and then concerned soaked seeds of B. rapa were grown in Perti dishes treated with MPs (50 mg L-1). The current study showed that MPs toxicity significantly reduced seed germination, growth attributes, and photosynthetic activity while remarkably boosting the level of enzymatic and non-enzymatic antioxidants. Nevertheless, seed priming with α-tocopherol mitigated the MPs stress in Brassica rapa by augmenting growth attributes, photosynthetic machinery, phenol, flavonoid, proline and antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). Furthermore, α-tocopherol supply meaningfully lowered the malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents of B. rapa under MPs stressed conditions. Hence, seed priming with α-tocopherol can be a promising strategy for promoting turnip crop production in MPs-contaminated environments. These outcomes will offer new insights into the sustainable management of the harmful effects of MPs on food crops.
Collapse
Affiliation(s)
- Mahrukh Haroon
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Waheed Akram
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Awais Munir
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Rehana Sardar
- Department of Biological and Environmental Sciences, Emerson University, Multan, Pakistan
| | - Nasim Ahmad Yasin
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
7
|
Jamil A, Ahmad A, Moeen-Ud-Din M, Zhang Y, Zhao Y, Chen X, Cui X, Tong Y, Liu X. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: A comprehensive review of omics approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109257. [PMID: 39818003 DOI: 10.1016/j.envint.2025.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration. Recent advancements in omics technologies such as proteomics, metabolomics, transcriptomics, and microbiomics, coupled with emerging technologies like 4D omics, phenomics, spatial transcriptomics, and single-cell omics, offer unprecedented insight into the physiological, molecular, and cellular responses of terrestrial plants to MNPs exposure. This literature review synthesizes current findings regarding MNPs-induced phytotoxicity, emphasizing alterations in gene expression, protein synthesis, metabolic pathways, and physiological disruptions as revealed through omics analyses. We summarize how MNPs interact with plant cellular structures, disrupt metabolic processes, and induce oxidative stress, ultimately affecting plant growth and productivity. Furthermore, we have identified critical knowledge gaps and proposed future research directions, highlighting the necessity for integrative omics studies to elucidate the complex pathways of MNPs toxicity in terrestrial plants. In conclusion, this review underscores the potential of omics approaches to elucidate the mechanisms of MNPs-phytotoxicity and to develop strategies for mitigating the environmental impact of MNPs on plant health.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yuxuan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
8
|
Guo Y, Liu L, Fan Y, Du S, Chen Y, Duan Y, Han R, Xu S, Wen G, Zhou W, Zhang H, Yang P, Zhang L, Liang Z, Wang Y, Zhang B. Polyethylene terephthalate nanoplastics affect potassium accumulation in foxtail millet (Setaria italica) seedlings. BMC PLANT BIOLOGY 2024; 24:1253. [PMID: 39725935 DOI: 10.1186/s12870-024-06007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution. RESULTS In this study, we examined the impact of PET micro- and nanoplastics on foxtail millet seedling growth and potassium accumulation. Additionally, we measured reactive oxygen species (ROS) production, antioxidant enzyme activities, and the expression levels of the corresponding enzyme-encoding genes. Our findings indicated that the germination and seedling growth of foxtail millet were not significantly affected by exposure to PET plastics. However, the ROS levels in foxtail millet increased under these conditions. This increase in ROS led to the upregulation of several genes involved in K+ uptake and transport (SiHAK1, SiHAK2, SiAKT2/3, SiHKT2;2, SiHKT1;1, SiGORK, and SiSKOR), thereby increasing K+ accumulation in foxtail millet leaves. Further research revealed that higher K+ concentrations in plant leaves were correlated with increased expression of the antioxidant-related genes SiCAT1, SiPOD1, and SiSOD3, as well as increased activities of the corresponding antioxidant enzymes. This response helps mitigate the excessive accumulation and damage caused by ROS in plant cells after PET nanoplastic treatment, suggesting a potential stress response mechanism in foxtail millet against nanoplastic pollution. CONCLUSIONS Our research indicates that PET nanoplastic treatment induces the expression of genes related to K+ uptake in foxtail millet through ROS signaling, leading to increased K+ accumulation in the leaves. This process mitigates the ROS damage caused by PET nanoplastic treatment by increasing the expression and activity of genes encoding antioxidant enzymes. The present research has unveiled the K+ accumulation-related response mechanism of foxtail millet to PET nanoplastic treatment, contributing significantly to our understanding of both the potassium absorption regulation mechanism in plants and the broader impact of plastic pollution on agricultural crops. This discovery not only highlights the complexity of plant responses to environmental stressors but also underscores the importance of considering such responses when evaluating the ecological and agricultural implications of plastic pollution.
