1
|
Mao Q, Wang J, Yang Z, Ding R, Lv S, Ji X. The Pathologic Roles and Therapeutic Implications of Ghrelin/GHSR System in Mental Disorders. Depress Anxiety 2024; 2024:5537319. [PMID: 40226675 PMCID: PMC11919235 DOI: 10.1155/2024/5537319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 04/15/2025] Open
Abstract
Ghrelin is a hormone consisting of 28 amino acids. Growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin, which is expressed in the brain, pituitary gland, and adrenal glands, especially in the hypothalamus. The binding of ghrelin to the receptor 1a subtype mediates most of the biological effects of ghrelin. Ghrelin has a close relationship with the onset of psychosis. Ghrelin can affect the onset of psychosis by regulating neurotransmitters such as dopamine, γ-aminobutyric acid (GABA), and 5-hydroxytryptamine (5-HT) through the hypothalamus-pituitary-adrenal (HPA) axis, brain-gut axis, the mesolimbic dopamine system, and other ways. Ghrelin activates neuropeptide Y (NPY) in the hypothalamic arcuate nucleus (ARC) through the GHSR. Ghrelin binds to neurons in the ventral tegmental area (VTA), where it promotes the activity of dopamine neurons in the nucleus accumbens (NAcs) in a GHSR-dependent way, increasing dopamine levels and the reward system. This article summarized the recent research progress of ghrelin in depression, anxiety, schizophrenia, anorexia nervosa (AN), and bulimia nervosa (BN), and emphasized its potential application for psychiatric disorders treatment.
Collapse
Affiliation(s)
- Qianshuo Mao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jinjia Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zihan Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475001, Henan, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, 6 Gong-Ming Road, Mazhai Town, Erqi District, Zhengzhou 450064, Henan, China
- Department of Medicine, Huaxian County People's Hospital, Huaxian 456400, Henan, China
| |
Collapse
|
2
|
Wilbrecht L, Lin WC, Callahan K, Bateson M, Myers K, Ross R. Experimental biology can inform our understanding of food insecurity. J Exp Biol 2024; 227:jeb246215. [PMID: 38449329 PMCID: PMC10949070 DOI: 10.1242/jeb.246215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Food insecurity is a major public health issue. Millions of households worldwide have intermittent and unpredictable access to food and this experience is associated with greater risk for a host of negative health outcomes. While food insecurity is a contemporary concern, we can understand its effects better if we acknowledge that there are ancient biological programs that evolved to respond to the experience of food scarcity and uncertainty, and they may be particularly sensitive to food insecurity during development. Support for this conjecture comes from common findings in several recent animal studies that have modeled insecurity by manipulating predictability of food access in various ways. Using different experimental paradigms in different species, these studies have shown that experience of insecure access to food can lead to changes in weight, motivation and cognition. Some of these studies account for changes in weight through changes in metabolism, while others observe increases in feeding and motivation to work for food. It has been proposed that weight gain is an adaptive response to the experience of food insecurity as 'insurance' in an uncertain future, while changes in motivation and cognition may reflect strategic adjustments in foraging behavior. Animal studies also offer the opportunity to make in-depth controlled studies of mechanisms and behavior. So far, there is evidence that the experience of food insecurity can impact metabolic efficiency, reproductive capacity and dopamine neuron synapses. Further work on behavior, the central and peripheral nervous system, the gut and liver, along with variation in age of exposure, will be needed to better understand the full body impacts of food insecurity at different stages of development.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan Chen Lin
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathryn Callahan
- Psychiatric Research Institute of Montefiore and Einstein, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Melissa Bateson
- Bioscience Institute, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Kevin Myers
- Department of Psychology and Programs in Animal Behavior and Neuroscience, Bucknell University, Lewisburg, PA 17837, USA
| | - Rachel Ross
- Psychiatric Research Institute of Montefiore and Einstein, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry, Montefiore Medical Center, Bronx, New York, NY 10467, USA
| |
Collapse
|
3
|
Wee RWS, Mishchanchuk K, AlSubaie R, Church TW, Gold MG, MacAskill AF. Internal-state-dependent control of feeding behavior via hippocampal ghrelin signaling. Neuron 2024; 112:288-305.e7. [PMID: 37977151 DOI: 10.1016/j.neuron.2023.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Hunger is an internal state that not only invigorates feeding but also acts as a contextual cue for higher-order control of anticipatory feeding-related behavior. The ventral hippocampus is crucial for differentiating optimal behavior across contexts, but how internal contexts such as hunger influence hippocampal circuitry is unknown. In this study, we investigated the role of the ventral hippocampus during feeding behavior across different states of hunger in mice. We found that activity of a unique subpopulation of neurons that project to the nucleus accumbens (vS-NAc neurons) increased when animals investigated food, and this activity inhibited the transition to begin eating. Increases in the level of the peripheral hunger hormone ghrelin reduced vS-NAc activity during this anticipatory phase of feeding via ghrelin-receptor-dependent increases in postsynaptic inhibition and promoted the initiation of eating. Together, these experiments define a ghrelin-sensitive hippocampal circuit that informs the decision to eat based on internal state.
Collapse
Affiliation(s)
- Ryan W S Wee
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Timothy W Church
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
4
|
Aston SA, Caffo BS, Bhasin H, Moran TH, Tamashiro KL. Timing matters: The contribution of running during different periods of the light/dark cycle to susceptibility to activity-based anorexia in rats. Physiol Behav 2023; 271:114349. [PMID: 37709000 DOI: 10.1016/j.physbeh.2023.114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Individuals with anorexia nervosa (AN) exhibit dangerous weight loss due to restricted eating and hyperactivity. Those with AN are predominantly women and most cases have an age of onset during adolescence. Activity-based anorexia (ABA) is a rodent behavioral paradigm that recapitulates many of the features of AN including restricted food intake and hyperactivity, resulting in precipitous weight loss. In addition, there is enhanced sensitivity to the paradigm during adolescence. In ABA, animals are given time-restricted access to food and unlimited access to a running wheel. Under these conditions, most animals increase their running and decrease their food intake resulting in precipitous weight loss until they either die or researchers discontinue the paradigm. Some animals learn to balance their food intake and energy expenditure and are able to stabilize and eventually reverse their weight loss. For these studies, adolescent (postnatal day 33-42), female Sprague Dawley (n = 68) rats were placed under ABA conditions (unlimited access to a running wheel and 1.5 hrs access to food) until they either reached 25% body weight loss or for 7 days. 70.6% of subjects reached 25% body weight loss before 7 days and were designated susceptible to ABA while 29.4% animals were resistant to the paradigm and did not achieve the weight loss criterion. We used discrete time survival analysis to investigate the contribution of food intake and running behavior during distinct time periods both prior to and during ABA to the likelihood of reaching the weight loss criterion and dropping out of ABA. Our analyses revealed risk factors, including total running and dark cycle running, that increased the likelihood of dropping out of the paradigm, as well as protective factors, including age at the start of ABA, the percent of total running exhibited as food anticipatory activity (FAA), and food intake, that reduced the likelihood of dropping out. These measures had predictive value whether taken before or during exposure to ABA conditions. Our findings suggest that certain running and food intake behaviors may be indicative of a phenotype that predisposes animals to susceptibility to ABA. They also provide evidence that running during distinct time periods may reflect functioning of distinct neural circuitry and differentially influence susceptibility and resistance to the paradigm.
