1
|
Polyak P, Chaber P, Musioł M, Adamus G, Kowalczuk M, Puskas JE, El Fray M. Estimation of the average molecular weight of microbial polyesters from FTIR spectra using artificial intelligence. ANAL SCI 2025:10.1007/s44211-025-00780-2. [PMID: 40338448 DOI: 10.1007/s44211-025-00780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
In this paper, we present a method for calculating the average molecular weight of microbial polyesters using Fourier transform infrared spectroscopy (FTIR) data as input. FTIR spectra provide the necessary quantitative information, as the impact of chain ends on the spectra is influenced by the average molecular weight of the polymer. Since FTIR data can be collected rapidly and is available in abundance, it serves as an ideal input for machine learning algorithms, such as artificial neural networks. The robustness and reliability of the model are improved by designing the neural network to use absorbance ratios instead of absolute absorbances as input. We also propose a new feature selection method that facilitates the identification of absorbance ratio regions best suited to serve as input for the neural network. Our approach ensures that variations in sample preparation do not compromise the accuracy of the model. The proposed computational method is demonstrated using a microbial polyester [poly(3-hydroxybutyrate), PHB], which is a biopolymer natively synthesized by multiple bacterial strains. Although the computational method has been tested with PHB, the underlying concept can be extended to other polymers. To facilitate broader application, a step-by-step guide for developing similar models is also provided.
Collapse
Affiliation(s)
- Peter Polyak
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, USA.
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowska St, 41-819, Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowska St, 41-819, Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowska St, 41-819, Zabrze, Poland
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowska St, 41-819, Zabrze, Poland
| | - Judit E Puskas
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, USA
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, West Pomeranian University of Technology in Szczecin, al. Piastow 45, 70-311, Szczecin, Poland
- Centre of Advanced Materials and Manufacturing Process Engineering, West Pomeranian University of Technology, Szczecin, al. Piastow 45, 70-311, Szczecin, Poland
| |
Collapse
|
2
|
Magonara C, Montagnese E, Bertasini D, Vona C, Salvatori G, Tayou LN, Villano M, Battista F, Frison N, Bolzonella D, Pesante G. Mixed-culture polyhydroxyalkanoate production with variable hydroxyvalerate content from agri-food residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36316-4. [PMID: 40240659 DOI: 10.1007/s11356-025-36316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Agri -food residues represent an unutilised biomass that can be valorised into high-value compounds. Polyhydroxyalkanoates (PHAs) are one such product, offering a sustainable alternative to fossil-based plastics. PHAs containing hydroxyvalerate monomers (PHBV) are more flexible and less crystalline than pure PHB, making them suitable for a broader range of applications. This study focused on producing PHBV with a targeted hydroxyvalerate monomer content (25-35%, w/w) for use in agricultural materials. Different types of feedstocks (ranging from synthetic to agri-food residue fermentation fluid) were used with mixed microbial cultures to achieve the desired hydroxyvalerate content in the stored PHA. The COD removal efficiency of the selection reactor ranged from 81.6 to 99.1% with synthetic feed, indicating effective substrate uptake, whereas agricultural fermentate resulted in lower carbon uptake (71.4-85.9%). Despite fluctuations throughout the study, the desired hydroxyvalerate monomer content was successfully obtained. The molecular weight and distribution were challenging to correlate with the different feedstocks, though they remained suitable for thermoplastic processing for most set-ups (352 to 1369 kDa). The bacterial community composition changed throughout the selection process, with the feast/famine regime favouring PHA producers such as Thauera, Paracoccus, Neomegalonema, Corynebacterium, and Flavobacterium; however, the introduction of agricultural fermentate led to a loss in speciation.
