1
|
Yilmaz E, Koca FD, Saticioglu IB, Ozen B, Yilmaz DD, Nisari M, Ocsoy I. Formation of Colchicine-incorporated Hybrid Nanoflower With an Intrinsic Peroxidase-Mimic and Enhanced Antimicrobial Activities. Chem Biodivers 2025:e00911. [PMID: 40424629 DOI: 10.1002/cbdv.202500911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
We report the formation of colchicine-Cu3(PO4)2 hybrid nanoflowers (Colc-NFs) with intrinsic catalytic and antimicrobial activities with and without hydrogen peroxide (H2O2). While the colchicine molecule, known as a secondary metabolite with anti-inflammatory properties, was used as an organic part of Colc-NFs, the Cu2+ ion acted as an inorganic part of Colc-NFs. The acetamide group in the colchicine structure may react with Cu2+ ions in phosphate-buffered saline to form Colc-NFs. The Colc-NFs exhibited both an intrinsic peroxidase-mimic activity against guaiacol and antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Candida albicans in the presence of H2O2. Both activities of the Colc-NFs rely on a Fenton-like reaction mechanism by producing reactive hydroxyl radicals. In addition to that high surface-to-volume ratio and porous structure of Colc-NFs may contribute to their peroxidase-mimic activities depending on the Fenton-like reaction.
Collapse
Affiliation(s)
- Erdal Yilmaz
- Department of Aquatic Animal and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Dogan Koca
- Department of Aquatic Animal and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Betul Ozen
- Department of Community Health Nursing, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey
| | | | - Mustafa Nisari
- Department of Medical Biochemistry, Faculty of Dentistry, University of Nuh Naci Yazgan, Kayseri, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Polepalli S, Pulla Rao C. Protein Based Hybrid Materials of Metal Phosphate Nanoflowers and Gels for Water Remediation: Perspectives and Prospects. Chem Asian J 2025; 20:e202401352. [PMID: 39777918 DOI: 10.1002/asia.202401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Water pollution is a critical environmental issue affecting ecosystems and human health worldwide. Contaminants such as heavy metals, dyes, antibiotics, and microplastics enter water bodies from the disposals of industrial, agricultural, and domestic waste. The development of new and advanced technologies for addressing water remediation has turned out to be a dire need. Protein-inorganic hybrid materials have emerged as innovative solutions for water remediation, leveraging the unique properties of both the proteins and the inorganic components. These hybrid materials connect the biocompatibility and specificity of proteins with that of the structural stability and catalytic capability of the inorganic frameworks. In recent times, protein inorganic hybrids are gaining importance in water remediation due to their ease of synthesis and chemical modification, stability, biocompatibility and biodegradability. This article brings out the recent advancements in the development of two major kinds of protein inorganic hybrid materials, viz., metal phosphate nanoflowers and gels in the context of water purification. The effect of major factors, like, morphology, porosity, pore size and nature, surface area, and the nature of the composite were systematically compared and analyzed to make it beneficial for future researchers in the development of such hybrid materials for water remediation in a sustainable manner. For this, the article addresses the current trends and draws conclusions on future perspectives to support the topic on providing clean and potable water for everyone on the globe.
