1
|
Liu B, Huang C, Li X, Yu H, Xia Y, Liu K, You X, Wu J. The Lung Microbiome Modulates Pain-Like Behavior Via the Lung-Brain Axis in a Nitroglycerin-Induced Chronic Migraine Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416348. [PMID: 40162625 DOI: 10.1002/advs.202416348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Chronic migraine is one of the most common pain disorders, characterized by significant disability and a lack of safe, long-term, and effective treatment options. Recent studies highlight the interaction between the lung microbiota and the central nervous system. In this study, a nitroglycerin (NTG)-induced chronic migraine model is constructed in male C57BL/6 mice to explore these interactions. Notable alterations are observed in the lung microbiota of migraine-afflicted mice. Notably, there is a marked decrease in Proteobacteria in the chronic migraine group, associated with short-chain fatty acids and 5-hydroxytryptamine (5-HT). After the intratracheal injection of neomycin, the diversity of the lung microbiota is altered, resulting in the relief of migraines. This effect is also observed in mice that receive neomycin-treated bronchoalveolar lavage fluid (BALF) transplantation, further demonstrating the role of lung microbiota in this process. The altered lung microbiota activate the pulmonary vagus nerve via the Brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) pathway in the lung, which projects to the central nucleus of the solitary tract (NTS) and the dorsal raphe nucleus (DRN). This activation, in turn, stimulates the 5-HT neurons in the DRN, resulting in increased serotonin levels that contribute to pain relief in the chronic migraine model.
Collapse
Affiliation(s)
- Biying Liu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chengya Huang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haonan Yu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuefeng Xia
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Kun Liu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
2
|
Gargus M, Ben-Azu B, Landwehr A, Dunn J, Errico JP, Tremblay MÈ. Mechanisms of vagus nerve stimulation for the treatment of neurodevelopmental disorders: a focus on microglia and neuroinflammation. Front Neurosci 2025; 18:1527842. [PMID: 39881804 PMCID: PMC11774973 DOI: 10.3389/fnins.2024.1527842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy. While the mechanistic understanding linking the VN, microglia, and neurodevelopmental disorders remains incomplete, vagus nerve stimulation (VNS) may provide a better understanding of the VN's mechanisms and act as a possible treatment modality. In this review we examine the VN's important role in modulating the immune system through the inflammatory reflex, which involves the cholinergic anti-inflammatory pathway, which releases acetylcholine. Within the central nervous system (CNS), the direct release of acetylcholine can also be triggered by VNS. Homeostatic balance in the CNS is notably maintained by microglia. Microglia facilitate neurogenesis, oligodendrogenesis, and astrogenesis, and promote neuronal survival via trophic factor release. These cells also monitor the CNS microenvironment through a complex sensome, including groups of receptors and proteins enabling microglia to modify neuroimmune health and CNS neurochemistry. Given the limitations of pharmacological interventions for the treatment of neurodevelopmental disorders, this review seeks to explore the application of VNS as an intervention for neurodevelopmental conditions. Accordingly, we review the established mechanisms of VNS action, e.g., modulation of microglia and various neurotransmitter pathways, as well as emerging preclinical and clinical evidence supporting VNS's impact on symptoms associated with neurodevelopmental disorders, such as those related to CNS inflammation induced by infections. We also discuss the potential of adapting non-invasive VNS for the prevention and treatment of these conditions. Overall, this review is intended to increase the understanding of VN's potential for alleviating microglial dysfunction involved in schizophrenia, ADHD, ASD, and epilepsy. Additionally, we aim to reveal new concepts in the field of CNS inflammation and microglia, which could serve to understand the mechanisms of VNS in the development of new therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Jaclyn Dunn
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 PMCID: PMC11974614 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
4
|
Majdi A, Asamoah B, Mc Laughlin M. Reinterpreting published tDCS results in terms of a cranial and cervical nerve co-stimulation mechanism. Front Hum Neurosci 2023; 17:1101490. [PMID: 37415857 PMCID: PMC10320219 DOI: 10.3389/fnhum.2023.1101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation method that has been used to alter cognition in hundreds of experiments. During tDCS, a low-amplitude current is delivered via scalp electrodes to create a weak electric field in the brain. The weak electric field causes membrane polarization in cortical neurons directly under the scalp electrodes. It is generally assumed that this mechanism causes the observed effects of tDCS on cognition. However, it was recently shown that some tDCS effects are not caused by the electric field in the brain but rather via co-stimulation of cranial and cervical nerves in the scalp that also have neuromodulatory effects that can influence cognition. This peripheral nerve co-stimulation mechanism is not controlled for in tDCS experiments that use the standard sham condition. In light of this new evidence, results from previous tDCS experiments could be reinterpreted in terms of a peripheral nerve co-stimulation mechanism. Here, we selected six publications that reported tDCS effects on cognition and attributed the effects to the electric field in the brain directly under the electrode. We then posed the question: given the known neuromodulatory effects of cranial and cervical nerve stimulation, could the reported results also be understood in terms of tDCS peripheral nerve co-stimulation? We present our re-interpretation of these results as a way to stimulate debate within the neuromodulation field and as a food-for-thought for researchers designing new tDCS experiments.