Collapse
Affiliation(s)
- Claudia Magonara
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Elvis Montagnese
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Davide Bertasini
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Claudia Vona
- Department of Chemistry, Sapienza University of Rome, Roma, 00185, Italy
| | - Gaia Salvatori
- Department of Chemistry, Sapienza University of Rome, Roma, 00185, Italy
| | | | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, Roma, 00185, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Giovanna Pesante
- Department of Biotechnology, University of Verona, Verona, 37134, Italy.
| |
Collapse
|
3
|
Li D, Wang F, Zheng X, Zheng Y, Pan X, Li J, Ma X, Yin F, Wang Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol Adv 2025; 79:108512. [PMID: 39742901 DOI: 10.1016/j.biotechadv.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xuening Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yingying Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Fen Yin
- Engineering College, Qinghai Institute of Technology, Xining 810016, PR China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Mai J, Kockler K, Parisi E, Chan CM, Pratt S, Laycock B. Synthesis and physical properties of polyhydroxyalkanoate (PHA)-based block copolymers: A review. Int J Biol Macromol 2024; 263:130204. [PMID: 38365154 DOI: 10.1016/j.ijbiomac.2024.130204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a group of natural polyesters that are synthesised by microorganisms. In general, their thermoplasticity and (in some forms) their elasticity makes them attractive alternatives to petrochemical-derived polymers. However, the high crystallinity of some PHAs - such as poly(3-hydroxybutyrate) (P3HB) - results in brittleness and a narrow processing window for applications such as packaging. The production of copolymeric PHA materials is one approach to improving the mechanical and thermal properties of PHAs. Another solution is the manufacture of PHA-based block copolymers. The incorporation of different polymer and copolymer blocks coupled to PHA, and the resulting tailorable microstructure of these block copolymers, can result in a step-change improvement in PHA-based material properties. A range of production strategies for PHA-based block copolymers has been reported in the literature, including biological production and chemical synthesis. Biological production is typically less controllable, with products of a broad molecular weight and compositional distribution, unless finely controlled using genetically modified organisms. By contrast, chemical synthesis delivers relatively controllable block structures and narrowly defined compositions. This paper reviews current knowledge in the areas of the production and properties of PHA-based block copolymers, and highlights knowledge gaps and future potential areas of research.
Collapse
Affiliation(s)
- Jingjing Mai
- Fujian Normal University, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fuzhou, Fujian 350000, China
| | - Katrin Kockler
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia
| | - Emily Parisi
- Parisi Technologies, LLC Portland, Oregon, United States
| | - Clement Matthew Chan
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia
| | - Steven Pratt
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
5
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Wang L, Cui YW. Simultaneous treatment of epichlorohydrin wastewater and polyhydroxyalkanoate recovery by halophilic aerobic granular sludge highly enriched by Halomonas sp. BIORESOURCE TECHNOLOGY 2024; 391:129951. [PMID: 37914058 DOI: 10.1016/j.biortech.2023.129951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The treatment of epichlorohydrin (ECH) wastewater exists chances for achieving cleaner production. This study initially employed moderately halophilic aerobic granular sludge (HAGS) to treat ECH wastewater, and the resulting HAGS was utilized to recover polyhydroxyalkanoate (PHA). During the acclimation process of HAGS, the chemical oxygen demand removal efficiency stabilized at 70 %. Moreover, due to the high enrichment of Halomonas sp. (relative abundance of 86 ± 0.50 %), the maximum PHA content of wasted HAGS was 52.67 wt% in the fermentation process. Simultaneously, the utilization of nuclear magnetic resonance spectroscopy (1H and 13C spectra) and fourier transform infrared spectroscopy for the structural analysis of polymers revealed that polyhydroxybutyrate was the predominant substance extracted from HAGS. In this study, the innovative use of highly enriched HAGS for treating ECH wastewater and simultaneously recovering PHA not only enables the efficient biological treatment of ECH wastewater but also realizes resource recovery of ECH wastewater.
Collapse
Affiliation(s)
- Ling Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Jin A, del Valle LJ, Puiggalí J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int J Mol Sci 2023; 24:17250. [PMID: 38139077 PMCID: PMC10743438 DOI: 10.3390/ijms242417250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents a comprehensive update of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), emphasizing its production, properties, and applications. The overall biosynthesis pathway of PHBV is explored in detail, highlighting recent advances in production techniques. The inherent physicochemical properties of PHBV, along with its degradation behavior, are discussed in detail. This review also explores various blends and composites of PHBV, demonstrating their potential for a range of applications. Finally, the versatility of PHBV-based materials in multiple sectors is examined, emphasizing their increasing importance in the field of biodegradable polymers.