Collapse
Affiliation(s)
- Yue Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Liwen Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Yimin Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Shan Du
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Chen
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yanqi Duan
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Rui Han
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sicheng Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Guotian Wen
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Weijuan Zhou
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Haiying Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030006, Shanxi, China
| | - Pu Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Mandal M, Roy A, Sarkar A. Understanding the possible cellular responses in plants under micro(nano)-plastic (MNPs): Balancing the structural harmony with functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177732. [PMID: 39615174 DOI: 10.1016/j.scitotenv.2024.177732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The harmful impacts of micro(nano)-plastics (MNPs) on plants have gained significant attention in the last decades. Plants have a greater tendency to aggregate positively charged (+ve) MNPs on leaf surfaces and root tips, and it can be more challenging to enter the plant body than the negatively charged (-ve) MNPs. MNPs <20 nm can directly cross the cell wall and enter mainly via leaf stomata and root crack portion. Additionally, plants with aerenchyma tissue or higher water requirement might be more vulnerable to MNPs as well as environmental factors also affected MNPs uptake like porosity and structure (i.e. crack of soil) of soil, wind speed, etc. The subsequent translocation of MNPs hamper regular morphological, physiological, and biochemical functions by causing oxidative stress, altering several plant metabolic pathways, reducing the rate of photosynthesis and nutrient intake, etc. These induce cellular toxicity and chromosomal alteration; as a result, the total biomass and productivity reduce vigorously. However, there is a knowledge gap regarding MNPs' uptake by plants and related variables affecting phytotoxicity at the omics levels. So, the present literature review represents a comprehensive theoretical framework that includes genomics, transcriptomics, miRNAomics, proteomics, metabolomics, and ionomics/metallomics, which is established to understand the effects of MNPs on plants at the molecular level. As well as it will also help in further studies of the research community in the future because this field is still in the preliminary stages due to a lack of study.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
10
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
11
|
Nair RR, Wolansky J, Uhlig K, Solgi A, Teuerle L, Zhang T, Schröder J, Antrack T, Benduhn J, Kleemann H, Leo K. Leaftronics: Natural lignocellulose scaffolds for sustainable electronics. SCIENCE ADVANCES 2024; 10:eadq3276. [PMID: 39514653 PMCID: PMC11546746 DOI: 10.1126/sciadv.adq3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
The global rise in electronic waste is alarming, driven by the persistent use of glass, epoxy, and plastic substrates owing to their cost, stability, flexibility, and transparency. This underscores the need for biodegradable alternatives with similar properties. This study shows that leaf-derived lignocellulose scaffolds can stabilize bio-sourced, solution-processed polymers by acting as natural sequestering media. Such reinforced films, even when based on gelatin (Tg ~ 60°C), can endure processes over 200°C. We demonstrate dip-coated ethyl cellulose films for commercially viable reflow soldered circuitry. The films offer high flexibility, more than 80% transparency, and surface roughness below 5.5 nm. Advanced OPDs and OECTs fabricated on these films perform comparably to those on glass and the low material cost and simple fabrication process yields a minimal carbon footprint of 1.6 kgCO2/m2. This work thus opens a vista of possibilities for biodegradable polymers heretofore considered unsuitable for making temperature-stable substrates for state-of-the-art electronics applications.