Collapse
Affiliation(s)
- Alireza Majdi
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Downes MH, Kalagara R, Chennareddy S, Vasan V, Reford E, Schuldt BR, Odland I, Tosto-Mancuso J, Putrino D, Panov F, Kellner CP. Vagal Nerve Stimulation: A Bibliometric Analysis of Current Research Trends. Neuromodulation 2023; 26:529-537. [PMID: 35970764 DOI: 10.1016/j.neurom.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) has become established as an effective tool for the management of various neurologic disorders. Consequently, a growing number of VNS studies have been published over the past four decades. This study presents a bibliometric analysis investigating the current trends in VNS literature. MATERIALS AND METHODS Using the Web of Science collection data base, a search was performed to identify literature that discussed applications of VNS from 2000 to 2021. Analysis and visualization of the included literature were completed with VOSviewer. RESULTS A total of 2895 publications were identified. The number of articles published in this area has increased over the past two decades, with the most citations (7098) occurring in 2021 and the most publications (270) in 2020. The h-index, i-10, and i-100 were 97, 994, and 91, respectively, with 17.0 citations per publication on average. The highest-producing country and institution of VNS literature were the United States and the University of Texas, respectively. The most productive journal was Epilepsia. Epilepsy was the predominant focus of VNS research, with the keyword "epilepsy" having the greatest total link strength (749) in the keyword analysis. The keyword analysis also revealed two major avenues of VNS research: 1) the mechanisms by which VNS modulates neural circuitry, and 2) therapeutic applications of VNS in a variety of diseases beyond neurology. It also showed a significant prevalence of noninvasive VNS research. Although epilepsy research appears more linked to implanted VNS, headache and depression specialists were more closely associated with noninvasive VNS. CONCLUSION VNS may serve as a promising intervention for rehabilitation beyond neurologic applications, with an expanding base of literature over the past two decades. Although epilepsy researchers have produced most current literature, other fields have begun to explore VNS as a potential treatment, likely owing to the rise of noninvasive forms of VNS.
Collapse
Affiliation(s)
- Margaret H Downes
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roshini Kalagara
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Chennareddy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Reford
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Braxton R Schuldt
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian Odland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenna Tosto-Mancuso
- Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Putrino
- Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Cheng HM, Gao CS, Lou QW, Chen Z, Wang Y. The diverse role of the raphe 5-HTergic systems in epilepsy. Acta Pharmacol Sin 2022; 43:2777-2788. [PMID: 35614227 PMCID: PMC9622810 DOI: 10.1038/s41401-022-00918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The raphe nuclei comprise nearly all of 5-hydroxytryptaminergic (5-HTergic) neurons in the brain and are widely acknowledged to participate in the modulation of neural excitability. "Excitability-inhibition imbalance" results in a variety of brain disorders, including epilepsy. Epilepsy is a common neurological disorder characterized by hypersynchronous epileptic seizures accompanied by many psychological, social, cognitive consequences. Current antiepileptic drugs and other therapeutics are not ideal to control epilepsy and its comorbidities. Cumulative evidence suggests that the raphe nuclei and 5-HTergic system play an important role in epilepsy and epilepsy-associated comorbidities. Seizure activities propagate to the raphe nuclei and induce various alterations in different subregions of the raphe nuclei at the cellular and molecular levels. Intervention of the activity of raphe nuclei and raphe 5-HTergic system with pharmacological or genetic approaches, deep brain stimulation or optogenetics produces indeed diverse and even contradictory effects on seizure and epilepsy-associated comorbidities in different epilepsy models. Nevertheless, there are still many open questions left, especially regarding to the relationship between 5-HTergic neural circuit and epilepsy. Understanding of 5-HTergic network in a circuit- and molecule-specific way may not only be therapeutically relevant for increasing the drug specificity and precise treatment in epilepsy, but also provide critical hints for other brain disorders with abnormal neural excitability. In this review we focus on the roles of the raphe 5-HTergic system in epilepsy and epilepsy-associated comorbidities. Besides, further perspectives about the complexity and diversity of the raphe nuclei in epilepsy are also addressed.
Collapse
Affiliation(s)
- He-Ming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chen-Shu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiu-Wen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
8
|
Bremner JD, Wittbrodt MT, Gurel NZ, Shandhi MH, Gazi AH, Jiao Y, Levantsevych OM, Huang M, Beckwith J, Herring I, Murrah N, Driggers EG, Ko YA, Alkhalaf ML, Soudan M, Shallenberger L, Hankus AN, Nye JA, Park J, Woodbury A, Mehta PK, Rapaport MH, Vaccarino V, Shah AJ, Pearce BD, Inan OT. Transcutaneous Cervical Vagal Nerve Stimulation in Patients with Posttraumatic Stress Disorder (PTSD): A Pilot Study of Effects on PTSD Symptoms and Interleukin-6 Response to Stress. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100190. [PMID: 34778863 PMCID: PMC8580056 DOI: 10.1016/j.jadr.2021.100190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD. The purpose of this study was to assess the effects of tcVNS on PTSD symptoms and inflammatory responses to stress. METHODS Twenty patients with PTSD were randomized to double blind active tcVNS (N=9) or sham (N=11) stimulation in conjunction with exposure to personalized traumatic scripts immediately followed by active or sham tcVNS and measurement of IL-6 and other biomarkers of inflammation. Patients then self administered active or sham tcVNS twice daily for three months. PTSD symptoms were measured with the PTSD Checklist (PCL) and the Clinician Administered PTSD Scale (CAPS), clinical improvement with the Clinical Global Index (CGI) and anxiety with the Hamilton Anxiety Scale (Ham-A) at baseline and one-month intervals followed by a repeat of measurement of biomarkers with traumatic scripts. After three months patients self treated with twice daily open label active tcVNS for another three months followed by assessment with the CGI. RESULTS Traumatic scripts increased IL-6 in PTSD patients, an effect that was blocked by tcVNS (p<.05). Active tcVNS treatment for three months resulted in a 31% greater reduction in PTSD symptoms compared to sham treatment as measured by the PCL (p=0.013) as well as hyperarousal symptoms and somatic anxiety measured with the Ham-A p<0.05). IL-6 increased from baseline in sham but not tcVNS. Open label tcVNS resulted in improvements measured with the CGI compared to the sham treatment period p<0.05). CONCLUSIONS These preliminary results suggest that tcVNS reduces inflammatory responses to stress, which may in part underlie beneficial effects on PTSD symptoms.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Medical Center, Decatur, Georgia