Collapse
Affiliation(s)
- Anyi Jin
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Venvirotech Biotechnology S.L., Santa Perpètua de Mogoda, 08130 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
8
|
Blunt W, Shah P, Vasquez V, Ye M, Doyle C, Liu Y, Saeidlou S, Monteil-Rivera F. Biosynthesis and properties of polyhydroxyalkanoates synthesized from mixed C 5 and C 6 sugars obtained from hardwood hydrolysis. N Biotechnol 2023; 77:40-49. [PMID: 37390901 DOI: 10.1016/j.nbt.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Glucose and xylose are fermentable sugars readily available from lignocellulosic biomass, and are a sustainable carbon substrate supporting industrial biotechnology. Three strains were assessed in this work - Paraburkholderia sacchari, Hydrogenophaga pseudoflava, and Bacillus megaterium - for their ability to uptake both C5 and C6 sugars contained in a hardwood hydrolysate produced via a thermomechanical pulping-based process with concomitant production of poly(3-hydroxyalkanoate) (PHA) biopolymers. In batch conditions, B. megaterium showed poor growth after 12 h, minimal uptake of xylose throughout the cultivation, and accumulated a maximum of only 25 % of the dry biomass as PHA. The other strains simultaneously utilized both sugars, although glucose uptake was faster than xylose. From hardwood hydrolysate, P. sacchari accumulated 57 % of its biomass as PHA within 24 h, whereas H. pseudoflava achieved an intracellular PHA content of 84 % by 72 h. The molecular weight of the PHA synthesized by H. pseudoflava (520.2 kDa) was higher than that of P. sacchari (265.5 kDa). When the medium was supplemented with propionic acid, the latter was rapidly consumed by both strains and incorporated as 3-hydroxyvalerate subunits into the polymer, demonstrating the potential for production of polymers with improved properties and value. H. pseudoflava incorporated 3-hydroxyvalerate subunits with at least a 3-fold higher yield, and produced polymers with higher 3-hydroxyvalerate content than P. sacchari. Overall, this work has shown that H. pseudoflava can be an excellent candidate for bioconversion of lignocellulosic sugars to PHA polymers or copolymers as part of an integrated biorefinery.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2; Department of Biosystems Engineering, University of Manitoba (Fort Garry Campus), 75 Chancellors Circle, Winnipeg, MB, Canada R3T 5V6.
| | - Purnank Shah
- FPInnovations, 570 Boulevard Saint-Jean, Pointe-Claire, Québec, Canada H9R 3J9
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Sajjad Saeidlou
- Automotive and Surface Transportation Research Centre, National Research Council Canada, 75 de Mortagne Boulevard, Boucherville, Québec, Canada J4B 6Y4
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2.
| |
Collapse
|
9
|
Palmeiro-Sánchez T, Graham A, Lens P, O'Flaherty V. How temperature shapes the biosynthesis of polyhydroxyalkanoates in mixed microbial cultures. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10934. [PMID: 37845010 DOI: 10.1002/wer.10934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Three sequential batch reactors were operated for the enrichment in microbial communities able to store polyhydroxyalkanoates (PHAs) using activated sludge as inoculum. They ran simultaneously under the same operational conditions (organic loading rate, hydraulic and solids retention time, cycle length, C/N ratio) just with the solely difference of the working temperature: psychrophilic (15°C), mesophilic (30°C), and thermophilic (48°C). The microbial communities enriched showed different behaviors in terms of consumption and production rates. In terms of PHA accumulation, the psychrophilic community was able to accumulate an average amount of 17.7 ± 5.7 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the mesophilic 40.3 ± 7.0 wt% PHBV, and the thermophilic 14.8 ± 0.3 wt% PHBV in dry weight over total solids. The average PHBV production yields for each selected community were 0.41 ± 0.12 CmmolPHBV /CmmolVFA at 15°C, 0.64 ± 0.05 CmmolPHBV /CmmolVFA at 30°C, and 0.39 ± 0.14 CmmolPHBV /CmmolVFA at 48°C. The overall performance of the mesophilic reactor was better than the other two, and the copolymers obtained at this temperature contained a higher PHV fraction. The physico-chemical properties of the obtained biopolymers at each temperature were also measured, and major differences were found in the molecular weight, following an increasing trend with temperature. PRACTITIONER POINTS: PHBV molecular weight is influenced by the operational temperature increasing with it. Increasing temperatures promote the production of HB over HV. The best accumulation performance was found at 30°C for the tested operational conditions.