Collapse
Affiliation(s)
- S Andrew Aston
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Harshit Bhasin
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Currently: Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kellie L Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
5
|
Tezenas du Montcel C, Cao J, Mattioni J, Hamelin H, Lebrun N, Ramoz N, Gorwood P, Tolle V, Viltart O. Chronic food restriction in mice and increased systemic ghrelin induce preference for running wheel activity. Psychoneuroendocrinology 2023; 155:106311. [PMID: 37295225 DOI: 10.1016/j.psyneuen.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES In eating disorders, particularly anorexia nervosa (AN), patients exhibit intense physical activity which is inappropriate regarding food restriction and chronic undernutrition, and exacerbates weight loss and energy deprivation. Rodent models of food restriction exhibit increased running wheel activity in the food anticipation period, also known as Food Anticipatory Activity (FAA). FAA probably has various physiological and/or neurobiological origins. Plasma concentrations of the orexigenic hormone ghrelin are, for example, increased during FAA. We hypothesize that the drive for physical activity in chronic food restriction is triggered by metabolic factors but also relies on motivational aspects that we aim to decipher in this study. METHODS Young female C57Bl6/J mice were exposed to a paradigm based on a progressive 50% quantitative food restriction alone (FR) or associated with running wheel activity (Food Restriction Wheel: FRW) in their home-cage during 15 days. We measured preference for running wheel in a three-chamber apparatus in which animals could choose to explore either a known running wheel or a novel object. Testing took place either during resting or during FAA. We calculated the time spent in each compartment and the activity in running wheels. After progressive refeeding over 10 days, mice were tested again when refed. Plasma levels of both ghrelin isoforms were measured with selective immunoassays. RESULTS When tested during FAA period, food restricted mice displayed increased preference for the running wheel compared to ad libitum fed controls. Both FR and FRW mice exhibited increased running time and distance in the wheel and running distance was correlated with ghrelin levels. Similar preference and behavior were found when testing took place during the resting period. Animals housed without an active wheel also exhibited active running. Progressive refeeding resulted in body weight restoration, a decrease in FAA and completely abolished preference for the running wheel. Refed animals displayed similar behavior as ad libitum fed controls. CONCLUSIONS These data provide evidence that food restriction-induced physical activity is closely correlated with metabolic adaptations to nutritional status implicating ghrelin in the quantity of physical activity.
Collapse
Affiliation(s)
- Chloé Tezenas du Montcel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Jingxian Cao
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Julia Mattioni
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Héloïse Hamelin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Nicolas Lebrun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Nicolas Ramoz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Philip Gorwood
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Virginie Tolle
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Odile Viltart
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; Université de Lille, SCALab laboratory, UMR CNRS 9193, PsySEF Faculty, F-59650 Villeneuve d'Ascq, France.
| |
Collapse
|
6
|
Tezenas-du-Montcel C, Tolle V. La régulation de la prise alimentaire au travers des actions antagonistes de la ghréline et du LEAP-2. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2023. [DOI: 10.1016/j.cnd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Perelló M, Dickson SL, Zigman JM, Leggio L, The Ghrelin Nomenclature Consensus Group. Toward a consensus nomenclature for ghrelin, its non-acylated form, liver expressed antimicrobial peptide 2 and growth hormone secretagogue receptor. J Neuroendocrinol 2023; 35:e13224. [PMID: 36580314 PMCID: PMC10078427 DOI: 10.1111/jne.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The stomach-derived octanoylated peptide ghrelin was discovered in 1999 and recognized as an endogenous agonist of the growth hormone secretagogue receptor (GHSR). Subsequently, ghrelin has been shown to play key roles in controlling not only growth hormone secretion, but also a variety of other physiological functions including, but not limited to, food intake, reward-related behaviors, glucose homeostasis and gastrointestinal tract motility. Importantly, a non-acylated form of ghrelin, desacyl-ghrelin, can also be detected in biological samples. Desacyl-ghrelin, however, does not bind to GHSR at physiological levels, and its physiological role has remained less well-characterized than that of ghrelin. Ghrelin and desacyl-ghrelin are currently referred to in the literature using many different terms, highlighting the need for a consistent nomenclature. The variability of terms used to designate ghrelin can lead not only to confusion, but also to miscommunication, especially for those who are less familiar with the ghrelin literature. Thus, we conducted a survey among experts who have contributed to the ghrelin literature aiming to identify whether a consensus may be reached. Based on the results of this consensus, we propose using the terms "ghrelin" and "desacyl-ghrelin" to refer to the hormone itself and its non-acylated form, respectively. Based on the results of this consensus, we further propose using the terms "GHSR" for the receptor, and "LEAP2" for liver-expressed antimicrobial peptide 2, a recently recognized endogenous GHSR antagonist/inverse agonist.
Collapse
Affiliation(s)
- Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC‐PBA)La PlataArgentina
| | - Suzanne L. Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal MedicineUT Southwestern Medical CenterDallasTXUSA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological ResearchNational Institutes of HealthBaltimoreMDUSA
| | | |
Collapse
|
8
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two "sibling proteins" encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin's functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three "C" categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
9
|
Daimon CM, Hentges ST. Inhibition of POMC neurons in mice undergoing activity-based anorexia selectively blunts food anticipatory activity without affecting body weight or food intake. Am J Physiol Regul Integr Comp Physiol 2022; 322:R219-R227. [PMID: 35043681 PMCID: PMC8858678 DOI: 10.1152/ajpregu.00313.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anorexia nervosa (AN) is a debilitating eating disorder characterized by severely restricted eating and significant body weight loss. In addition, many individuals also report engaging in excessive exercise. Previous research using the activity-based anorexia (ABA) model has implicated the hypothalamic proopiomelanocortin (POMC) system. Using the ABA model, Pomc mRNA has been shown to be transiently elevated in both male and female rodents undergoing ABA. In addition, the POMC peptide β-endorphin appears to contribute to food anticipatory activity (FAA), a characteristic of ABA, as both deletion and antagonism of the µ opioid receptor (MOR) that β-endorphin targets, results in decreased FAA. The role of β-endorphin in reduced food intake in ABA is unknown and POMC neurons release multiple transmitters in addition to β-endorphin. In the current study, we set out to determine whether targeted inhibition of POMC neurons themselves rather than their peptide products would lessen the severity of ABA. Inhibition of POMC neurons during ABA via chemogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology resulted in reduced FAA in both male and female mice with no significant changes in body weight or food intake. The selective reduction in FAA persisted even in the face of concurrent chemogenetic inhibition of additional cell types in the hypothalamic arcuate nucleus. The results suggest that POMC neurons could be contributing preferentially to excessive exercise habits in patients with AN. Furthermore, the results also suggest that metabolic control during ABA appears to take place via a POMC neuron-independent mechanism.
Collapse
Affiliation(s)
- Caitlin M. Daimon
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T. Hentges
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
10
|
TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. Int J Mol Sci 2022; 23:ijms23010559. [PMID: 35008985 PMCID: PMC8745172 DOI: 10.3390/ijms23010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Collapse
|
11
|
Labarthe A, Zizzari P, Fiquet O, Lebrun N, Veldhuis JD, Roelfsema F, Chauveau C, Bohlooly-Y M, Epelbaum J, Tolle V. Effect of Growth Hormone Secretagogue Receptor Deletion on Growth, Pulsatile Growth Hormone Secretion, and Meal Pattern in Male and Female Mice. Neuroendocrinology 2022; 112:215-234. [PMID: 33774644 DOI: 10.1159/000516147] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION While the vast majority of research investigating the role of ghrelin or its receptor, GHS-R1a, in growth, feeding, and metabolism has been conducted in male rodents, very little is known about sex differences in this system. Furthermore, the role of GHS-R1a signaling in the control of pulsatile GH secretion and its link with growth or metabolic parameters has never been characterized. METHODS We assessed the sex-specific contribution of GHS-R1a signaling in the activity of the GH/IGF-1 axis, metabolic parameters, and feeding behavior in adolescent (5-6 weeks old) or adult (10-19 weeks old) GHS-R KO (Ghsr-/-) and WT (Ghsr+/+) male and female mice. RESULTS Adult Ghsr-/- male and female mice displayed deficits in weight and linear growth that were correlated with reduced GH pituitary contents in males only. GHS-R1a deletion was associated with reduced meal frequency and increased meal intervals, as well as reduced hypothalamic GHRH and NPY mRNA in males, not females. In adult, GH release from Ghsr-/- mice pituitary explants ex vivo was reduced independently of the sex. However, in vivo pulsatile GH secretion decreased in adult but not adolescent Ghsr-/- females, while in males, GHS-R1a deletion was associated with reduction in pulsatile GH secretion during adolescence exclusively. In males, linear growth did not correlate with pulsatile GH secretion, but rather with ApEn, a measure that reflects irregularity of the rhythmic secretion. Fat mass, plasma leptin concentrations, or ambulatory activity did not predict differences in GH secretion. DISCUSSION/CONCLUSION These results point to a sex-dependent dimorphic effect of GHS-R1a signaling to modulate pulsatile GH secretion and meal pattern in mice with different compensatory mechanisms occurring in the hypothalamus of adult males and females after GHS-R1a deletion. Altogether, we show that GHS-R1a signaling plays a more critical role in the regulation of pulsatile GH secretion during adolescence in males and adulthood in females.