| | - Matthew T. Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Asim H. Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Yunshen Jiao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Oleksiy M. Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Joy Beckwith
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Isaias Herring
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Emily G. Driggers
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - MhmtJamil L. Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Majd Soudan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Allison N. Hankus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Anna Woodbury
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| | - Puja K. Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
9
|
Szulczewski MT. Transcutaneous Auricular Vagus Nerve Stimulation Combined With Slow Breathing: Speculations on Potential Applications and Technical Considerations. Neuromodulation 2021; 25:380-394. [PMID: 35396070 DOI: 10.1111/ner.13458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively novel noninvasive neurostimulation method that is believed to mimic the effects of invasive cervical VNS. It has recently been suggested that the effectiveness of taVNS can be enhanced by combining it with controlled slow breathing. Slow breathing modulates the activity of the vagus nerve and is used in behavioral medicine to decrease psychophysiological arousal. Based on studies that examine the effects of taVNS and slow breathing separately, this article speculates on some of the conditions in which this combination treatment may prove effective. Furthermore, based on findings from studies on the optimization of taVNS and slow breathing, this article provides guidance on how to combine taVNS with slow breathing. MATERIALS AND METHODS A nonsystematic review. RESULTS Both taVNS and slow breathing are considered promising add-on therapeutic approaches for anxiety and depressive disorders, chronic pain, cardiovascular diseases, and insomnia. Therefore, taVNS combined with slow breathing may produce additive or even synergistic beneficial effects in these conditions. Studies on respiratory-gated taVNS during spontaneous breathing suggest that taVNS should be delivered during expiration. Therefore, this article proposes to use taVNS as a breathing pacer to indicate when and for how long to exhale during slow breathing exercises. CONCLUSIONS Combining taVNS with slow breathing seems to be a promising hybrid neurostimulation and behavioral intervention.
Collapse
|
10
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
11
|
Meyers EC, Kasliwal N, Solorzano BR, Lai E, Bendale G, Berry A, Ganzer PD, Romero-Ortega M, Rennaker RL, Kilgard MP, Hays SA. Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage. Nat Commun 2019; 10:5782. [PMID: 31857587 PMCID: PMC6923364 DOI: 10.1038/s41467-019-13695-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection. CL-VNS therapy drives extensive synaptic reorganization in central networks paralleled by improved sensorimotor recovery without any observable changes in the nerve or muscle. Depleting cortical acetylcholine blocks the plasticity-enhancing effects of CL-VNS and consequently eliminates recovery, indicating a critical role for brain circuits in recovery. These findings demonstrate that manipulations to enhance central plasticity can improve sensorimotor recovery and define CL-VNS as a readily translatable therapy to restore function after nerve damage. Peripheral nerve damage generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. Here, the authors reverse the aberrant plasticity via vagus nerve stimulation to elicit synaptic reorganization and to improve sensorimotor recovery.
Collapse
Affiliation(s)
- Eric C Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - Nimit Kasliwal
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Bleyda R Solorzano
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Elaine Lai
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Geetanjali Bendale
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Abigail Berry
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Patrick D Ganzer
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Mario Romero-Ortega
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
12
|
Van Lysebettens W, Vonck K, Larsen LE, Sprengers M, Carrette E, Bouckaert C, Delbeke J, Jan Wadman W, Boon P, Raedt R. Hypothermia Masks Most of the Effects of Rapid Cycling VNS on Rat Hippocampal Electrophysiology. Int J Neural Syst 2019; 29:1950008. [PMID: 30961408 DOI: 10.1142/s0129065719500084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM. Vagus nerve stimulation (VNS) modulates hippocampal dentate gyrus (DG) electrophysiology and induces hypothermia in freely moving rats. This study evaluated whether hippocampal (CA1) electrophysiology is similarly modulated and to what extent this is associated with VNS-induced hypothermia. METHODS. Six freely moving rats received a first 4h session of rapid cycling VNS (7s on/18s off), while CA1 evoked potentials, EEG and core temperature were recorded. In a second 4h session, external heating was applied during the 3rd and 4thh of VNS counteracting VNS-induced hypothermia. RESULTS. VNS decreased the slope of the field excitatory postsynaptic potential (fEPSP), increased the population spike (PS) amplitude and latency, decreased theta (4-12Hz) and gamma (30-100Hz) band power and theta peak frequency. Normalizing body temperature during VNS through external heating abolished the effects completely for fEPSP slope, PS latency and gamma band power, partially for theta band power and theta peak frequency and inverted the effect on PS amplitude. CONCLUSIONS. Rapid cycle VNS modulates CA1 electrophysiology similarly to DG, suggesting a wide-spread VNS-induced effect on hippocampal electrophysiology. Normalizing core temperature elucidated that VNS-induced hypothermia directly influences several electrophysiological parameters but also masks a VNS-induced reduction in neuronal excitability.