Collapse
Affiliation(s)
- Tania Palmeiro-Sánchez
- Department of Microbiology, College of Science and Engineering and Ryan Institute, University of Galway, Galway, Ireland
| | - Alison Graham
- Department of Microbiology, College of Science and Engineering and Ryan Institute, University of Galway, Galway, Ireland
| | - Piet Lens
- Department of Microbiology, College of Science and Engineering and Ryan Institute, University of Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Department of Microbiology, College of Science and Engineering and Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Watabe Y, Shimomura S, Ono K, Sasanuma Y. Conformational characteristics of poly(3-hydroxyvalerate) (P3HV) and structure-property relationships of P3HV and poly(3-hydroxybutyrate). Phys Chem Chem Phys 2023; 25:27034-27044. [PMID: 37791489 DOI: 10.1039/d3cp03525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Conformational analysis of biosynthetic and biodegradable poly(3-hydroxyvalerate) (P3HV), an analog of poly(3-hydroxybutyrate) (P3HB), was performed. The only structural difference between the two polymers consists in the side chain, which is either methyl (P3HB) or ethyl (P3HV). Molecular orbital calculations and NMR experiments were conducted on a monomeric model compound to determine the bond conformations of the main and side chains of P3HV. The refined rotational isomeric state (RIS) scheme was applied to derive configurational properties of P3HV. The characteristic ratio of P3HV (2.1-3.0) is smaller than that of P3HB (5.4-5.6), indicating greater conformational flexibility of the P3HV chain. The increased flexibility due to the internal rotation of the ethyl side group of P3HV results in a lower equilibrium melting point (130 °C) compared with P3HB (203 °C). The RIS calculations on P3HV also suggested its potential for rubber-like properties. Periodic density functional theory calculations were used to optimize the crystal structures of P3HB and P3HV and obtain their elastic moduli. Three-dimensional Young's modulus distributions of both crystals are closer to isotropic than anisotropic. In conclusion, the material design and usage of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) are discussed.
Collapse
Affiliation(s)
- Yota Watabe
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shunsuke Shimomura
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Koyo Ono
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuji Sasanuma
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Volova TG, Zhila NO, Kiselev EG, Sukovatyi AG, Lukyanenko AV, Shishatskaya EI. Biodegradable Polyhydroxyalkanoates with a Different Set of Valerate Monomers: Chemical Structure and Physicochemical Properties. Int J Mol Sci 2023; 24:14082. [PMID: 37762383 PMCID: PMC10531092 DOI: 10.3390/ijms241814082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The properties, features of thermal behavior and crystallization of copolymers containing various types of valerate monomers were studied depending on the set and ratio of monomers. We synthesized and studied the properties of three-component copolymers containing unusual monomers 4-hydroxyvalerate (4HV) and 3-hydroxy-4-methylvalerate (3H4MV), in addition to the usual 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) monomers. The results showed that P(3HB-co-3HV-co-4HV) and P(3HB-co-3HV-co-3H4MV) terpolymers tended to increase thermal stability, especially for methylated samples, including an increase in the gap between melting point (Tmelt) and thermal degradation temperature (Tdegr), an increase in the melting point and glass transition temperature, as well as a lower degree of crystallinity (40-46%) compared with P(3HB-co-3HV) (58-66%). The copolymer crystallization kinetics depended on the set and ratio of monomers. For terpolymers during exothermic crystallization, higher rates of spherulite formation (Gmax) were registered, reaching, depending on the ratio of monomers, 1.6-2.0 µm/min, which was several times higher than the Gmax index (0.52 µm/min) for the P(3HB-co-3HV) copolymer. The revealed differences in the thermal properties and crystallization kinetics of terpolymers indicate that they are promising polymers for processing into high quality products from melts.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| |
Collapse
|
12
|
Parroquin-Gonzalez M, Winterburn J. Continuous bioreactor production of polyhydroxyalkanoates in Haloferax mediterranei. Front Bioeng Biotechnol 2023; 11:1220271. [PMID: 37781542 PMCID: PMC10534070 DOI: 10.3389/fbioe.2023.1220271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In this work, the viability of continuous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production with controlled composition in Haloferax mediterranei when fed volatile fatty acids is demonstrated. Continuous fermentations showed to greatly outperform batch fermentations with continuous feeding. Operating the bioreactor continuously allowed for PHBV productivity normalised by cell density to increase from 0.29 to 0.38 mg L-1 h-1, in previous continuously fed-fed batch fermentations, to 0.87 and 1.43 mg L-1 h-1 in a continuous mode of operation for 0.1 and 0.25 M carbon concentrations in the media respectively. Continuous bioreactor experiments were carried out for 100 h, maintaining control over the copolymer composition at around 30 mol% 3-hydroxyvalerate 3HV. This work presents the first continuous production of PHBV in Haloferax mediterranei which continuously delivers polymer at a higher productivity, compared to fed-batch modes of operation. Operating bioreactors continuously whilst maintaining control over copolymer composition brings new processing opportunities for increasing biopolymer production capacity, a crucial step towards the wider industrialisation of polyhydroxyalkanoates (PHAs).