Collapse
Affiliation(s)
- Sirilata Polepalli
- Department of chemistry, University of Warwick, Coventry, United Kingdom
| | - Chebrolu Pulla Rao
- Department of Chemistry, School of Engineering and Sciences, SRM University AP, Neerukonda (P.O.), Guntur (dist), 522 240, Andhra Pradesh, India
| |
Collapse
|
3
|
Patil PD, Kelkar RK, Patil NP, Pise PV, Patil SP, Patil AS, Kulkarni NS, Tiwari MS, Phirke AN, Nadar SS. Magnetic nanoflowers: a hybrid platform for enzyme immobilization. Crit Rev Biotechnol 2024; 44:795-816. [PMID: 37455411 DOI: 10.1080/07388551.2023.2230518] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/04/2023] [Indexed: 07/18/2023]
Abstract
The use of organic-inorganic hybrid nanoflowers as a support material for enzyme immobilization has gained significant attention in recent years due to their high stability, ease of preparation, and enhanced catalytic activity. However, a major challenge in utilizing these hybrid nanoflowers for enzyme immobilization is the difficulty in handling and separating them due to their low density and high dispersion. To address this issue, magnetic nanoflowers have emerged as a promising alternative enzyme immobilization platform due to their easy separation, structural stability, and ability to enhance catalytic efficiency. This review focuses on different methods for designing magnetic nanoflowers, as well as future research directions. Additionally, it provides examples of enzymes immobilized in the form of magnetic nanoflowers and their applications in environmental remediation, biosensors, and food industries. Finally, the review discusses possible ways to improve the material for enhanced catalytic activity, structural stability, and scalability.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Pradnya V Pise
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gandhinagar, India
| | - Sadhana P Patil
- Department of Biotechnology, National Institute of Technology, Tadepalligudam, India
| | - Arundhatti S Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Nishant S Kulkarni
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Ajay N Phirke
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
4
|
Mahato P, Arshad F, Palmisano G, Zou L. Immobilized enzymatic membrane surfaces for biocatalytic organics removal and fouling resistance. CHEMOSPHERE 2024; 358:142145. [PMID: 38670514 DOI: 10.1016/j.chemosphere.2024.142145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
This research reported on the immobilization of environmentally friendly enzymes, such as horseradish peroxidase (HRP) and laccase (L), along with the hydrophilic zwitterionic compound l-DOPA on nano-filtration (NF) membranes. This approach introduced biocatalytic membranes, leveraging combined effects between membranes and enzymes. The aim was to systematically assess the efficacy of the enzymatic modified membrane (HRP-NF) in degrading colors in the wastewater, as well as enhancing the membrane resistance toward organic fouling. The enzymatic immobilized membrane demonstrated 96.3 ± 1.8% to 96.6 ± 1.9% removal of colors, and 65.2 ± 1.3% to 67.2 ± 1.3% removal of TOC. This result was underpinned by the insights obtained from the radical scavenger coumarin, which was employed to trap and confirm the formation of PRs through the reaction of enzymes and H2O2. Furthermore, membranes modified with enzymes exhibited significantly improved antifouling properties. The HRP-NF membrane experienced an 8% decline in flux, while the co-immobilized HRP-L-NF membrane demonstrated as low as 6% flux decline, contributed by the synergistic effect of increased hydrophilicity and biocatalytic effects. These findings confirmed that the immobilized enzymatic surface has added function of degrading contaminants in addition to separation function of nanofiltration membrane. These l-DOPA-immobilized enzymatic membranes offered a promising hybrid biocatalytic membrane to eliminate dyes and mitigate membrane fouling, which can be applied in many industrial and domestic water and wastewater treatment.
Collapse
Affiliation(s)
- Prativa Mahato
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fathima Arshad
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical and Petroleum Engineering and Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Linda Zou
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Aslan T, Dadi Ş, Kafdag O, Temur N, Ildiz N, Ocsoy I, Ustun Y. Rational design of EDTA-incorporated nanoflowers as novel and effective endodontic disinfection against biofilms. Odontology 2024; 112:444-452. [PMID: 37787827 DOI: 10.1007/s10266-023-00857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The ethylenediaminetetradiacetic acid (EDTA) is one of the most commonly used irrigation solutions. Although EDTA has a very low antimicrobial property, it is used to remove inorganic part of smear layer in areas of root canal system. Herein, we developed EDTA-incorporated nanoflowers (EDTA NFs), for the first time, as novel and effective irrigation solution with quite high antimicrobial property to provide complete disinfection in root canal system. We both systematically elucidated the formation of the EDTA NFs with various techniques, and their catalytic and antimicrobial activities in the presence of hydrogen peroxide (H2O2) were documented through intrinsic EDTA property and peroxidase-like activities.