Collapse
Affiliation(s)
- Alexandra Labarthe
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Philippe Zizzari
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Oriane Fiquet
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Nicolas Lebrun
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Johannes D Veldhuis
- Endocrine Research Unit, Department of Medicine, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, New York, USA
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab - MABLab ULR 4490, University Littoral Côte d'Opale, Boulogne-sur-Mer, France
- University Lille, CHU Lille, Lille, France
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jacques Epelbaum
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Virginie Tolle
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
12
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
14
|
Tuvia N, Pivovarova-Ramich O, Murahovschi V, Lück S, Grudziecki A, Ost AC, Kruse M, Nikiforova VJ, Osterhoff M, Gottmann P, Gögebakan Ö, Sticht C, Gretz N, Schupp M, Schürmann A, Rudovich N, Pfeiffer AFH, Kramer A. Insulin Directly Regulates the Circadian Clock in Adipose Tissue. Diabetes 2021; 70:1985-1999. [PMID: 34226282 DOI: 10.2337/db20-0910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/15/2021] [Indexed: 11/13/2022]
Abstract
Adipose tissue (AT) is a key metabolic organ which functions are rhythmically regulated by an endogenous circadian clock. Feeding is a "zeitgeber" aligning the clock in AT with the external time, but mechanisms of this regulation remain largely unclear. We tested the hypothesis that postprandial changes of the hormone insulin directly entrain circadian clocks in AT and investigated a transcriptional-dependent mechanism of this regulation. We analyzed gene expression in subcutaneous AT (SAT) of obese subjects collected before and after the hyperinsulinemic-euglycemic clamp or control saline infusion (SC). The expressions of core clock genes PER2, PER3, and NR1D1 in SAT were differentially changed upon insulin and saline infusion, suggesting insulin-dependent clock regulation. In human stem cell-derived adipocytes, mouse 3T3-L1 cells, and AT explants from mPer2Luc knockin mice, insulin induced a transient increase of the Per2 mRNA and protein expression, leading to the phase shift of circadian oscillations, with similar effects for Per1 Insulin effects were dependent on the region between -64 and -43 in the Per2 promoter but not on CRE and E-box elements. Our results demonstrate that insulin directly regulates circadian clocks in AT and isolated adipocytes, thus representing a primary mechanism of feeding-induced AT clock entrainment.
Collapse
Affiliation(s)
- Neta Tuvia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Olga Pivovarova-Ramich
- Reseach Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Veronica Murahovschi
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Sarah Lück
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Astrid Grudziecki
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Anne-Catrin Ost
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Michael Kruse
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Victoria J Nikiforova
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Martin Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Özlem Gögebakan
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, Bülach, Switzerland
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Achim Kramer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| |
Collapse
|
15
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
16
|
Duriez P, Nilsson IAK, Le Thuc O, Alexandre D, Chartrel N, Rovere C, Chauveau C, Gorwood P, Tolle V, Viltart O. Exploring the Mechanisms of Recovery in Anorexia Nervosa through a Translational Approach: From Original Ecological Measurements in Human to Brain Tissue Analyses in Mice. Nutrients 2021; 13:nu13082786. [PMID: 34444945 PMCID: PMC8401511 DOI: 10.3390/nu13082786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder where caloric restriction, excessive physical activity and metabolic alterations lead to life-threatening situations. Despite weight restoration after treatment, a significant part of patients experience relapses. In this translational study, we combined clinical and preclinical approaches. We describe preliminary data about the effect of weight gain on the symptomatology of patients suffering from acute AN (n = 225) and partially recovered (n = 41). We measured more precisely physical activity with continuous cardiac monitoring in a sub-group (n = 68). Using a mouse model, we investigated whether a long-term food restriction followed by nutritional recovery associated or not with physical activity may differentially impact peripheral and central homeostatic regulation. We assessed the plasma concentration of acyl ghrelin, desacyl ghrelin and leptin and the mRNA expression of hypothalamic neuropeptides and their receptors. Our data show an effect of undernutrition history on the level of physical activity in AN. The preclinical model supports an important role of physical activity in the recovery process and points out the leptin system as one factor that can drive a reliable restoration of metabolic variables through the hypothalamic regulation of neuropeptides involved in feeding behavior.
Collapse
Affiliation(s)
- Philibert Duriez
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Ida A. K. Nilsson
- Department of Molecular Medicine & Surgery, Karolinska Institutet, Centre for Eating Disorders Innovation (CEDI), Medical University, Karolinska Institutet, S-17176 Stockholm, Sweden;
| | - Ophelia Le Thuc
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - David Alexandre
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Carole Rovere
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - Christophe Chauveau
- Marrow Adiposity and Bone Laboratory (MABLab), University of Littoral Côté d’Opale, CHRU Lille, F-62327 Boulogne sur Mer, France;
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-6-76-88-05-06
| |
Collapse
|
17
|
Bake T, Peris-Sampedro F, Wáczek Z, Ohlsson C, Pálsdóttir V, Jansson JO, Dickson SL. The gravitostat protects diet-induced obese rats against fat accumulation and weight gain. J Neuroendocrinol 2021; 33:e12997. [PMID: 34240761 DOI: 10.1111/jne.12997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.
Collapse
Affiliation(s)
- Tina Bake
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Zita Wáczek
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre of Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Vilborg Pálsdóttir
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Berry A, Mazzelli M, Musillo C, Riva MA, Cattaneo A, Cirulli F. High-fat diet during adulthood interacts with prenatal stress, affecting both brain inflammatory and neuroendocrine markers in male rats. Eur J Neurosci 2021; 55:2326-2340. [PMID: 33711185 DOI: 10.1111/ejn.15181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Prenatal stress (PNS) affects foetal programming and, through an interaction with subsequent challenges, can increase vulnerability to mood and metabolic disorders. We have previously shown that, following PNS, adult male rats are characterized by increased vulnerability to a metabolic stressor experienced at adulthood (8-week-high-fat diet-HFD). In this study, we specifically assessed whether PNS might interact with an adult metabolic challenge to induce an inflammatory phenotype. Changes in the expression levels of inflammatory (Il-1β, Tnf-α, Il-6) and of stress response mediators (Nr3c1, Fkbp5) as well as of mood and metabolic regulators (Bdnf, Ghs-R) were investigated in the hippocampus, prefrontal cortex and hypothalamus, brain regions involved in the pathogenesis of depression and prone to inflammation in response to stress. Overall, PNS reduced the expression of Bdnf and Tnf-α, while HFD administered at adulthood counteracted this effect suggesting that PNS impinges upon the same pathways regulating responses to a metabolic challenge at adulthood. Furthermore, HFD and PNS affected the expression of both Nr3c1 and Fkbp5, two neuroendocrine mediators involved in the response to stress, metabolic challenges and in the modulation of the emotional profile (as shown by the correlation between Fkbp5 and the time spent in the open arms of the elevated plus-maze). Overall, these results indicate that the same metabolic and neuroendocrine effectors engaged by PNS are affected by metabolic challenges at adulthood, providing some mechanistic insight into the well-known comorbidity between mood and metabolic disorders.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Mazzelli
- Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
19
|
Daimon CM, Hentges ST. β-endorphin differentially contributes to food anticipatory activity in male and female mice undergoing activity-based anorexia. Physiol Rep 2021; 9:e14788. [PMID: 33661571 PMCID: PMC7931805 DOI: 10.14814/phy2.14788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Anorexia nervosa (AN) has a lifetime prevalence of up to 4% and a high mortality rate (~5-10%), yet little is known regarding the etiology of this disease. In an attempt to fill the gaps in knowledge, activity-based anorexia (ABA) in rodents has been a widely used model as it mimics several key features of AN including severely restricted food intake and excessive exercise. Using this model, a role for the hypothalamic proopiomelanocortin (POMC) system has been implicated in the development of ABA as Pomc mRNA is elevated in female rats undergoing the ABA paradigm. Since the Pomc gene product α-MSH potently inhibits food intake, it could be that elevated α-MSH might promote ABA. However, the α-MSH receptor antagonist SHU9119 does not protect against the development of ABA. Interestingly, it has also been shown that female mice lacking the mu opioid receptor (MOR), the primary receptor activated by the Pomc-gene-derived opioid β-endorphin, display blunted food anticipatory behavior (FAA), a key feature of ABA. Thus, we hypothesized that the elevation in Pomc mRNA observed during ABA may lead to increased β-endorphin concentrations and MOR activation to promote ABA. Further, given the known sex differences in AN and ABA, we hypothesized that MORs may contribute differentially in male and female mice. Using wild-type and MOR knockout mice of both sexes, a MOR antagonist and careful analysis of food anticipatory behavior and β-endorphin levels, we found 1) increased Pomc mRNA levels in both female and male mice that underwent ABA, 2) increased β-endorphin in female mice that underwent ABA, and 3) blunted FAA in both sexes in response to MOR genetic deletion yet blunted FAA only in males in response to MOR antagonism. The results presented provide support for both hypotheses and suggest that it may be the β-endorphin resulting from increased Pomc transcription that supports the development of some features of ABA.