Collapse
Affiliation(s)
| | - James Winterburn
- Department of Chemical Engineering University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Mai J, Pratt S, Laycock B, Chan CM. Synthesis and Characterisation of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)- b-poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Multi-Block Copolymers Produced Using Diisocyanate Chemistry. Polymers (Basel) 2023; 15:3257. [PMID: 37571152 PMCID: PMC10422281 DOI: 10.3390/polym15153257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Bacterially derived polyhydroxyalkanoates (PHAs) are attractive alternatives to commodity petroleum-derived plastics. The most common forms of the short chain length (scl-) PHAs, including poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are currently limited in application because they are relatively stiff and brittle. The synthesis of PHA-b-PHA block copolymers could enhance the physical properties of PHAs. Therefore, this work explores the synthesis of PHBV-b-PHBV using relatively high molecular weight hydroxy-functionalised PHBV starting materials, coupled using facile diisocyanate chemistry, delivering industrially relevant high-molecular-weight block copolymeric products. A two-step synthesis approach was compared with a one-step approach, both of which resulted in successful block copolymer production. However, the two-step synthesis was shown to be less effective in building molecular weight. Both synthetic approaches were affected by additional isocyanate reactions resulting in the formation of by-products such as allophanate and likely biuret groups, which delivered partial cross-linking and higher molecular weights in the resulting multi-block products, identified for the first time as likely and significant by-products in such reactions, affecting the product performance.
Collapse
Affiliation(s)
| | | | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; (J.M.); (S.P.)
| | - Clement Matthew Chan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; (J.M.); (S.P.)
| |
Collapse
|
14
|
Mai J, Chan CM, Laycock B, Pratt S. Understanding the Reaction of Hydroxy-Terminated Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) Random Copolymers with a Monoisocyanate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Jingjing Mai
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clement Matthew Chan
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Perdrier C, Doineau E, Leroyer L, Subileau M, Angellier-Coussy H, Preziosi-Belloy L, Grousseau E. Impact of overflow vs. limitation of propionic acid on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
16
|
Thauera sp. Sel9, a new bacterial strain for polyhydroxyalkanoates production from volatile fatty acids. N Biotechnol 2022; 72:71-79. [PMID: 36191843 DOI: 10.1016/j.nbt.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Thauera is one of the main genera involved in polyhydroxyalkanoate (PHA) production in microbial mixed cultures (MMCs) from volatile fatty acids (VFAs). However, no Thauera strains involved in PHA accumulation have been obtained in pure culture so far. This study is the first report of the isolation and characterization of a Thauera sp. strain, namely Sel9, obtained from a sequencing batch reactor (S-SBR) set up for the selection of PHA storing biomass. The 16S rRNA gene evidenced a high sequence similarity with T. butanivorans species. Genome sequencing identified all genes involved in PHA synthesis, regulation and degradation. The strain Sel9 was able to grow with an optimum of chemical oxygen demand-to-nitrogen (COD:N) ratio ranging from 4.7 to 18.9. Acetate, propionate, butyrate and valerate were used as sole carbon and energy sources: a lag phase of 72 h was observed in presence of propionate. Final production of PHAs, achieved with a COD:N ratio of 75.5, was 60.12 ± 2.60 %, 49.31 ± 0.7 %, 37.31 ± 0.43 % and 18.06 ± 3.81 % (w/w) by using butyrate, acetate, valerate and propionate as substrates, respectively. Also, the 3-hydroxybutyrate/3-hydroxyvalerate ratio reflected the type of carbon sources used: 12.30 ± 0.82 for butyrate, 3.56 ± 0.02 for acetate, 0.93 ± 0.03 for valerate and 0.76 ± 0.02 for propionate. The results allow a better elucidation of the role of Thauera in MMCs and strongly suggest a possible exploitation of Thauera sp. Sel9 for a cost-effective and environmentally friendly synthesis of PHAs using VFAs as substrate.