Collapse
Affiliation(s)
- Tugrul Aslan
- Department of Endodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Şeyma Dadi
- Department of Nanotechnology Engineering, Abdullah Gül University, 38080, Kayseri, Turkey
| | - Ozgur Kafdag
- Department of Endodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Nimet Temur
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Nilay Ildiz
- Medical Imaging Department, Bandırma Onyedi Eylul University, Vocational School of Health Services, 12 10200, Bandirma, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Yakup Ustun
- Department of Endodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Güner Yılmaz Ö, Yılmaz A, Bozoglu S, Karatepe N, Batirel S, Sahin A, Güner FS. Single-Walled (Magnetic) Carbon Nanotubes in a Pectin Matrix in the Design of an Allantoin Delivery System. ACS OMEGA 2024; 9:10069-10079. [PMID: 38463283 PMCID: PMC10918663 DOI: 10.1021/acsomega.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 03/12/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) outperform other materials due to their high conductivity, large specific surface area, and chemical resistance. They have numerous biomedical applications, including the magnetization of the SWCNT (mSWCNT). The drug loading and release properties of see-through pectin hydrogels doped with SWCNTs and mSWCNTs were evaluated in this study. The active molecule in the hydrogel structure is allantoin, and calcium chloride serves as a cross-linker. In addition to mixing, absorption, and swelling techniques, drug loading into carbon nanotubes was also been studied. To characterize the films, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, surface contact angle measurements, and opacity analysis were carried out. Apart from these, a rheological analysis was also carried out to examine the flow properties of the hydrogels. The study was also expanded to include N-(9-fluorenyl methoxycarbonyl)glycine-coated SWCNTs and mSWCNTs as additives to evaluate the efficiency of the drug-loading approach. Although the CNT additive was used at a 1:1000 weight ratio, it had a significant impact on the hydrogel properties. This effect, which was first observed in the thermal properties, was confirmed in rheological analyses by increasing solution viscosity. Additionally, rheological analysis and drug release profiles show that the type of additive causes a change in the matrix structure. According to TGA findings, even though SWCNTs and mSWCNTs were not coated more than 5%, the coating had a significant effect on drug release control. In addition to all findings, cell viability tests revealed that hydrogels with various additives could be used for visual wound monitoring, hyperthermia treatment, and allantoin release in wound treatment applications.
Collapse
Affiliation(s)
- Ö.
Zeynep Güner Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Anıl Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Serdar Bozoglu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Nilgun Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Saime Batirel
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
| | - Ali Sahin
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
- Genetic
and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Fatma Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul 34956, Turkey
| |
Collapse
|
7
|
Dang TV, Kim JM, Kim MI. Ficin-copper hybrid nanoflowers with enhanced peroxidase-like activity for colorimetric detection of biothiols. Mikrochim Acta 2023; 190:473. [PMID: 37987844 DOI: 10.1007/s00604-023-06070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
The proteolytic enzyme ficin exhibits peroxidase-like activity but it is low and insufficient for real applications. Herein, we developed ficin-copper hybrid nanoflowers and demonstrated that they have significantly enhanced peroxidase-like activity of over 6-fold higher than that of free ficin, with one of the lowest Km and highest kcat values among all reported ficin-based peroxidase-like nanozymes. This was most likely caused by the synergistic catalysis of co-existing ficin and crystalline copper phosphate within nanoflower matrices having a large surface area. The nanoflowers were easily prepared by incubating ficin and copper sulfate at ambient temperature, causing coordination interactions between ficin's amine/amide moieties and copper ions, followed by concomitant anisotropic growth of petals composed of copper phosphate crystals with ficin. When compared to free ficin and natural horseradish peroxidase, the resulting nanoflowers' affinity toward H2O2 was greatly increased, yielding Km values of half and one-tenth, respectively, as well as noticeably improved stability. The nanoflowers were then applied to colorimetric determination of biological thiols (biothiols), such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), based on their inhibition of nanoflowers' peroxidase-like activity, producing reduced color intensities as the concentration of biothiols increased. This strategy achieved highly sensitive colorimetric determinations of Cys, GSH, and Hcy after only 25-min incubation. Additionally, using this technique, biothiols in human serum were successfully determined with excellent precision, suggesting the potential application of this technology in clinical settings, particularly in point-of-care testing environments.