Collapse
Affiliation(s)
- Rakesh R. Nair
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Jakob Wolansky
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Kai Uhlig
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Ali Solgi
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Laura Teuerle
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Tianyi Zhang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Jonas Schröder
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Tobias Antrack
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| |
Collapse
|
12
|
Li Y, Hou F, Sun L, Lan J, Han Z, Li T, Wang Y, Zhao Z. Ecological effect of microplastics on soil microbe-driven carbon circulation and greenhouse gas emission: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121429. [PMID: 38870791 DOI: 10.1016/j.jenvman.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Brťková H, Růžičková J, Slamová K, Raclavská H, Kucbel M, Šafář M, Gikas P, Juchelková D, Švédová B, Flodrová Š. Plastic particles in urban compost and their grain size distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124025. [PMID: 38670428 DOI: 10.1016/j.envpol.2024.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Gathering information on plastic particles in composts and the processes they undergo is important in terms of potentially limiting their further entry into the environment, for example, in improving the fertilising properties of soils. Microplastics (MPs) were determined in composts produced from urban greenery. They are present in decreasing order: polyethylene terephthalate, polystyrene, polyethylene, and polypropylene. The determination of polymers and additives used to improve their properties was performed by pyrolysis and gas chromatography with mass spectrometric detection (Py-GC/MS). Additives and microplastics are most concentrated in composts in the 0.315-0.63 and 0.63-1.25 mm grain size class, together with the carbon contained in the compost dry matter. Additives form 0.11-0.13% of MPs in dry matter of compost. The average concentration of microplastics in the particle size class from 0.63 to 1.25 mm is 2434 ± 224 mg/kg; in the total sample of composts, it is 1368 ± 286 mg/kg of P-MPs. For composts with particle size <2.5 mm, a relationship between the C/N ratio and the plastic particle concentration was statistically significant. It documents a similar behaviour of lignocellulose and plastic particles during the degradation processes. A relationship between the concentration of polymer markers and additives in the compost dry matter and their concentrations in the leachate has been demonstrated. The leachability from compost is higher for additives than for chemical compounds originating from the decomposition of the main components of MPs. The suitability of the use of the compost for agricultural purposes was monitored by the germination index (GI) for watercress. The lowest value of the GI was determined in the particle size class from 0.63 to 1.25 mm. The leachability of polymer markers and additives alone cannot explain the low GI value in this grain size class. The GI value is also influenced by the leachability of chemical compounds characterised by the value of dissolved organic carbon (DOC) and water-leachable nitrogen (Nw). A statistically significant dependence between DOC/Nw and the germination index value was found.
Collapse
Affiliation(s)
- Hana Brťková
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Jana Růžičková
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Helena Raclavská
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Marek Kucbel
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic.
| | - Michal Šafář
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 731 00 Chania, Greece
| | - Dagmar Juchelková
- Department of Electronics, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Barbora Švédová
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Šárka Flodrová
- Department of Power Engineering, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| |
Collapse
|
14
|
Wu X, Lin L, Lin Z, Deng X, Li W, He T, Zhang J, Wang Y, Chen L, Lei Z, Liu C, Xu Z. Influencing mechanisms of microplastics existence on soil heavy metals accumulated by plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171878. [PMID: 38537832 DOI: 10.1016/j.scitotenv.2024.171878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.