Collapse
Affiliation(s)
- Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Seidel M, Markmann Jensen S, Healy D, Dureja A, Watson HJ, Holst B, Bulik CM, Sjögren JM. A Systematic Review and Meta-Analysis Finds Increased Blood Levels of All Forms of Ghrelin in Both Restricting and Binge-Eating/Purging Subtypes of Anorexia Nervosa. Nutrients 2021; 13:nu13020709. [PMID: 33672297 PMCID: PMC7926807 DOI: 10.3390/nu13020709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric condition associated with high mortality and chronicity. The hunt for state, trait, subtyping, and prognostic biomarkers is ongoing and the orexigenic hormone ghrelin and its different forms, acyl ghrelin and desacyl ghrelin, have been proposed to be increased in AN, especially in the restrictive subtype. A systematic literature search was performed using established databases up to 30 November 2020. Forty-nine studies met inclusion criteria for cross-sectional and longitudinal meta-analyses on total ghrelin, acyl ghrelin, and desacyl ghrelin. All forms of ghrelin were increased in the acute stage of anorexia nervosa during fasting compared to healthy controls. Previous notions on differences in ghrelin levels between AN subtypes were not supported by current data. In addition, a significant decrease in total ghrelin was observed pre-treatment to follow-up. However, total ghrelin levels at follow-up were still marginally elevated compared to healthy controls, whereas for acyl ghrelin, no overall effect of treatment was observed. Due to heterogeneity in follow-up designs and only few data on long-term recovered patients, longitudinal results should be interpreted with caution. While the first steps towards a biomarker in acute AN have been completed, the value of ghrelin as a potential indicator of treatment success or recovery status or its use in subtype differentiation are yet to be established.
Collapse
Affiliation(s)
- Maria Seidel
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65 Solna, Sweden; (M.S.); (C.M.B.)
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, 1099 Dresden, Germany
| | - Signe Markmann Jensen
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Darren Healy
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Aakriti Dureja
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Hunna J. Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- School of Psychology, Curtin University, Perth U1987, Australia
- Division of Paediatrics, University of Western Australia, Perth 6907, Australia
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark;
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65 Solna, Sweden; (M.S.); (C.M.B.)
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan Magnus Sjögren
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
- Department of Clinical Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
21
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Zhang J, Dulawa SC. The Utility of Animal Models for Studying the Metabo-Psychiatric Origins of Anorexia Nervosa. Front Psychiatry 2021; 12:711181. [PMID: 34721100 PMCID: PMC8551379 DOI: 10.3389/fpsyt.2021.711181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder that primarily affects young women and girls, and is characterized by abnormal restrictive feeding and a dangerously low body-mass index. AN has one of the highest mortality rates of any psychiatric disorder, and no approved pharmacological treatments exist. Current psychological and behavioral treatments are largely ineffective, and relapse is common. Relatively little basic research has examined biological mechanisms that underlie AN compared to other major neuropsychiatric disorders. A recent large-scale genome-wide association study (GWAS) revealed that the genetic architecture of AN has strong metabolic as well as psychiatric origins, suggesting that AN should be reconceptualized as a metabo-psychiatric disorder. Therefore, identifying the metabo-psychiatric mechanisms that contribute to AN may be essential for developing effective treatments. This review focuses on animal models for studying the metabo-psychiatric mechanisms that may contribute to AN, with a focus on the activity-based anorexia (ABA) paradigm. We also highlight recent work using modern circuit-dissecting neuroscience techniques to uncover metabolic mechanisms that regulate ABA, and encourage further work to ultimately identify novel treatment strategies for AN.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
23
|
Khelifa MS, Skov LJ, Holst B. Biased Ghrelin Receptor Signaling and the Dopaminergic System as Potential Targets for Metabolic and Psychological Symptoms of Anorexia Nervosa. Front Endocrinol (Lausanne) 2021; 12:734547. [PMID: 34646236 PMCID: PMC8503187 DOI: 10.3389/fendo.2021.734547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Anorexia Nervosa (AN) is a complex disease that impairs the metabolic, mental and physiological health of affected individuals in a severe and sometimes lethal way. Many of the common symptoms in AN patients, such as reduced food intake, anxiety, impaired gut motility or overexercising are connected to both the orexigenic gut hormone ghrelin and the dopaminergic system. Targeting the ghrelin receptor (GhrR) to treat AN seems a promising possibility in current research. However, GhrR signaling is highly complex. First, the GhrR can activate four known intracellular pathways Gαq, Gαi/o, Gα12/13 and the recruitment of β-arrestin. Biased signaling provides the possibility to activate or inhibit only one or a subset of the intracellular pathways of a pleiotropic receptor. This allows specific targeting of physiological functions without adverse effects. Currently little is known on how biased signaling could specifically modulate GhrR effects. Second, GhrR signaling has been shown to be interconnected with the dopaminergic system, particularly in the context of AN symptoms. This review highlights that a biased agonist for the GhrR may be a promising target for the treatment of AN, however extensive and systematic translational studies are still needed and the connection to the dopaminergic system has to be taken into account.
Collapse
|
24
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Unexpected Association of Desacyl-Ghrelin with Physical Activity and Chronic Food Restriction: A Translational Study on Anorexia Nervosa. J Clin Med 2020; 9:jcm9092782. [PMID: 32872151 PMCID: PMC7565884 DOI: 10.3390/jcm9092782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/20/2023] Open
Abstract
Anorexia nervosa (AN) is a severe metabopsychiatric disorder characterised by caloric intake restriction and often excessive physical exercise. Our aim is to assess in female AN patients and in a rodent model, the co-evolution of physical activity and potential dysregulation of acyl—(AG) and desacyl—(DAG) ghrelin plasma concentrations during denutrition and weight recovery. AN inpatients were evaluated at inclusion (T0, n = 29), half—(T1) and total (T2) weight recovery, and one month after discharge (T3, n = 13). C57/Bl6 mice with access to a running wheel, were fed ad libitum or submitted to short—(15 days) or long—(50 days) term quantitative food restriction, followed by refeeding (20 days). In AN patients, AG and DAG rapidly decreased during weight recovery (T0 to T2), AG increased significantly one-month post discharge (T3), but only DAG plasma concentrations at T3 correlated negatively with BMI and positively with physical activity. In mice, AG and DAG both increased during short- and long-term food restriction. After 20 days of ad libitum feeding, DAG was associated to persistence of exercise alteration. The positive association of DAG with physical activity during caloric restriction and after weight recovery questions its role in the adaptation mechanisms to energy deprivation that need to be considered in recovery process in AN.
Collapse
|
26
|
Breton J, Giallourou N, Nobis S, Morin A, Achamrah N, Goichon A, Belmonte L, Dechelotte P, Rego JLD, Coëffier M, Swann J. Characterizing the metabolic perturbations induced by activity-based anorexia in the C57Bl/6 mouse using 1H NMR spectroscopy. Clin Nutr 2020; 39:2428-2434. [PMID: 31870654 DOI: 10.1016/j.clnu.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
|
27
|
Duriez P, Eddarkaoui S, Blum D, Dickson SL, Gorwood P, Tolle V, Viltart O. Does physical activity associated with chronic food restriction alleviate anxiety like behaviour, in female mice? Horm Behav 2020; 124:104807. [PMID: 32544401 DOI: 10.1016/j.yhbeh.2020.104807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by excessive weight loss, persistent food restriction and inappropriate physical activity relative to declining energy balance. The comorbidity with depression and/or anxiety disorders might contribute to the "chronicization" of the disease. We aimed here to question first the link between physical activity and anxiety from a clinical investigation of AN patients (n = 206). Then, using a rodent model mimicking numerous physiological and metabolic alterations commonly seen in AN patients, we examined whether 1) chronic food restriction increased anxiety-like behaviour and 2) physical activity plays a role in regulating anxiety levels. To this end, we exposed young female mice to a chronic food restriction (FR, n = 8) paradigm combined or not with access to a running wheel (FRW, n = 8) for two weeks. The mice were compared to a group of mice fed ad libitum without (AL, n = 6) or with running wheel access (ALW, n = 8). We explored anxiety-like behaviour of all mice in the following tests: hyponeophagia, marble burying, elevated plus maze, open field, and the light and dark box. On the last day, we used a restraint test of 30 min duration and measured their stress reactivity by assaying plasma corticosterone. In the open field and the elevated plus-maze, we found that FRW mice behaved similarly to AL and ALW mice whereas FR mice did not express anxiety-like behaviour. The FRW mice displayed the lowest latency to reach the food in the hyponeophagia test. Regarding stress reactivity, FRW mice exhibited corticosterone reactivity after acute stress that was similar to the control mice, while FR mice did not fully return to basal corticosterone at one hour after the restraint stress. Taken together, these data demonstrate a differential reactivity to acute stress in FR conditions and a beneficial effect of running wheel activity in ALW and FRW conditions. Moreover, we report the absence of a typical anxiety-like behaviour associated with the food restriction (FR and FRW groups). We conclude that this model (FR and FRW mice) did not express typical anxiety-like behaviour, but that physical activity linked to food restriction improved coping strategies in an anxiogenic context.