Collapse
Affiliation(s)
- Wouter Van Lysebettens
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Lars Emil Larsen
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Mathieu Sprengers
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Evelien Carrette
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Charlotte Bouckaert
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Jean Delbeke
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Wytse Jan Wadman
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University, Corneel Heymanslaan 10 Ghent, Flanders, Belgium www.ugent.be
| |
Collapse
|
13
|
Noble LJ, Souza RR, McIntyre CK. Vagus nerve stimulation as a tool for enhancing extinction in exposure-based therapies. Psychopharmacology (Berl) 2019; 236:355-367. [PMID: 30091004 PMCID: PMC6368475 DOI: 10.1007/s00213-018-4994-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 02/04/2023]
Abstract
RATIONALE Emotionally traumatic experiences can lead to maladaptive memories that are enduring and intrusive. The goal of exposure-based therapies is to extinguish conditioned fears through repeated, unreinforced exposures to reminders of traumatic events. The extinction of conditioned fear depends upon the consolidation of new memories made during exposure to reminders. An impairment in extinction recall, observed in certain patient populations, can interfere with progress in exposure-based therapies, and the drive to avoid thoughts and reminders of the trauma can undermine compliance and increase dropout rate. Effective adjuncts to exposure-based therapies should improve the consolidation and maintenance of the extinction memory or improve the tolerability of the therapy. Under stressful conditions, the vagus nerve responds to elevations in epinephrine and signals the brain to facilitate the storage of new memories while, as part of the parasympathetic nervous system, it slows the sympathetic response. OBJECTIVE Here, we review studies relevant to fear extinction, describing the anatomical and functional characteristics of the vagus nerve and mechanisms of vagus nerve stimulation (VNS)-induced memory enhancement and plasticity. RESULTS We propose that stimulation of the left cervical vagus nerve during exposure to conditioned cues signals the brain to store new memories just as epinephrine or emotional arousal would do, but bypasses the peripheral sympathetic "fight-or-flight" response. CONCLUSIONS In support of this hypothesis, we have found that VNS accelerates extinction and prevents reinstatement of conditioned fear in rats. Finally, we propose future studies targeting the optimization of stimulation parameters and the search for biomarkers of VNS effectiveness that may improve exposure therapy outcomes.
Collapse
Affiliation(s)
- Lindsey J Noble
- School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Rimenez R Souza
- School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Christa K McIntyre
- School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
14
|
Morrison RA, Hulsey DR, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation intensity influences motor cortex plasticity. Brain Stimul 2018; 12:256-262. [PMID: 30409712 DOI: 10.1016/j.brs.2018.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) paired with forelimb motor training enhances reorganization of movement representations in the motor cortex. Previous studies have shown an inverted-U relationship between VNS intensity and plasticity in other brain areas, such that moderate intensity VNS yields greater cortical plasticity than low or high intensity VNS. However, the relationship between VNS intensity and plasticity in the motor cortex is unknown. OBJECTIVE In this study we sought to test the hypothesis that VNS intensity exhibits an inverted-U relationship with the degree of motor cortex plasticity in rats. METHODS Rats were taught to perform a lever pressing task emphasizing use of the proximal forelimb musculature. Once proficient, rats underwent five additional days of behavioral training in which low intensity VNS (0.4 mA), moderate intensity VNS (0.8 mA), high intensity VNS (1.6 mA), or sham stimulation was paired with forelimb movement. 24 h after the completion of behavioral training, intracortical microstimulation (ICMS) was used to document movement representations in the motor cortex. RESULTS VNS delivered at 0.8 mA caused a significant increase in motor cortex proximal forelimb representation compared to training alone. VNS delivered at 0.4 mA and 1.6 mA failed to cause a significant expansion of proximal forelimb representation. CONCLUSION Moderate intensity 0.8 mA VNS optimally enhances motor cortex plasticity while low intensity 0.4 mA and high intensity 1.6 mA VNS fail to enhance plasticity. Plasticity in the motor cortex exhibits an inverted-U function of VNS intensity similar to previous findings in auditory cortex.
Collapse
Affiliation(s)
- Robert A Morrison
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA.
| | - Daniel R Hulsey
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA
| | - Katherine S Adcock
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| | - Seth A Hays
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| |
Collapse
|
15
|
Buell EP, Loerwald KW, Engineer CT, Borland MS, Buell JM, Kelly CA, Khan II, Hays SA, Kilgard MP. Cortical map plasticity as a function of vagus nerve stimulation rate. Brain Stimul 2018; 11:1218-1224. [PMID: 30037658 PMCID: PMC6487479 DOI: 10.1016/j.brs.2018.07.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an external event can reorganize the sensory or motor cortex. A 30 Hz train of sixteen VNS pulses paired with a tone significantly increases the number of neurons in primary auditory cortex (A1) that respond to tones near the paired tone frequency. The effective range of VNS pulse rates for driving cortical map plasticity has not been defined. OBJECTIVE/HYPOTHESIS This project investigated the effects of VNS rate on cortical plasticity. We expected that VNS pulse rate would affect the degree of plasticity caused by VNS-tone pairing. METHODS Rats received sixteen pulses of VNS delivered at a low (7.5 Hz), moderate (30 Hz), or high (120 Hz) rate paired with 9 kHz tones 300 times per day over a 20 day period. RESULTS More A1 neurons responded to the paired tone frequency in rats from the moderate rate VNS group compared to naïve controls. The response strength was also increased in these rats. In contrast, rats that received high or low rate VNS failed to exhibit a significant increase in the number of neurons tuned to sounds near 9 kHz. CONCLUSION Our results demonstrate that the degree of cortical plasticity caused by VNS-tone pairing is an inverted-U function of VNS pulse rate. The apparent high temporal precision of VNS-tone pairing helps identify optimal VNS parameters to achieve the beneficial effects from restoration of sensory or motor function.
Collapse
Affiliation(s)
- E P Buell
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA.