Collapse
Affiliation(s)
- Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanli Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao He
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan 442000, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou 510656, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lili Chen
- Business School, Central South University of Forestry and Technology, Changsha 410004, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zexiang Lei
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhimin Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
15
|
Nuamzanei, Changmai U, Sk S, Kumar N, Borah B, Chikkaputtaiah C, Saikia R, Phukan T. Impact of polyvinyl chloride (PVC) microplastic on growth, photosynthesis and nutrient uptake of Solanum lycopersicum L. (Tomato). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123994. [PMID: 38636835 DOI: 10.1016/j.envpol.2024.123994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) pollution and their impact on plants have become a global threat, but their effect at the molecular level remains scarce. This study aims to gain insight into the effects of polyvinylchloride microplastic (PVC-MP) on tomato plants at the genetic and protein levels. In this study, we found that increasing concentrations of PVC-MP (2.5, 5,7.5, and 10% w/w) in the soil did not cause any phytotoxic (chlorosis or necrosis) symptoms but it did result in a dose-dependent reduction in plant growth-related parameters, such as height, leaf area, stem diameter, and plant fresh and dry weight. Additionally, the number of secondary roots was reduced while the primary roots were elongated. Furthermore, PVC-MP also caused a significant decrease in light-harvesting pigments chlorophylls, and carotenoids while increasing the level of reactive oxygen species (ROS) and lipid peroxidation in plants. Microscopic analysis of the roots revealed the uptake of PVC-MP of size less than 10 μm. Micro- and macro-element analysis showed changes in concentrations of Ca, Cu, Fe, Mg, Mn, Ni, and Zn, upon PVC-MP exposure. Results from western blotting and q-PCR showed that higher doses of PVC-MP significantly reduced the CO2-fixing enzyme RuBisCO and D1 proteins of PSII at both protein and transcript levels. These findings suggest that lower levels of light-harvesting pigments, D1 protein, RuBisCO, and modulation of nutrient absorption are among the factors responsible for growth suppression in tomato plants upon exposure to PVC-MP. As tomato plants are economically significant crops, an increase in PVC-MP in agricultural fields may have a detrimental influence on crop production, resulting in economic loss.
Collapse
Affiliation(s)
- Nuamzanei
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Udeshna Changmai
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sahana Sk
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Niraj Kumar
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babli Borah
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratul Saikia
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tridip Phukan
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Shi W, Wu N, Zhang Z, Liu Y, Chen J, Li J. A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169469. [PMID: 38154650 DOI: 10.1016/j.scitotenv.2023.169469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Soil is the source and sink of microplastics (MPs), which is more polluted than water and air. In this paper, the pollution levels of MPs in the agriculture, roadside, urban and landfill soils were reviewed, and the influence of MPs on soil ecosystem, including soil properties, microorganisms, animals and plants, was discussed. According to the results of in vivo and in vitro experiments, the possible risks of MPs to soil ecosystem and human health were predicted. Finally, in light of the current status of MPs research, several prospects are provided for future research directions to better evaluate the ecological risk and human health risk of MPs. MPs concentrations in global agricultural soils, roadside soils, urban soils and landfill soils had a great variance in different studies and locations. The participation of MPs has an impact on all aspects of terrestrial ecosystems. For soil properties, pH value, bulk density, pore space and evapotranspiration can be changed by MPs. For microorganisms, MPs can alter the diversity and abundance of microbiome, and different MPs have different effects on bacteria and fungi differently. For plants, MPs may interfere with their biochemical and physiological conditions and produce a wide range of toxic effects, such as inhibiting plant growth, delaying or reducing seed germination, reducing biological and fruit yield, and interfering with photosynthesis. For soil animals, MPs can affect their mobility, growth rate and reproductive capacity. At present epidemiological evidences regarding MPs exposure and negative human health effects are unavailable, but in vitro and in vivo data suggest that they pose various threats to human health, including respiratory system, digestive system, urinary system, endocrine system, nervous system, and circulation system. In conclusion, the existence and danger of MPs cannot be ignored and requires a global effort.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Nan Wu
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| | - Yuting Liu
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
18
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
19
|
Zhu D, Ge C, Sun Y, Yu H, Wang J, Sun H. Identification of organic pollutants and heavy metals in natural rubber wastewater and evaluation its phytotoxicity and cytogenotoxicity. CHEMOSPHERE 2024; 349:140503. [PMID: 37939923 DOI: 10.1016/j.chemosphere.2023.140503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The natural rubber industry consumes large volumes of water and annually releases wastewater with rich organic and inorganic loads. This wastewater is allowed for soil irrigation in developing countries. However, the pollutant composition in wastewater and its environmental effects remain unclear. Therefore, we aimed to assess the wastewater's physicochemical parameters, toxic organic pollutants, heavy metals, and phytotoxic and cytogenotoxic. The result revealed that values of comprehensive wastewater parameters were recorded as chemical oxygen demand (187432.1 mg/L), pH (4.23), total nitrogen (1157.1 mg/L), ammonia nitrogen (1113.0 mg/L), total phosphorus (1181.2 mg/L), Zn (593.3 mg/L), Cr (0.6127 mg/L), and Ni (0.2986 mg/L). The organic compounds detected by LC-MS were salbostatin, sirolimus, Gibberellin A34-catabolite, 1-(sn-glycero-3-phospho)-1D-myo-inositol, and methyldiphenylsilane. The toxicity of the identified toxic chemicals and heavy metals was confirmed by onion and mung bean phytotoxicity characterization tests. The wastewater affected the germination of mung bean seeds, reduced or inhibited the growth of onions, and induced various chromosomal aberrations in root apical meristems. Our study shows that the treatment of natural rubber wastewater needs to be improved, and the feasibility of irrigating soil with wastewater needs to be reconsidered.