Collapse
Affiliation(s)
- Philibert Duriez
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP) INSERM U1266, "Vulnerability of Psychiatric and Addictive Disorders", F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, F-75014 Paris, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, F-59000 Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, F-59000 Lille, France
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Philip Gorwood
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP) INSERM U1266, "Vulnerability of Psychiatric and Addictive Disorders", F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, F-75014 Paris, France
| | - Virginie Tolle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP) INSERM U1266, "Vulnerability of Psychiatric and Addictive Disorders", F-75014 Paris, France
| | - Odile Viltart
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP) INSERM U1266, "Vulnerability of Psychiatric and Addictive Disorders", F-75014 Paris, France; Université de Lille, F-59650 Villeneuve d'Ascq, France.
| |
Collapse
|
28
|
Méquinion M, Foldi CJ, Andrews ZB. The Ghrelin-AgRP Neuron Nexus in Anorexia Nervosa: Implications for Metabolic and Behavioral Adaptations. Front Nutr 2020; 6:190. [PMID: 31998738 PMCID: PMC6962137 DOI: 10.3389/fnut.2019.00190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Abstract
Anorexia Nervosa (AN) is viewed as primarily a psychiatric disorder owing to the considerable behavioral and genetic overlap with mood disorders and other psychiatric traits. However, the recent reconceptualization of AN as one of both psychiatric and metabolic etiology suggests that metabolic circuits conveying hunger, or sensitive to signals of hunger, may be a critical nexus linking metabolic dysfunction to mood disturbances. Within the brain, hunger is primarily percieved by Agouti-related (AgRP) neurons and hunger increases plasma concentrations of the hormone ghrelin, which targets ghrelin receptors on AgRP neurons to facilitate metabolic adaptations to low energy availability. However, beyond the fundamental role in maintaining hunger signaling, AgRP neurons regulate a diverse range of behaviors such as motivation, locomotor activity, negative reinforcement, anxiety, and obsession and a key factor involved in the manifestation of these behavioral changes in response to activation is the presence or absence of food availability. These changes can be considered adaptive in that they promote affective food-seeking strategies in environments with limited food availability. However, it also suggests that these neurons, so well-studied for their metabolic control, shape mood-related behaviors in a context-dependent manner and dysfunctional control leads not only to metabolic problems but also potentially mood-related problems. The purpose of this review is to underline the potential role of AgRP neurons and ghrelin signaling in both the metabolic and behavioral changes observed in anorexia nervosa. We aim to highlight the most recent studies on AgRP neurons and ghrelin signaling and integrate their metabolic and behavioral roles in normal function and highlight how dysfunction may contribute to the development of AN.
Collapse
Affiliation(s)
| | | | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
Duriez P, Ramoz N, Gorwood P, Viltart O, Tolle V. A Metabolic Perspective on Reward Abnormalities in Anorexia Nervosa. Trends Endocrinol Metab 2019; 30:915-928. [PMID: 31648936 DOI: 10.1016/j.tem.2019.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Anorexia nervosa (AN) is the psychiatric disorder with the highest mortality rate; however, the mechanisms responsible for its pathogenesis remain largely unknown. Large-scale genome-wide association studies (GWAS) have identified genetic loci associated with metabolic features in AN. Metabolic alterations that occur in AN have been mostly considered as consequences of the chronic undernutrition state but until recently have not been linked to the etiology of the disorder. We review the molecular basis of AN based on human genetics, with an emphasis on the molecular components controlling energy homeostasis, highlight the main metabolic and endocrine alterations occurring in AN, and decipher the possible connection between metabolic factors and abnormalities of reward processes that are central in AN.
Collapse
Affiliation(s)
- Philibert Duriez
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France
| | - Philip Gorwood
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; University of Lille, Lille, France
| | - Virginie Tolle
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France.
| |
Collapse
|
30
|
Maussion G, Demirova I, Gorwood P, Ramoz N. Induced Pluripotent Stem Cells; New Tools for Investigating Molecular Mechanisms in Anorexia Nervosa. Front Nutr 2019; 6:118. [PMID: 31457016 PMCID: PMC6700384 DOI: 10.3389/fnut.2019.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a dramatic psychiatric disorder characterized by dysregulations in food intake and reward processing, involving molecular and cellular changes in several peripheral cell types and central neuronal networks. Genomic and epigenomic analyses have allowed the identification of multiple genetic and epigenetic modifications highlighting the complex pathophysiology of AN. Behavioral and genetic rodent models have been used to recapitulate and investigate, with some limitations, the cellular and molecular changes that potentially underlie eating disorders. In the last 5 years, the use of induced pluripotent stem cells (IPSCs), combined with CRISPR-Cas9 technology, has led to the generation of specific neuronal cell subtypes engineered from human somatic samples, representing a powerful tool to complement observations made in human samples and data collected from animal models. Systems biology using IPSCs has indeed proved to be a valuable approach for the study of metabolic disorders, in addition to neurodevelopmental and psychiatric disorders. The manuscript, while reviewing the main findings related to the genetic, epigenetic, and cellular bases of AN, will present how new studies published, or to be performed, in the field of IPSC-derived cells should improve our current understanding of the pathophysiology of AN and provide potential therapeutic strategies addressing specific endophenotypes.
Collapse
Affiliation(s)
- Gilles Maussion
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Iveta Demirova
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Philip Gorwood
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,Hôpital Sainte-Anne (CMME), University Paris-Descartes, Paris, France
| | - Nicolas Ramoz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
31
|
Le May MV, Hume C, Sabatier N, Schéle E, Bake T, Bergström U, Menzies J, Dickson SL. Activation of the rat hypothalamic supramammillary nucleus by food anticipation, food restriction or ghrelin administration. J Neuroendocrinol 2019; 31:e12676. [PMID: 30580497 DOI: 10.1111/jne.12676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023]
Abstract
The circulating orexigenic hormone ghrelin targets many brain areas involved in feeding control and signals via a dedicated receptor, the growth hormone secretagogue receptor 1A. One unexplored target area for ghrelin is the supramammillary nucleus (SuM), a hypothalamic area involved in motivation and reinforcement and also recently linked to metabolic control. Given that ghrelin binds to the SuM, we explored whether SuM cells respond to ghrelin and/or are activated when endogenous ghrelin levels are elevated. We found that peripheral ghrelin injection activates SuM cells in rats, reflected by an increase in the number of cells expressing c-Fos protein in this area, as welll as by the predominantly excitatory response of single SuM cells recorded in in vivo electrophysiological studies. Further c-Fos mapping studies reveal that this area is also activated in rats in situations when circulating ghrelin levels are known to be elevated: in food-restricted rats anticipating the consumption of food and in fed rats anticipating the consumption of an energy-dense food. We also show that intra-SuM injection of ghrelin induces a feeding response in rats suggesting that, if peripheral ghrelin is able to access the SuM, it may have direct effects on this brain region. Collectively, our data demonstrate that the SuM is activated when peripheral ghrelin levels are high, further supporting the emerging role for this brain area in metabolic and feeding control.