Collapse
Affiliation(s)
- Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Jee Min Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea.
| |
Collapse
|
8
|
Parra-Arroyo L, González-González RB, Chavez-Santoscoy RA, Flores-Contreras EA, Parra-Saldívar R, Martínez EMM, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis to abate groundwater pollution. MethodsX 2023; 10:102161. [PMID: 37077891 PMCID: PMC10106955 DOI: 10.1016/j.mex.2023.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Magnetic nanoparticles are of great interest for research as they have a wide range of applications in biotechnology, environmental science, and biomedicine. Magnetic nanoparticles are ideal for magnetic separation, improving catalysis's speed and reusability by immobilizing enzymes. Nanobiocatalysis allows the removal of persistent pollutants in a viable, cost-effective and eco-friendly manner, transforming several hazardous compounds in water into less toxic derivatives. Iron oxide and graphene oxide are the preferred materials used to confer nanomaterials their magnetic properties for this purpose as they pair well with enzymes due to their biocompatibility and functional properties. This review describes the most common synthesis methods for magnetic nanoparticles and their performance of nanobiocatalysis for the degradation of pollutants in water.•Magnetic nanomaterials have been synthesized for their application in nanobiocatalysis and treating groundwater.•The most used method for magnetic nanoparticle preparation is the co-precipitation technique.•Peroxidase and oxidase enzymes have great potential in the remotion of multiple contaminants from groundwater.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor Martínez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
9
|
Tan Z, Cheng H, Chen G, Ju F, Fernández-Lucas J, Zdarta J, Jesionowski T, Bilal M. Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials. Int J Biol Macromol 2023; 227:535-550. [PMID: 36516934 DOI: 10.1016/j.ijbiomac.2022.12.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability. In this context, immobilization and co-immobilization in robust support materials have emerged as valuable strategies to overcome these inadequacies by facilitating repeated or continuous batch operations and downstream processes. To further reduce separations, it can be advantageous to use multiple enzymes at once in one pot. Enzyme co-immobilization enables biocatalytic synergism and reusability, boosting process efficiency and cost-effectiveness. Several studies on multi-enzyme immobilization and co-localization propose kinetic advantages of the enhanced turnover number for multiple enzymes. This review spotlights recent progress in developing versatile biocatalytic cascade systems by multi-enzyme co-immobilization on environmentally friendly biopolymers and nanostructured materials and their application scope in the chemical and biotechnological industries. After a succinct overview of carrier-based and carrier-free immobilization/co-immobilizations, co-immobilization of enzymes on a range of biopolymer and nanomaterials-based supports is thoroughly compiled with contemporary and state-of-the-art examples. This study provides a new horizon in developing effective and innovative multi-enzymatic systems with new possibilities to fully harness the adventure of biocatalytic systems.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Fang Ju
- Sateri (Jiangsu) Fiber Co. Ltd., Suqian 221428, PR China
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
10
|
Koplányi G, Bell E, Molnár Z, Katona G, Lajos Neumann P, Ender F, Balogh GT, Žnidaršič-Plazl P, Poppe L, Balogh-Weiser D. Novel Approach for the Isolation and Immobilization of a Recombinant Transaminase: Applying an Advanced Nanocomposite System. Chembiochem 2023; 24:e202200713. [PMID: 36653306 DOI: 10.1002/cbic.202200713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The increasing application of recombinant enzymes demands not only effective and sustainable fermentation, but also highly efficient downstream processing and further stabilization of the enzymes by immobilization. In this study, a novel approach for the isolation and immobilization of His-tagged transaminase from Chromobacterium violaceum (CvTA) has been developed. A recombinant of CvTA was simultaneously isolated and immobilized by binding on silica nanoparticles (SNPs) with metal affinity linkers and additionally within poly(lactic acid) (PLA) nanofibers. The linker length and the nature of the metal ion significantly affected the enzyme binding efficiency and biocatalytic activity of CvTA-SNPs. The formation of PLA nanofibers by electrospinning enabled rapid embedding of CvTA-SNPs biocatalysts and ensured enhanced stability and activity. The developed advanced immobilization method reduces the time required for enzyme isolation, purification and immobilization by more than fourfold compared to a classical stepwise technique.