| | - K W Loerwald
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - C T Engineer
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - M S Borland
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - J M Buell
- Texas Biomedical Device Center, Richardson, TX, 75080, USA
| | - C A Kelly
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - I I Khan
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - S A Hays
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11, Richardson, TX, 75080, USA
| | - M P Kilgard
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| |
Collapse
|
16
|
Loerwald KW, Borland MS, Rennaker RL, Hays SA, Kilgard MP. The interaction of pulse width and current intensity on the extent of cortical plasticity evoked by vagus nerve stimulation. Brain Stimul 2017; 11:271-277. [PMID: 29174302 DOI: 10.1016/j.brs.2017.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Repeatedly pairing a tone with a brief burst of vagus nerve stimulation (VNS) results in a reorganization of primary auditory cortex (A1). The plasticity-enhancing and memory-enhancing effects of VNS follow an inverted-U response to stimulation intensity, in which moderate intensity currents yield greater effects than low or high intensity currents. It is not known how other stimulation parameters effect the plasticity-enhancing effects of VNS. OBJECTIVE We sought to investigate the effect of pulse-width and intensity on VNS efficacy. Here, we used the extent of plasticity induced by VNS-tone pairing to assess VNS efficacy. METHODS Rats were exposed to a 9 kHz tone paired to VNS with varying current intensities and pulse widths. Cortical plasticity was measured as changes in the percent of area of primary auditory cortex responding to a range of sounds in VNS-treated rats relative to naïve rats. RESULTS We find that a combination of low current intensity (200 μA) and short pulse duration (100 μs) is insufficient to drive cortical plasticity. Increasing the pulse duration to 500 μs results in a reorganization of receptive fields in A1 auditory cortex. The extent of plasticity engaged under these conditions is less than that driven by conditions previously reported to drive robust plasticity (800 μA with 100 μs wide pulses). CONCLUSION These results suggest that the plasticity-enhancing and memory-enhancing effects of VNS follow an inverted-U response of stimulation current that is influenced by pulse width. Furthermore, shorter pulse widths may offer a clinical advantage when determining optimal stimulation current. These findings may facilitate determination of optimal VNS parameters for clinical application.
Collapse
Affiliation(s)
| | - Michael S Borland
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States
| |
Collapse
|
17
|
Hulsey DR, Riley JR, Loerwald KW, Rennaker RL, Kilgard MP, Hays SA. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp Neurol 2016; 289:21-30. [PMID: 27988257 DOI: 10.1016/j.expneurol.2016.12.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023]
Abstract
Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter-train intervals, and pulse widths. Brief 0.5s trains of VNS drive rapid, phasic firing of LC neurons at 0.1mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse-locked neural activity in the Me5 at current levels above 1.2mA. These results provide insight into VNS-evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy.
Collapse
Affiliation(s)
- Daniel R Hulsey
- The University of Texas at Dallas, School of Behavioral Brain Sciences, BSB 14, Richardson, TX 75080, United States; Texas Biomedical Device Center, BSB 11, Richardson, TX 75080, United States
| | - Jonathan R Riley
- The University of Texas at Dallas, School of Behavioral Brain Sciences, BSB 14, Richardson, TX 75080, United States; Texas Biomedical Device Center, BSB 11, Richardson, TX 75080, United States
| | | | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, BSB 14, Richardson, TX 75080, United States; Texas Biomedical Device Center, BSB 11, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, BSB 11, Richardson, TX 75080-3021, United States
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, BSB 14, Richardson, TX 75080, United States; Texas Biomedical Device Center, BSB 11, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, BSB 11, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, BSB 11, Richardson, TX 75080-3021, United States.
| |
Collapse
|
18
|
Nicastro TM, Greenwood BN. Central monoaminergic systems are a site of convergence of signals conveying the experience of exercise to brain circuits involved in cognition and emotional behavior. Curr Zool 2016; 62:293-306. [PMID: 29491917 PMCID: PMC5804240 DOI: 10.1093/cz/zow027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/11/2016] [Indexed: 01/04/2023] Open
Abstract
Physical activity can enhance cognitive function and increase resistance against deleterious effects of stress on mental health. Enhanced cognitive function and stress resistance produced by exercise are conserved among vertebrates, suggesting that ubiquitous mechanisms may underlie beneficial effects of exercise. In the current review, we summarize the beneficial effects of exercise on cognitive function and stress resistance and discuss central and peripheral signaling factors that may be critical for conferring the effects of physical activity to brain circuits involved in cognitive function and stress. Additionally, it is suggested that norepinephrine and serotonin, highly conserved monoamines that are sensitive to exercise and able to modulate behavior in multiple species, could represent a convergence between peripheral and central exercise signals that mediate the beneficial effects of exercise. Finally, we offer the novel hypothesis that thermoregulation during exercise could contribute to the emotional effects of exercise by activating a subset of temperature-sensitive serotonergic neurons in the dorsal raphe nucleus that convey anxiolytic and stress-protective signals to forebrain regions. Throughout the review, we discuss limitations to current approaches and offer strategies for future research in exercise neuroscience.
Collapse
|
19
|
Li P, Liu H, Sun P, Wang X, Wang C, Wang L, Wang T. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats. Exp Gerontol 2016; 74:43-55. [DOI: 10.1016/j.exger.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
20
|
Dangmann R. An insulin based model to explain changes and interactions in human breath-holding. Med Hypotheses 2015; 84:532-8. [PMID: 25801485 DOI: 10.1016/j.mehy.2015.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/15/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022]
Abstract
Until now oxygen was thought to be the leading factor of hypoxic conditions. Whereas now it appears that insulin is the key regulator of hypoxic conditions. Insulin seems to regulate the redox state of the organism and to determine the breakpoint of human breath-holding. This new hypoxia-insulin hypotheses might have major clinical relevance. Besides the clinical relevance, this hypothesis could explain, for the first time, why the training of the diaphragm, among other factors, results in an increase in breath-holding performance. Elite freedivers/apnea divers are able to reach static breath-holding times to over 6 min. Untrained persons exhibit an unpleasant feeling after more or less a minute. Breath-holding is stopped at the breakpoint. The partial oxygen pressure as well as the carbon dioxide pressure failed to directly influence the breakpoint in earlier studies. The factors that contribute to the breakpoint are still under debate. Under hypoxic conditions the organism needs more glucose, because it changes from the oxygen consuming pentose phosphate (36 ATP/glucose molecule) to the anaerobic glycolytic pathway (2ATP/glucose molecule). Hence insulin, as it promotes the absorption of glucose, is set in the center of interest regarding hypoxic conditions. This paper provides an insulin based model that could explain the changes and interactions in human breath-holding. The correlation between hypoxia and reactive oxygen species (ROS) and their influence on the sympathetic nerve system and hypoxia-inducible factor 1 alpha (HIF-1α) is dealt with. It reviews as well the direct interrelation of HIF-1α and insulin. The depression of insulin secretion through the vagus nerve activation via inspiration is discussed. Furthermore the paper describes the action of insulin on the carotid bodies and the diaphragm and therefore a possible role in respiration pattern. Freedivers that go over the breakpoint of breath-holding could exhibit seizures and thus the effect of insulin, blood glucose levels and corticosteroids in hippocampal seizures is highlighted.