Collapse
Affiliation(s)
- Marie V Le May
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Catherine Hume
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Nancy Sabatier
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Erik Schéle
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Tina Bake
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Bergström
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - John Menzies
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Suzanne L Dickson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Bake T, Edvardsson CE, Cummings CJ, Dickson SL. Ghrelin's effects on food motivation in rats are not limited to palatable foods. J Neuroendocrinol 2019; 31:e12665. [PMID: 30525248 PMCID: PMC6767751 DOI: 10.1111/jne.12665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/17/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022]
Abstract
The "hunger" hormone, ghrelin, is powerfully orexigenic. Even in the absence of hunger, ghrelin delivery to rats increases consumption of chow, as well as palatable foods, and increases motivated behaviour for palatable food rewards. Inspired by the finding that ghrelin increases the selection of chow in rats offered a choice diet (lard, sucrose or chow) and even in rats bingeing on a high-fat diet, we aimed to explore whether the effects of ghrelin on motivation extend to regular chow. Rats were conditioned to lever press for either chow or sucrose pellets in a progressive ratio (PR) operant conditioning task. The effect of acute i.c.v. delivery of ghrelin on both chow and sucrose self-administration was determined and compared with overnight fasting (ie, when endogenous ghrelin levels are elevated). We found that ghrelin similarly increased motivated behaviour for chow and sucrose pellets. The effect of fasting on motivated behaviour for both food pellets was comparable in magnitude to that induced by ghrelin, albeit with an earlier ceiling effect during the PR session. Devaluation experiments (in which rats are offered either food reinforcer in excess prior to PR testing) did not support the hypothesis that sucrose pellets would be more difficult to devalue (as a result of their higher incentive value) than chow pellets. When exchanging the respective pellets during a PR session, chow-conditioned rats were more motivated for sucrose pellets compared to chow pellets; however, sucrose-conditioned rats were similarly motivated for chow pellets compared to sucrose pellets. Thus, using sucrose as a reward may increase the motivation even for less palatable foods. We conclude that the impact of ghrelin on food-motivated behaviour in fed rats is not limited to palatable foods but extends to regular chow, and also that the magnitude of the effect is considerable compared to that of an overnight fast.
Collapse
Affiliation(s)
- Tina Bake
- Department of Physiology/EndocrineInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Christian E. Edvardsson
- Department of Physiology/EndocrineInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Cameron J. Cummings
- Department of Physiology/EndocrineInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Suzanne L. Dickson
- Department of Physiology/EndocrineInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
33
|
Wu CS, Bongmba OYN, Lee JH, Tuchaai E, Zhou Y, Li DP, Xue B, Chen Z, Sun Y. Ghrelin receptor in agouti-related peptide neurones regulates metabolic adaptation to calorie restriction. J Neuroendocrinol 2019; 31:e12763. [PMID: 31251830 PMCID: PMC7233797 DOI: 10.1111/jne.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Ghrelin is a gut hormone that signals to the hypothalamus to stimulate growth hormone release, increase food intake and promote fat deposition. The ghrelin receptor, also known as growth hormone secretagogue receptor (GHS-R), is highly expressed in the brain, with the highest expression in agouti-related peptide (AgRP) neurones in the hypothalamus. Compelling evidence indicates that ghrelin serves as a survival hormone with respect to maintaining blood glucose and body weight during nutritional deficiencies. Recent studies have demonstrated that AgRP neurones are involved in metabolic and behavioural adaptation to an energy deficit to improve survival. In the present study, we used a neuronal subtype-specific GHS-R knockout mouse (AgRP-Cre;Ghsrf/f ) to investigate the role of GHS-R in hypothalamic AgRP neurones in metabolic and behavioural adaptation to hypocaloric restricted feeding. We subjected the mice to a restricted feeding regimen of 40% mild calorie restriction (CR), with one-quarter of food allotment given in the beginning of the light cycle and three-quarters given at the beginning of the dark cycle, to mimic normal mouse intake pattern. The CR-fed AgRP-Cre;Ghsrf/f mice exhibited reductions in body weight, fat mass and blood glucose. Metabolic profiling of these CR-fed AgRP-Cre;Ghsrf/f mice showed a trend toward reduced basal metabolic rate, significantly reduced core body temperature and a decreased expression of thermogenic genes in brown adipose tissue. This suggests a metabolic reset to a lower threshold. Significantly increased physical activity, a trend toward increased food anticipatory behaviour and altered fuel preferences were also observed in these mice. In addition, these CR-fed AgRP-Cre;Ghsrf/f mice exhibited a decreased counter-regulatory response, showing impaired hepatic glucose production. Lastly, hypothalamic gene expression in AgRP-Cre;Ghsrf/f mice revealed increased AgRP expression and a decreased expression of genes in β-oxidation pathways. In summary, our data suggest that GHS-R in AgRP neurones is a key component of the neurocircuitry involved in metabolic adaptation to calorie restriction.
Collapse
Affiliation(s)
- Chia-Shan Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Odelia Y. N. Bongmba
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jong Han Lee
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Ellie Tuchaai
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - De-Pei Li
- Center for precision medicine, School of Medicine, University of Missouri. Columbia, MO 65212, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Schalla MA, Stengel A. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review. Front Nutr 2019; 6:69. [PMID: 31165073 PMCID: PMC6536653 DOI: 10.3389/fnut.2019.00069] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder affecting around 1 per 100 persons. However, the knowledge about its underlying pathophysiology is limited. To address the need for a better understanding of AN, an animal model was established early on in the late 1960's: the activity-based anorexia (ABA) model in which rats have access to a running wheel combined with restricted food access leading to self-starving/body weight loss and hyperactivity. Both symptoms, separately or combined, can also be found in patients with AN. The aim of this systematic review was to compile the current knowledge about this animal model as well as to address gaps in knowledge. Using the data bases of PubMed, Embase and Web of science 102 publications were identified meeting the search criteria. Here, we show that the ABA model mimics core features of human AN and has been characterized with regards to brain alterations, hormonal changes as well as adaptations of the immune system. Moreover, pharmacological interventions in ABA animals and new developments, such as a chronic adaptation of the ABA model, will be highlighted. The chronic model might be well suited to display AN characteristics but should be further characterized. Lastly, limitations of the model will be discussed.
Collapse
Affiliation(s)
- Martha A Schalla
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, Rosenbrier-Ribeiro L, Newham P, Clevers H, Bechtold DA, O'Neill JS. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019; 177:896-909.e20. [PMID: 31030999 PMCID: PMC6506277 DOI: 10.1016/j.cell.2019.02.017] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/26/2018] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body. Insulin and IGF-1 are a systemic synchronizing cue for circadian rhythms in mammals Insulin and IGF-1 signaling rapidly upregulates translation of PERIOD clock proteins Coincident signaling facilitates selective induction of PERIOD synthesis Circadian disruption is recapitulated by mistimed insulin in cell and animal models
Collapse
Affiliation(s)
- Priya Crosby
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ryan Hamnett
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marrit Putker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Martin Reed
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | | | - Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | | | - Peter Newham
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0FZ, UK
| | - Hans Clevers
- Hubrecht Institute, Utrecht 3584 CT, the Netherlands; Princess Máxima Centre, Utrecht 3584 CS, the Netherlands
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
36
|
de Lartigue G, McDougle M. Dorsal striatum dopamine oscillations: Setting the pace of food anticipatory activity. Acta Physiol (Oxf) 2019; 225:e13152. [PMID: 29920950 DOI: 10.1111/apha.13152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Predicting the uncertainties of the ever-changing environment provides a competitive advantage for animals. The need to anticipate food sources has provided a strong evolutionary drive for synchronizing behavioural and internal processes with daily circadian cycles. When food is restricted to a few hours per day, rodents exhibit increased wakefulness and foraging behaviour preceding the arrival of food. Interestingly, while the master clock located in the suprachiasmatic nucleus entrains daily rhythms to the light cycle, it is not necessary for this food anticipatory activity. This suggests the existence of a food-entrained oscillator located elsewhere. Based on the role of nigrostriatal dopamine in reward processing, motor function, working memory and internal timekeeping, we propose a working model by which food-entrained dopamine oscillations in the dorsal striatum can enable animals maintained on a restricted feeding schedule to anticipate food arrival. Finally, we summarize how metabolic signals in the gut are conveyed to the nigrostriatal pathway to suggest possible insight into potential input mechanisms for food anticipatory activity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory; New Haven Connecticut
- Department of Cellular and Molecular Physiology; Yale Medical School; New Haven Connecticut
| | | |
Collapse
|
37
|
Sztainert T, Hay R, Wohl MJA, Abizaid A. Hungry to gamble? Ghrelin as a predictor of persistent gambling in the face of loss. Biol Psychol 2018; 139:115-123. [PMID: 30392826 DOI: 10.1016/j.biopsycho.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Ghrelin, a peptide hormone associated with appetite, is also linked to increased reward seeking behaviors, including food, sex, and drug seeking behaviors through the stimulation of the mesolimbic dopaminergic system. Moreover, plasma ghrelin concentrations are increased by cues that predict rewards, suggesting that cues could facilitate cravings and ultimately relapse. In this project we examined the effects of an overnight fast, a manipulation known to increase ghrelin concentrations, on gambling behaviors. We also examined if cues associated with gambling would also increase ghrelin and, if so, we examined if these increases were associated with gambling behavior. One hundred and one (37 females) participants were asked to fast overnight or after breakfast and then asked to complete food and gambling craving questionnaires. Participants were then presented with gambling cues (a casino like environment in the lab) or a control cue (a cubicle with a computer). After the cue, subjects filled gambling craving questionnaires, and were allowed to gamble. Following 25 practice spins, the slot machines were fixed so that all subsequent spins were losses, and the number of spins in spite of losses were quantified. Blood samples were collected throughout the experiment. Results showed that the gambling cues significantly increased ghrelin concentrations particularly in fasted individuals, and that ghrelin concentrations 20 min after the cue were the best predictor for gambling persistence in the face of continued loss (p < 0.05). Our results suggest that cues that predict the opportunity to gamble have an acute effect on ghrelin concentrations that is facilitated by fasting, and that ghrelin concentrations are a significant predictor of gambling persistence.