Collapse
Affiliation(s)
- Gábor Koplányi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary
| | - Evelin Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Institute of Enzymology, ELKH Research Center of Natural Sciences, 1117, Magyar tudosók krt. 2. Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720, Eötvös u. 6., Szeged, Hungary
| | - Péter Lajos Neumann
- Department of Electron Devices, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Centre for Energy Research, Institute for Technical Physics and Materials Science, 1121, Konkoly-Thege M. út 29-33., Budapest, Hungary
| | - Ferenc Ender
- Department of Electron Devices, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,SpinSplit Llc., 1025, Vend u. 17., Budapest, Hungary
| | - György T Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Institute of Pharmacodynamics and Biopharmacy, University of Szeged, 6720, Eötvös u. 6., Szeged, Hungary
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana Večna pot 113., 1000, Ljubljana, Slovenia
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Biocatalysis and Biotransformation Research Center Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028, Arany János Str. 11, Cluj-Napoca, Romania
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary
| |
Collapse
|
11
|
Immobilization of horseradish peroxidase on hierarchically porous magnetic metal-organic frameworks for visual detection and efficient degradation of 2,4-dichlorophenol in simulated wastewater. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Cárdenas-Alcaide MF, Godínez-Alemán JA, González-González RB, Iqbal HM, Parra-Saldívar R. Environmental impact and mitigation of micro(nano)plastics pollution using green catalytic tools and green analytical methods. GREEN ANALYTICAL CHEMISTRY 2022; 3:100031. [DOI: 10.1016/j.greeac.2022.100031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
13
|
Chen Y, Liu P, Wu J, Yan W, Xie S, Sun X, Ye BC, Chu X. N-acylhomoserine lactonase-based hybrid nanoflowers: a novel and practical strategy to control plant bacterial diseases. J Nanobiotechnology 2022; 20:347. [PMID: 35883097 PMCID: PMC9327166 DOI: 10.1186/s12951-022-01557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The disease caused by plant pathogenic bacteria in the production, transportation, and storage of many crops has brought huge losses to agricultural production. N-acylhomoserine lactonases (AHLases) can quench quorum-sensing (QS) by hydrolyzing acylhomoserine lactones (AHLs), which makes them the promising candidates for controlling infections of QS-dependent pathogenic bacteria. Although many AHLases have been isolated and considered as a potentially effective preventive and therapeutic agents for bacterial diseases, the intrinsically poor ambient stability has seriously restricted its application. RESULTS Herein, we showed that a spheroid enzyme-based hybrid nanoflower (EHNF), AhlX@Ni3(PO4)2, can be easily synthesized, and it exhibited 10 times AHL (3OC8-HSL) degradation activity than that with free AhlX (a thermostable AHL lactonase). In addition, it showed intriguing stability even at the working concentration, and retained ~ 100% activity after incubation at room temperature (25 °C) for 40 days and approximately 80% activity after incubation at 60 °C for 48 h. Furthermore, it exhibited better organic solvent tolerance and long-term stability in a complicated ecological environment than that of AhlX. To reduce the cost and streamline production processes, CSA@Ni3(PO4)2, which was assembled from the crude supernatants of AhlX and Ni3(PO4)2, was synthesized. Both AhlX@Ni3(PO4)2 and CSA@Ni3(PO4)2 efficiently attenuated pathogenic bacterial infection. CONCLUSIONS In this study, we have developed N-acylhomoserine lactonase-based hybrid nanoflowers as a novel and efficient biocontrol reagent with significant control effect, outstanding environmental adaptability and tolerance. It was expected to overcome the bottlenecks of poor stability and limited environmental tolerance that have existed for over two decades and pioneered the practical application of EHNFs in the field of biological control.
Collapse
Affiliation(s)
- Yan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Wanqing Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Saixue Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|