Collapse
|
21
|
Mollet L, Grimonprez A, Raedt R, Delbeke J, El Tahry R, De Herdt V, Meurs A, Wadman W, Boon P, Vonck K. Intensity-dependent modulatory effects of vagus nerve stimulation on cortical excitability. Acta Neurol Scand 2013; 128:391-6. [PMID: 23614853 DOI: 10.1111/ane.12135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Vagus nerve stimulation (VNS) is an effective treatment for refractory epilepsy. It remains unknown whether VNS efficacy is dependent on output current intensity. The present study investigated the effect of various VNS output current intensities on cortical excitability in the motor cortex stimulation rat model. The hypothesis was that output current intensities in the lower range are sufficient to significantly affect cortical excitability. MATERIAL AND METHODS VNS at four output current intensities (0 mA, 0.25 mA, 0.5 mA and 1 mA) was randomly administered in rats (n = 15) on four consecutive days. Per output current intensity, the animals underwent five-one-hour periods: (i) baseline, (ii) VNS1, (iii) wash-out1, (iv) VNS2 and (v) wash-out2. After each one-hour period, the motor seizure threshold (MST) was measured and compared to baseline (i.e. ∆MSTbaseline , ∆MSTVNS 1 , ∆MSTwash-out1 , ∆MSTVNS 2 and ∆MSTwash-out2 ). Finally, the mean ∆MSTbaseline , mean ∆MSTwash-out1 , mean ∆MSTwash-out2 and mean ∆MSTVNS per VNS output current intensity were calculated. RESULTS No differences were found between the mean ∆MSTbaseline , mean ∆MSTwash-out1 and mean ∆MSTwash-out2 within each VNS output current intensity. The mean ∆MSTVNS at 0 mA, 0.25 mA, 0.5 mA and 1 mA was 15.3 ± 14.6 μA, 101.8 ± 23.5 μA, 108.1 ± 24.4 μA and 85.7 ± 18.1 μA respectively. The mean ∆MSTVNS at 0.25 mA, 0.5 mA and 1 mA were significantly larger compared to the mean ∆MSTVNS at 0 mA (P = 0.002 for 0.25 mA; P = 0.001 for 0.5 mA; P = 0.011 for 1 mA). CONCLUSIONS This study confirms efficacy of VNS in the motor cortex stimulation rat model and indicates that, of the output current intensities tested, 0.25 mA is sufficient to decrease cortical excitability and higher output current intensities may not be required.
Collapse
Affiliation(s)
- L. Mollet
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - A. Grimonprez
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - R. Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - J. Delbeke
- Institute of Neuroscience; Medical School; Université catholique de Louvain; Brussels Belgium
| | - R. El Tahry
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - V. De Herdt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - A. Meurs
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - W. Wadman
- Department of Neurobiology; Swammerdam Institute of Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - P. Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| | - K. Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3); Department of Neurology; Institute for Neuroscience; Ghent University Hospital; Ghent Belgium
| |
Collapse
|
22
|
Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol 2013; 16:459-70. [PMID: 22717062 DOI: 10.1017/s1461145712000387] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) is an adjunctive treatment for resistant epilepsy and depression. Electrophysiological recordings in the rat brain have already shown that chronic VNS increases norepinephrine (NE) neuronal firing activity and, subsequently, that of serotonin (5-HT) neurons through an activation of their excitatory α1-adrenoceptors. Long-term VNS was shown to increase the tonic activation of post-synaptic 5-HT1A receptors in the hippocampus. This study was aimed at examining the effect of VNS on extracellular 5-HT, NE and dopamine (DA) levels in different brain areas using in vivo microdialysis, on NE transmission in the hippocampus, and DA neuronal firing activity using electrophysiology. Rats were implanted with a VNS device and stimulated for 14 d with standard parameters used in treatment-resistant depression (0.25 mA, 20 Hz, 500 μs, 30 s on-5 min off). The results of the present study revealed that 2-wk VNS significantly increased extracellular NE levels in the prefrontal cortex and the hippocampus and enhanced the tonic activation of post-synaptic α2-adrenoceptors on pyramidal neurons. The electrophysiological experiments revealed a significant decrease in ventral tegmental area DA neuronal firing rate after long-term VNS; extracellular DA levels were nevertheless increased in the prefrontal cortex and nucleus accumbens. Chronic VNS significantly increased extracellular 5-HT levels in the dorsal raphe but not in the hippocampus and prefrontal cortex. In conclusion, the effect of VNS in increasing the transmission of monoaminergic systems targeted in the treatment of resistant depression should be involved, at least in part, in its antidepressant properties observed in patients not responding to many antidepressant strategies.
Collapse
|
23
|
Krahl SE, Clark KB. Vagus nerve stimulation for epilepsy: A review of central mechanisms. Surg Neurol Int 2012; 3:S255-9. [PMID: 23230530 PMCID: PMC3514919 DOI: 10.4103/2152-7806.103015] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022] Open
Abstract
In a previous paper, the anatomy and physiology of the vagus nerve was discussed in an attempt to explain which vagus nerve fibers and branches are affected by clinically relevant electrical stimulation. This companion paper presents some of vagus nerve stimulation's putative central nervous system mechanisms of action by summarizing known anatomical projections of vagal afferents and their effects on brain biogenic amine pathways and seizure expression.