Collapse
Affiliation(s)
| | - Rebecca Hay
- Carleton University Department of Neuroscience, Canada
| | | | | |
Collapse
|
38
|
Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018; 33:458-474. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The food-entrainable oscillator (FEO) is a mysterious circadian clock because its anatomical location(s) and molecular timekeeping mechanism are unknown. Food anticipatory activity (FAA), which is defined as the output of the FEO, emerges during temporally restricted feeding. FAA disappears immediately during ad libitum feeding and reappears during subsequent fasting. A free-running FAA rhythm has been observed only in rare circumstances when food was provided with a period outside the range of entrainment. Therefore, it is difficult to study the circadian properties of the FEO. Numerous studies have attempted to identify the critical molecular components of the FEO using mutant and genetically engineered mouse models. Herein we critically review the experimental protocols and findings of these studies in mouse models. Several themes emerge from these studies. First, there is little consistency in restricted feeding protocols between studies. Moreover, the protocols were sometimes not optimal, resulting in erroneous conclusions that FAA was absent in some mouse models. Second, circadian genes are not necessary for FEO timekeeping. Thus, another noncanonical timekeeping mechanism must exist in the FEO. Third, studies of mouse models have shown that signaling pathways involved in circadian timekeeping, reward (dopaminergic), and feeding and energy homeostasis can modulate, but are not necessary for, the expression of FAA. In sum, the approaches to date have been largely unsuccessful in discovering the timekeeping mechanism of the FEO. Moving forward, we propose the use of standardized and optimized experimental protocols that focus on identifying genes that alter the period of FAA in mutant and engineered mouse models. This approach is likely to permit discovery of molecular components of the FEO timekeeping mechanism.
Collapse
Affiliation(s)
| | - Shin Yamazaki
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
39
|
The Role of Ghrelin in Anorexia Nervosa. Int J Mol Sci 2018; 19:ijms19072117. [PMID: 30037011 PMCID: PMC6073411 DOI: 10.3390/ijms19072117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022] Open
Abstract
Ghrelin, a 28-amino acid peptide hormone expressed in X/A-like endocrine cells of the stomach, is the only known peripherally produced and centrally acting peptide that stimulates food intake and therefore attracted a lot of attention with one major focus on the treatment of conditions where an increased energy intake or body weight gain is desired. Anorexia nervosa is an eating disorder characterized by a pronounced reduction of body weight, a disturbed body image and hormonal alterations. Ghrelin signaling has been thoroughly investigated under conditions of anorexia nervosa. The present review will highlight these alterations of ghrelin in anorexia and discuss possible treatment strategies targeting ghrelin signaling. Lastly, gaps in knowledge will be mentioned to foster future research.
Collapse
|
40
|
Mani BK, Castorena CM, Osborne-Lawrence S, Vijayaraghavan P, Metzger NP, Elmquist JK, Zigman JM. Ghrelin mediates exercise endurance and the feeding response post-exercise. Mol Metab 2018; 9:114-130. [PMID: 29396372 PMCID: PMC5870098 DOI: 10.1016/j.molmet.2018.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
Objective Exercise training has several well-established health benefits, including many related to body weight, appetite control, and blood glucose homeostasis. However, the molecular mechanisms and, in particular, the hormonal systems that mediate and integrate these beneficial effects are poorly understood. In the current study, we aimed to investigate the role of the hormone ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR; ghrelin receptor), in mediating the effects of exercise on food intake and blood glucose following exercise as well as in regulating exercise endurance capacity. Methods We used two mouse models of treadmill running to characterize the changes in plasma ghrelin with exercise. We also assessed the role of the ghrelin system to influence food intake and blood glucose after exercise, exercise endurance, and parameters potentially linked to responses to exercise. Mice lacking GHSRs (GHSR-null mice) and wild-type littermates were studied. Results An acute bout of exercise transiently elevated plasma acyl-ghrelin. Without the action of this increased ghrelin on GHSRs (as in GHSR-null mice), high intensity interval exercise markedly reduced food intake compared to control mice. The effect of exercise to acutely raise blood glucose remained unmodified in GHSR-null mice. Exercise-induced increases in plasma ghrelin positively correlated with endurance capacity, and time to exhaustion was reduced in GHSR-null mice as compared to wild-type littermates. In an effort to mechanistically explain their reduced exercise endurance, exercised GHSR-null mice exhibited an abrogated sympathoadrenal response, lower overall insulin-like growth factor-1 levels, and altered glycogen utilization. Conclusions Exercise transiently increases plasma ghrelin. GHSR-null mice exhibit decreased food intake following high intensity interval exercise and decreased endurance when submitted to an exercise endurance protocol. These data suggest that an intact ghrelin system limits the capacity of exercise to restrict food intake following exercise, although it enhances exercise endurance. High intensity exercise transiently increases plasma ghrelin. Without ghrelin action on its receptors (growth hormone secretagogue receptors), exercise markedly reduces food intake. An intact ghrelin system enhances exercise endurance.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasanna Vijayaraghavan
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Foldi CJ, Milton LK, Oldfield BJ. A focus on reward in anorexia nervosa through the lens of the activity-based anorexia rodent model. J Neuroendocrinol 2017; 29. [PMID: 28475260 DOI: 10.1111/jne.12479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 12/19/2022]
Abstract
Patients suffering anorexia nervosa (AN) become anhedonic, unable or unwilling to derive normal pleasures and tend to avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia model recapitulates many of the pathophysiological and behavioural hallmarks of the human condition, including a reduction in food intake, excessive exercise, dramatic weight loss, loss of reproductive cycles, hypothermia and anhedonia, and therefore it allows investigation into the underlying neurobiology of anorexia nervosa. The use of this model has directed attention to disruptions in central reward neurocircuitry, which may contribute to disease susceptibility. The purpose of this review is to demonstrate the utility of this unique model to provide insight into the mechanisms of reward relevant to feeding and weight loss, which may ultimately help to unravel the neurobiology of anorexia nervosa and, in a broader sense, the foundation of reward-based feeding.
Collapse
Affiliation(s)
- C J Foldi
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - L K Milton
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - B J Oldfield
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
42
|
Exploring the Behavioral and Metabolic Phenotype Generated by Re-Introduction of the Ghrelin Receptor in the Ventral Tegmental Area. Int J Mol Sci 2017; 18:ijms18050914. [PMID: 28445429 PMCID: PMC5454827 DOI: 10.3390/ijms18050914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/01/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-RVTA mice) to specifically study the importance of the constitutively active Ghr-R for VTA neuronal signaling. Our results showed that re-introduction of the Ghr-R in the VTA had no impact on body weight or food intake under basal conditions. However, during novel environment stress Ghr-RVTA mice showed increased food intake and energy expenditure compared to Ghr-R knockout mice, demonstrating the significance of Ghr-R signaling in the response to stress. Ghr-RVTA mice also showed increased cocaine-induced locomotor activity compared to Ghr-R knockout mice, highlighting the importance of ghrelin signaling for the reward-related effects of activation of VTA neurons. Overall, our data suggest that re-introduction of the Ghr-R in the mesolimbic reward system of Ghr-R knockout mice increases the level of activation induced by both cocaine and novelty stress.