Collapse
Affiliation(s)
- Dayu Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Ying Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Jun Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Hongfei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
20
|
Liu Y, Ben Y, Che R, Peng C, Li J, Wang F. Uptake, transport and accumulation of micro- and nano-plastics in terrestrial plants and health risk associated with their transfer to food chain - A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166045. [PMID: 37544454 DOI: 10.1016/j.scitotenv.2023.166045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Waste plastics enter the environment (water, soil, and atmosphere) and degrade into micro- and nano-plastics (MNPs) through physical, chemical, or biological processes. MNPs are ubiquitous in the environment and inevitably interact with terrestrial plants. Terrestrial plants have become important potential sinks, and subsequently, the sources of MNPs. At present, many studies have reported the effects of MNPs on plant physiology, biochemistry, and their phototoxicity. However, the source, detection method, and the absorption process of MNPs in terrestrial plants have not been systematically studied. In order to better understand the continuous process of MNPs entering terrestrial plants, this review introduces the sources and analysis methods of MNPs in terrestrial plants. The uptake pathways of MNPs in terrestrial plants and their influencing factors were systematically summarized. Meanwhile, the transport pathways and the accumulation of MNPs in different plant organs (roots, stems, leaves, calyxes, and fruits) were explored. Finally, the transfer of MNPs through food chains to humans and their health risks were discussed. The aim of this work is to provide significant theoretical knowledge to understand the uptake, transport, and accumulation of MNPs in terrestrial plants and the potential health risks associated with their transfer to humans through food chain.
Collapse
Affiliation(s)
- Yongqiang Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Yue Ben
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, 261325, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Chunqing Peng
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
21
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Li X, Wang R, Dai W, Luan Y, Li J. Impacts of Micro(nano)plastics on Terrestrial Plants: Germination, Growth, and Litter. PLANTS (BASEL, SWITZERLAND) 2023; 12:3554. [PMID: 37896018 PMCID: PMC10609671 DOI: 10.3390/plants12203554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Micro(nano)plastics (MNP) are pervasive in various environmental media and pose a global environmental pollution issue, particularly in terrestrial ecosystems, where they exert a significant impact on plant growth and development. This paper builds upon prior research to analyze and consolidate the effects of MNP on soil properties, seed germination, plant growth, and litter decomposition. The objective is to elucidate the environmental behavior of MNP and their mechanisms of influence on the plant life cycle. The unique physicochemical and electrical properties of MNP enable them to modify soil structure, water retention capacity, and pH. They can potentially act as "electron shuttles" or disrupt natural "electron shuttles" in litter decomposition, thereby interfering with nutrient transport and availability in the soil. Furthermore, MNP can physically obstruct nutrient and water channels within plants, impacting nutrient and water absorption. Once infiltrating plant tissues, MNP can form eco-coronas with plant proteins. Together with MNP adsorbed on the plant's surface and within its tissues, they disrupt normal physiological processes, leading to changes in photosynthesis, biomass, cellular toxicity, genetics, nutrient uptake, and gene expression. These changes, in turn, influence seed germination and plant growth and development. As a burgeoning research field, future studies should delve deeper into various aspects of these changes, such as elucidating the pathways and mechanisms through which MNP enter plant tissues, assessing their intensity and mechanisms of toxicity on different plant species, and exploring the relationship between micro(nano)plastics and "electron shuttles". These endeavors will contribute to establishing a more comprehensive theoretical framework for understanding the environmental behavior of MNP and their impact on plants.