Collapse
Affiliation(s)
- Scott E Krahl
- Research and Development Service, VA Greater Los Angeles Healthcare System, Los Angeles, California ; Department of Neurosurgery, University of California, Los Angeles, California
| | | |
Collapse
|
24
|
Fanselow EE. Central mechanisms of cranial nerve stimulation for epilepsy. Surg Neurol Int 2012; 3:S247-54. [PMID: 23230529 PMCID: PMC3514917 DOI: 10.4103/2152-7806.103014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022] Open
Abstract
Stimulation of peripheral cranial nerves has been shown to exert anticonvulsant effects in animal models as well as in human patients. Specifically, stimulation of both the trigeminal and vagus nerves has been shown in multiple clinical trials to be anticonvulsant, and stimulation of these nerves at therapeutic levels does not cause pain or negatively affect brain function. However, the neuronal mechanisms by which such stimulation exerts therapeutic effects are not well understood. In this review, the possible locations of action for trigeminal nerve stimulation (TNS) and vagus nerve stimulation (VNS) are explored. Additionally, the multiple time scales on which TNS and VNS function are discussed.
Collapse
Affiliation(s)
- Erika E Fanselow
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| |
Collapse
|
25
|
García-Navarrete E, Torres CV, Gallego I, Navas M, Pastor J, Sola RG. Long-term results of vagal nerve stimulation for adults with medication-resistant epilepsy who have been on unchanged antiepileptic medication. Seizure 2012; 22:9-13. [PMID: 23041031 DOI: 10.1016/j.seizure.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Several studies suggest that vagal nerve stimulation (VNS) is an effective treatment for medication-resistant epileptic patients, although patients' medication was usually modified during the assessment period. The purpose of this prospective study was to evaluate the long-term effects of VNS, at 18 months of follow-up, on epileptic patients who have been on unchanged antiepileptic medication. METHODS Forty-three patients underwent a complete epilepsy preoperative evaluation protocol, and were selected for VNS implantation. After surgery, patients were evaluated on a monthly basis, increasing stimulation 0.25mA at each visit, up to 2.5mA. Medication was unchanged for at least 18 months since the stimulation was started. The outcome was analysed in relation to patients' clinical features, stimulation parameters, epilepsy type, magnetic resonance imaging (MRI) results, and history of prior brain surgery. RESULTS Of the 43 operated patients, 63% had a similar or greater than 50% reduction in their seizure frequency. Differences in the responder rate according to stimulation intensity, age at onset of epilepsy, duration of epilepsy before surgery, previous epilepsy surgery and seizure type, did not reach statistical significance. Most side effects were well tolerated. CONCLUSIONS 62.8% of our series of 43 medication-resistant epileptic patients experienced a significant long-term seizure reduction after VNS, even in a situation of on unchanged medical therapy. Patient characteristics predictive of VNS responsiveness remain subject to investigation. Controlled studies with larger sample sizes, on VNS for patients with medication-resistant epilepsy on unchanged medication, are necessary to confirm VNS efficacy for drug-resistant epilepsy, and to identify predictive factors.
Collapse
Affiliation(s)
- Eduardo García-Navarrete
- Division of Neurosurgery, Department of Surgery, University Hospital La Princesa, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Alexander GM, McNamara JO. Vagus nerve stimulation elevates seizure threshold in the kindling model. Epilepsia 2012; 53:2043-52. [DOI: 10.1111/j.1528-1167.2012.03646.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Kawai K, Usami K, Saito N. [Vagus nerve stimulation for epilepsy]. Rinsho Shinkeigaku 2011; 51:990-992. [PMID: 22277453 DOI: 10.5692/clinicalneurol.51.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vagus nerve stimulation is the first electrical stimulation therapy for epilepsy. While its clinical use was approved by the European Union in 1994 and by the United States in 1997, it was approved last year and coverage by public insurance started last July in Japan. Owing to less invasiveness and broad indication, it is expected that vagus nerve stimulation will be increasingly used in Japan as well. Its efficacy for refractory partial seizures in patients older than 13 years was validated by two randomized control trials. Although it has been used for children and generalized seizures broadly, the efficacy for these subpopulations of patients has not been validated by randomized control trials, necessitating those studies in the near future. Afferent neural impulses generated by vagus nerve stimulation transmit to the solitary tract nucleus, then via multiple pathways including the monoamine system, vagus nerve stimulation affects the excitability of the cortical neurons. It likely exerts the anti-epileptic and anti-seizure effects using these pathways, but the detailed mechanisms underlying the effect remains to be elucidated further in future.