Collapse
|
43
|
Bake T, Hellgren KT, Dickson SL. Acute ghrelin changes food preference from a high-fat diet to chow during binge-like eating in rodents. J Neuroendocrinol 2017; 29:10.1111/jne.12463. [PMID: 28219000 PMCID: PMC5434925 DOI: 10.1111/jne.12463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
Ghrelin, an orexigenic hormone released from the empty stomach, provides a gut-brain signal that promotes many appetitive behaviours, including anticipatory and goal-directed behaviours for palatable treats high in sugar and/or fat. In the present study, we aimed to determine whether ghrelin is able to influence and/or may even have a role in binge-like eating behaviour in rodents. Accordingly, we used a palatable scheduled feeding (PSF) paradigm in which ad lib. chow-fed rodents are trained to 'binge' on a high-fat diet (HFD) offered each day for a limited period of 2 hours. After 2 weeks of habituation to this paradigm, on the test day and immediately prior to the 2-hour PSF, rats were administered ghrelin or vehicle solution by the i.c.v. route. Remarkably and unexpectedly, during the palatable scheduled feed, when rats normally only binge on the HFD, those injected with i.c.v. ghrelin started to eat more chow and chow intake remained above baseline for the rest of the 24-hour day. We identify the ventral tegmental area (VTA) (a key brain area involved in food reward) as a substrate involved because these effects could be reproduced, in part, by intra-VTA delivery of ghrelin. Fasting, which increases endogenous ghrelin, immediately prior to a palatable schedule feed also increased chow intake during/after the schedule feed but, in contrast to ghrelin injection, did not reduce HFD intake. Chronic continuous central ghrelin infusion over several weeks enhanced binge-like behaviour in palatable schedule fed rats. Over a 4-week period, GHS-R1A-KO mice were able to adapt and maintain large meals of HFD in a manner similar to wild-type mice, suggesting that ghrelin signalling may not have a critical role in the acquisition or maintenance in this kind of feeding behaviour. In conclusion, ghrelin appears to act as a modulating factor for binge-like eating behaviour by shifting food preference towards a more nutritious choice (from HFD to chow), with these effects being somewhat divergent from fasting.
Collapse
Affiliation(s)
- T. Bake
- Department of Physiology/EndocrineInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - K. T. Hellgren
- Department of Physiology/EndocrineInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - S. L. Dickson
- Department of Physiology/EndocrineInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
44
|
Labarthe A, Tolle V. [Ghrelin: a gastric hormone at the crossroad between growth and appetite regulation]. Biol Aujourdhui 2017; 210:237-257. [PMID: 28327282 DOI: 10.1051/jbio/2016027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Ghrelin is a 28 amino acid peptide hormone synthesized within the gastrointestinal tract. Initially identified as the endogenous ligand of the GHS-R1a (Growth Hormone Secretagogue Receptor 1a), ghrelin is a powerful stimulator of growth hormone (GH) secretion. At the crossroad between nutrition, growth and long-term energy metabolism, ghrelin also plays a unique role as the first identified gastric hormone increasing appetite and adiposity. However, the role of the ghrelin/GHS-R system in the physiology of growth, feeding behaviour and energy homeostasis needs to be better understood. Utilization of pharmacological tools and complementary animal models with deficiency in preproghrelin, ghrelin-O-acyl-transferase (GOAT - the enzyme that acylates ghrelin -) or GHS-R in situations of chronic undernutrition or high fat diet gives a more precise overview of the role of ghrelin in the pathophysiology of eating and metabolic disorders.
Collapse
|
45
|
Fetissov SO. [Hunger and satiety factors in the regulation of pleasure associated with feeding behavior]. Biol Aujourdhui 2017; 210:259-268. [PMID: 28327283 DOI: 10.1051/jbio/2016025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 11/14/2022]
Abstract
Feeding is an instinctive behavior accompanied by rewarding feeling of pleasure during obtaining and ingesting food, corresponding to the preparatory and consummatory phases of motivated behavior, respectively. Perception of this emotional state together with alternating feelings of hunger and satiety drives the feeding behavior. Because alterations of feeding behavior including either overeating or anorexia may lead to obesity and cachexia, respectively, understanding the neurochemical mechanisms of regulation of feeding pleasure may help to develop new therapies of these diseases. The dopamine (DA) system of the mesolimbic projections plays a key role in behavioral reward in general and is also involved in regulating feeding-associated pleasure in the forebrain including the nucleus accumbens (NAc) and the lateral hypothalamic area (LHA). It suggests that this DA system can be selectively activated by factors specific to different types of motivated behavior including hunger- and satiety- related hormones. Indeed, central administrations of either orexigenic ghrelin or anorexigenic α-melanocyte-stimulating hormone (α-MSH) increase DA release in the NAc. However, DA has also been shown to inhibit food intake when injected into the LHA, historically known as a « hunger center », indicating DA functional involvement in regulation of both appetite and feeding pleasure. Although both NAc and LHA contain neurons expressing melanocortin receptors, only the LHA receives the α-MSH containing nerve terminals from the α-MSH producing neurons of the hypothalamic arcuate nucleus, the main relay of the peripheral hunger and satiety signals to the brain. A recent study showed that α-MSH in the LHA enhances satiety and inhibits feeding pleasure while potently stimulating DA release in this area during both preparatory and consummatory phases of feeding. It suggests that altered signaling by α-MSH to the DA system in the LHA may be involved in the pathophysiology of obesity and anorexia and the possible underlying mechanisms are discussed.
Collapse
|
46
|
Frago LM, Chowen JA. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin. Int J Mol Sci 2017; 18:ijms18030536. [PMID: 28257088 PMCID: PMC5372552 DOI: 10.3390/ijms18030536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 12/31/2022] Open
Abstract
Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin's actions within the brain.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
| |
Collapse
|
47
|
Stievenard A, Méquinion M, Andrews ZB, Destée A, Chartier-Harlin MC, Viltart O, Vanbesien-Mailliot CC. Is there a role for ghrelin in central dopaminergic systems? Focus on nigrostriatal and mesocorticolimbic pathways. Neurosci Biobehav Rev 2017; 73:255-275. [DOI: 10.1016/j.neubiorev.2016.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
48
|
Plasma kisspeptin and ghrelin levels are independently correlated with physical activity in patients with anorexia nervosa. Appetite 2017; 108:141-150. [PMID: 27693487 DOI: 10.1016/j.appet.2016.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
|
49
|
Hassouna R, Labarthe A, Tolle V. Hypothalamic regulation of body growth and appetite by ghrelin-derived peptides during balanced nutrition or undernutrition. Mol Cell Endocrinol 2016; 438:42-51. [PMID: 27693419 DOI: 10.1016/j.mce.2016.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.
Collapse
Affiliation(s)
- Rim Hassouna
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France; Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexandra Labarthe
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France
| | - Virginie Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France.
| |
Collapse
|
50
|
Abstract
Health nudge interventions to steer people into healthier lifestyles are increasingly applied by governments worldwide, and it is natural to look to such approaches to improve health by altering what people choose to eat. However, to produce policy recommendations that are likely to be effective, we need to be able to make valid predictions about the consequences of proposed interventions, and for this, we need a better understanding of the determinants of food choice. These determinants include dietary components (e.g. highly palatable foods and alcohol), but also diverse cultural and social pressures, cognitive-affective factors (perceived stress, health attitude, anxiety and depression), and familial, genetic and epigenetic influences on personality characteristics. In addition, our choices are influenced by an array of physiological mechanisms, including signals to the brain from the gastrointestinal tract and adipose tissue, which affect not only our hunger and satiety but also our motivation to eat particular nutrients, and the reward we experience from eating. Thus, to develop the evidence base necessary for effective policies, we need to build bridges across different levels of knowledge and understanding. This requires experimental models that can fill in the gaps in our understanding that are needed to inform policy, translational models that connect mechanistic understanding from laboratory studies to the real life human condition, and formal models that encapsulate scientific knowledge from diverse disciplines, and which embed understanding in a way that enables policy-relevant predictions to be made. Here we review recent developments in these areas.
Collapse
|