Collapse
Affiliation(s)
- Xiaodong Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Rongyu Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Jing Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Li X, Ullah S, Chen N, Tong X, Yang N, Liu J, Guo X, Tang Z. Phytotoxicity assessment of dandelion exposed to microplastics using membership function value and integrated biological response index. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121933. [PMID: 37277069 DOI: 10.1016/j.envpol.2023.121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Microplastic (MP) pollution is a critical environmental issue. Dandelions could be used as a biomonitor of environmental pollution. However, the ecotoxicology of MPs in dandelions remains unclear. Therefore, the toxic effects of polyethylene (PE), polystyrene (PS), and polypropylene (PP) at concentrations of 0, 10, 100, and 1000 mg L-1 on the germination and early seedling growth of dandelion were investigated. PS and PP inhibited seed germination and decreased root length and biomass while promoting membrane lipid peroxidation, increasing O2•-, H2O2, SP, and proline contents, and enhancing the activities of SOD, POD, and CAT. Principal component analysis (PCA) and membership function value (MFV) analysis indicated that PS and PP could be more harmful than PE in dandelion, especially at 1000 mg L-1. In addition, according to the integrated biological response (IBRv2) index analysis, O2•-, CAT, and proline were sensitive biomarkers of dandelion contamination by MPs. Here we provide evidence that dandelion has the potential to be a biomonitor to assess the phytotoxicity of MPs pollution, especially PS with high toxicity. Meanwhile, we believe that if dandelion is to be used as a biomonitor for MPs, attention should also be paid to the practical safety of dandelion.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
24
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
25
|
Dad FP, Khan WUD, Kirkham MB, Bolan N, Tanveer M. Microplastics: a review of their impacts on different life forms and their removal methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86632-86655. [PMID: 37438501 DOI: 10.1007/s11356-023-28513-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
The pollution of microplastics (MPs) is a worldwide major concern, as they have become a major part of our food chain. MPs enter our ecosystem via different pathways, including anthropogenic activities and improper disposal of plastics. The aim of this article is to review the current scientific literature related to MPs and how they affect different life forms on earth. Briefly, MPs induced negative effects on humans are primarily linked with the oxidative stress and disruption in immunity. MPs not only affect the soil chemical and physical properties such as reduction in soil health and productivity but also impose harmful effects on soil microorganisms. Moreover, MP-induced plant growth reduction results from three complementary mechanisms: (i) reduction in root and shoot growth, (ii) reduction in photosynthesis accompanied by higher reactive oxygen species (ROS) production, and (iii) reduction in nutrient uptake via altered root growth. Given the negative effects of MPs on different life forms, it is important to remove or remediate them. We have discussed different MP removal methods including coagulation, membrane filtration technology, biochar, and biological degradation of MPs in soil and wastewater effluents. The use of ozone as ultrafiltration technique has also been shown as the most promising technique for MP removal. Finally, some future research recommendations are also put forward at the end to further enhance our understanding of the MPs induced negative effects on different life forms. The flowchart shows the interaction of MPs from water contaminated with MPs with different parts of the ecosystem and final interaction with human health.