Collapse
Affiliation(s)
- Kensuke Kawai
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo
| | | | | |
Collapse
|
28
|
Rizvi SJ, Donovan M, Giacobbe P, Placenza F, Rotzinger S, Kennedy SH. Neurostimulation therapies for treatment resistant depression: a focus on vagus nerve stimulation and deep brain stimulation. Int Rev Psychiatry 2011; 23:424-36. [PMID: 22200132 DOI: 10.3109/09540261.2011.630993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antidepressant treatments, including pharmacotherapy and psychotherapy, do not result in remission for the majority of patients with major depressive disorder. The high prevalence of treatment resistant depression (TRD) poses a significant issue for patients as well as both societal and economic costs. Due to the limited efficacy of existing therapies in this sub-population, alternative somatic treatments are being explored. Both vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are neurostimulation treatments for TRD. While VNS has Food Drug Administration approval as an adjunctive therapy for MDD, DBS is still in the experimental stages. This article will review the evidence supporting the clinical utility of these therapies.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Department of Psychiatry, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Manta S, El Mansari M, Blier P. Novel attempts to optimize vagus nerve stimulation parameters on serotonin neuronal firing activity in the rat brain. Brain Stimul 2011; 5:422-429. [PMID: 22037140 DOI: 10.1016/j.brs.2011.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/28/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is indicated for treatment-resistant epilepsy and depression. Electrophysiologic recordings in the rat brain have shown that VNS promptly increases the firing rate of NE neurons and subsequently that of 5-HT neurons. Thus far, it appears that the standard stimulation parameters currently used in depressed patients produce an optimal activation of 5-HT neurons. OBJECTIVE/HYPOTHESIS This study was therefore aimed at investigating additional alterations of stimulation parameters to optimize VNS efficacy to further increase 5-HT neuronal activity. METHODS Rats were implanted with a VNS device and stimulated for 14 days using standard (0.25 mA/20 Hz/500 microseconds/30 seconds ON-5 minutes OFF, continuously) or various stimulation parameters: extension of the OFF period (30 seconds ON every 10 to 30 minutes), the OFF and ON periods, discontinuous stimulation (12 hours per day using standard parameters), and burst stimulation modes. Rat dorsal raphe 5-HT neurons were recorded under chloral hydrate anesthesia. RESULTS Both 12-hour stimulation periods for 14 days, and the 30-second stimulation every 10 or 15 minutes significantly increased the firing activity of 5-HT neurons to the same extent as standard parameters while the 30-minute intervals were ineffective. Stimulations in a burst mode and the pseudo-one-pulse stimulations also significantly increased 5-HT neuronal activity. CONCLUSIONS These results indicate that less stimulation is sufficient to achieve the same VNS efficacy on 5-HT neuronal firing. These data may be relevant for patients using VNS because these new parameters could minimize or prevent side effects and increase battery life of the stimulator.
Collapse
Affiliation(s)
- Stella Manta
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.
| | - Mostafa El Mansari
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medecine, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Aalbers M, Vles J, Klinkenberg S, Hoogland G, Majoie M, Rijkers K. Animal models for vagus nerve stimulation in epilepsy. Exp Neurol 2011; 230:167-75. [PMID: 21565191 DOI: 10.1016/j.expneurol.2011.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Vagus nerve stimulation (VNS) is a moderately effective adjunctive treatment for patients suffering from medically refractory epilepsy and is explored as a treatment option for several other disorders. The present review provides a critical appraisal of the studies on VNS in animal models of seizures and epilepsy. So far, these studies mostly applied short-term VNS in seizure models, demonstrating that VNS can suppress and prevent seizures and affect epileptogenesis. However, the mechanism of action is still largely unknown. Moreover, studies with a clinically more relevant setup where VNS is chronically applied in epilepsy models are scarce. Future directions for research and the application of this technology in animal models of epilepsy are discussed.
Collapse
Affiliation(s)
- Marlien Aalbers
- School for Mental Health & Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Richerson GB, Buchanan GF. The serotonin axis: Shared mechanisms in seizures, depression, and SUDEP. Epilepsia 2011; 52 Suppl 1:28-38. [PMID: 21214537 DOI: 10.1111/j.1528-1167.2010.02908.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a growing appreciation that patients with seizures are also affected by a number of comorbid conditions, including an increase in prevalence of depression (Kanner, 2009), sleep apnea (Chihorek et al., 2007), and sudden death (Ryvlin et al., 2006; Tomson et al., 2008). The mechanisms responsible for these associations are unclear. Herein we discuss the possibility that underlying pathology in the serotonin (5-HT) system of patients with epilepsy lowers the threshold for seizures, while also increasing the risk of depression and sudden death. We propose that postictal dysfunction of 5-HT neurons causes depression of breathing and arousal in some epilepsy patients, and this can lead to sudden unexpected death in epilepsy (SUDEP). We further draw parallels between SUDEP and sudden infant death syndrome (SIDS), which may share pathophysiologic mechanisms, and which have both been linked to defects in the 5-HT system.
Collapse
|
32
|
Vonck K, Raedt R, Boon P. Vagus nerve stimulation and the postictal state. Epilepsy Behav 2010; 19:182-5. [PMID: 20724218 DOI: 10.1016/j.yebeh.2010.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 11/16/2022]
Abstract
Vagus nerve stimulation (VNS) is an established neurostimulation therapy used to treat refractory epilepsy. The effect of acute or chronic VNS on the postictal state as a separate entity is seldom reported in clinical or experimental studies. Apart from its antiseizure effects, VNS has several other beneficial effects. These effects may be of particular benefit for patients with postictal neuropsychiatric symptoms. The hypothesized mechanisms underlying the initiation and sustainment of the postictal phase, to some extent, overlap with mechanisms involved in the seizure-suppressing effects of VNS as well as other neurological and psychotropic effects of VNS. Both the clinical symptoms and the basic research hypotheses of the postictal state show similarities with clinical effects induced by VNS and its underlying mechanisms of action.
Collapse
Affiliation(s)
- Kristl Vonck
- Reference Center for Refractory Epilepsy and Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Gent, Belgium.
| | | | | |
Collapse
|
33
|
Schlaepfer TE, George MS, Mayberg H. WFSBP Guidelines on Brain Stimulation Treatments in Psychiatry. World J Biol Psychiatry 2010; 11:2-18. [PMID: 20146648 DOI: 10.3109/15622970903170835] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
George MS, Aston-Jones G. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology 2010; 35:301-16. [PMID: 19693003 PMCID: PMC3055429 DOI: 10.1038/npp.2009.87] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 01/19/2023]
Abstract
Although the preceding chapters discuss much of the new knowledge of neurocircuitry of neuropsychiatric diseases, and an invasive approach to treatment, this chapter describes and reviews the noninvasive methods of testing circuit-based theories and treating neuropsychiatric diseases that do not involve implanting electrodes into the brain or on its surface. These techniques are transcranial magnetic stimulation, vagus nerve stimulation, and transcranial direct current stimulation. Two of these approaches have FDA approval as therapies.
Collapse
Affiliation(s)
- Mark S George
- Departments of Psychiatry, Radiology and Neuroscience, Institute of Psychiatry, MUSC Center for Advanced Imaging Research, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|