Collapse
Affiliation(s)
- Fiza Pir Dad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
- Department of Agriculture, Government College University, Lahore, 54000, Pakistan
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
26
|
Gomes AR, Freitas ÍN, Luz TMD, Guimarães ATB, Araújo APDC, Kamaraj C, Rahman MM, Islam ARMT, Arias AH, Silva FBD, Karthi S, Cruz-Santiago O, Silva FG, Malafaia G. Multiple endpoints of polyethylene microplastics toxicity in vascular plants of freshwater ecosystems: A study involving Salvinia auriculata (Salviniaceae). JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131069. [PMID: 36857830 DOI: 10.1016/j.jhazmat.2023.131069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
More recently, the number of studies on the impacts of microplastics (MPs) on plants has drawn attention considerably. However, many of these studies focused on terrestrial plants, with vascular plants from freshwater ecosystems being little studied. Thus, we aimed to evaluate the possible effects of exposure of Salvinia auriculata, for 28 days, to different concentrations of polyethylene MPs (PE MPs - diameter: 35.46 ± 18.17 µm) (2.7 ×108 and 8.1 ×108 particles/m3), using different biomarkers. Our data indicated that exposure to PE MPs caused alterations in plant growth/development (inferred by the lower floating frond number, "root" length, and the number of "roots"), as well as lower dispersion of individuals in the experimental units. Plants exposed to PE MPs also showed lower epidermal thickness (abaxial leaf face) and a longer length of the central leaf vein and vascular bundle area. Ultrastructural analyses of S. auriculata exposed to MPs revealed rupture of some epidermal cells and trichomes on the adaxial and abaxial, leaf necrosis, and chlorosis. In the "roots", we observed dehydrated filamentous structures with evident deformations in plants exposed to the pollutants. Both on the abaxial leaf face and on the "roots", the adherence of PE MPs was observed. Furthermore, exposure to PE MPs induced lower chlorophyll content, cell membrane damage, and redox imbalance, marked by reduced catalase and superoxide dismutase activity and increased production of reactive oxygen and nitrogen species as well as malondialdehyde. However, in general, we did not observe the dose-response effect for the evaluated biomarkers. The values of the integrated biomarker response index, the principal component analysis (PCA) results and the hierarchical clustering analysis confirmed the similarity between the responses of plants exposed to different PE MPs concentrations. Therefore, our study sheds light on how PE MPs can affect S. auriculata and reinforces that putting these pollutants in freshwater environments might be hazardous from an ecotoxicological point of view.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute, Rio Verde, GO, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | | | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Bahía Blanca, Argentina
| | - Fábia Barbosa da Silva
- Laboratory of Tissue Culture, Goiano Federal Institute, Rio Verde, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Omar Cruz-Santiago
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210 San Luis Potosí, Mexico
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute, Rio Verde, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210 San Luis Potosí, Mexico; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
27
|
Dey S, Guha T, Barman F, Natarajan L, Kundu R, Mukherjee A, Paul S. Surface functionalization and size of polystyrene microplastics concomitantly regulate growth, photosynthesis and anti-oxidant status of Cicer arietinum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:41-51. [PMID: 36371898 DOI: 10.1016/j.plaphy.2022.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are a recent entrant in the list of environmental pollutants, exhibiting great diversity owing to different sizes, surface charges, and morphologies. The present study explores the impact of varied size, surface functionalization, and concentration of polystyrene microplastics (PS MP) on plants. For this study, Cicer seedlings were exposed to two different sizes of PS (1 μm and 12 μm) with three different surface functionalization (plain, carboxylated, and aminated) and at three distinct concentrations (10, 50, and 100 mg/L). The growth and photosynthetic parameters (like pigment content, Hill activity, etc.) along with oxidative stress marker (ROS) and anti-oxidant enzyme activities (like Superoxide dismutase, Catalase, and Peroxidase) were assessed. The results incline towards the idea that with increasing concentration of PS, there was a decline in the growth of the seedlings. There was also a dose-dependent increase in oxidative stress due to the suppression of the action of antioxidant enzymes. The effect was more prominent for 12 μm PS, perhaps due to its larger size and adherence to roots resulting in mechanical damage as deduced from MDA levels in the seedlings. Besides, MP with negative surface charge was comparatively less toxic than uncharged or positively charged PS of 1 μm. Overall, it can be concluded that the impact of MP on plants does not rely on individual characteristics of the particles alone, rather it is a concerted result of various determinants like size, charge, and concentration.
Collapse
Affiliation(s)
- Swarnali Dey
- Centre of Advance Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Titir Guha
- Centre of Advance Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Falguni Barman
- Centre of Advance Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Rita Kundu
- Centre of Advance Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Subhabrata Paul
- Institute of Health Sciences, Presidency University, Canal Bank Rd, DG Block, Action Area 1D, New Town, Kolkata, West Bengal, 700156, India.
| |
Collapse
|