Collapse
|
17
|
Montiel-Jarillo G, Morales-Urrea DA, Contreras EM, López-Córdoba A, Gómez-Pachón EY, Carrera J, Suárez-Ojeda ME. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers (Basel) 2022; 14:polym14193938. [PMID: 36235886 PMCID: PMC9573287 DOI: 10.3390/polym14193938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The use of mixed microbial cultures (MMC) and organic wastes and wastewaters as feed sources is considered an appealing approach to reduce the current polyhydroxyalkanoates (PHAs) production costs. However, this method entails an additional hurdle to the PHAs downstream processing (recovery and purification). In the current work, the effect of a sodium hypochlorite (NaClO) pre-treatment coupled with dimethyl carbonate (DMC) or chloroform (CF) as extraction solvents on the PHAs recovery efficiency (RE) from MMC was evaluated. MMC were harvested from a sequencing batch reactor (SBR) fed with a synthetic prefermented olive mill wastewaster. Two different carbon-sources (acetic acid and acetic/propionic acids) were employed during the batch accumulation of polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from MMC. Obtained PHAs were characterized by 1H and 13C nuclear magnetic resonance, gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. The results showed that when a NaClO pre-treatment is not added, the use of DMC allows to obtain higher RE of both biopolymers (PHB and PHBV), in comparison with CF. In contrast, the use of CF as extraction solvent required a pre-treatment step to improve the PHB and PHBV recovery. In all cases, RE values were higher for PHBV than for PHB.
Collapse
Affiliation(s)
- Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Diego A. Morales-Urrea
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| | - Edgardo M. Contreras
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Alex López-Córdoba
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia
| | - Edwin Yesid Gómez-Pachón
- Grupo de Investigación en Diseño, Innovación y Asistencia Técnica de Materiales Avanzados-DITMAV, Escuela de Diseño Industrial, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Duitama 150461, Colombia
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| |
Collapse
|
18
|
Mai J, Chan CM, Colwell J, Pratt S, Laycock B. Characterisation of end groups of hydroxy-functionalised scl-PHAs prepared by transesterification using ethylene glycol. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Nanomechanical Characterization of Bacterial Polyhydroxyalkanoates Using Atomic Force Microscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Polyhydroxyalkanoates are a promising class of biopolymers that can allow the production of sustainable plastic materials. The mechanical properties of such materials are very important for possible industrial applications, but the amount of polymer required for common mechanical testing can be orders of magnitude more than what is possible to achieve with a lab-scale process. Nanoindentation with the Atomic Force Microscope allows an estimation of the Elastic Modulus that can be used as a preliminary measurement on PHA when only a limited amount of material is available. Poly(hydroxybutyrate-co-hydroxyvalerate) copolymers were analyzed, with moduli ranging from 528 ± 62 MPa to 1623 ± 172 MPa, according to both the composition and the crystallization kinetics.
Collapse
|
20
|
Marano S, Laudadio E, Minnelli C, Stipa P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers (Basel) 2022; 14:1626. [PMID: 35458376 PMCID: PMC9029979 DOI: 10.3390/polym14081626] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
It is now well recognized that the production of petroleum-based packaging materials has created serious ecological problems for the environment due to their resistance to biodegradation. In this context, substantial research efforts have been made to promote the use of biodegradable films as sustainable alternatives to conventionally used packaging materials. Among several biopolymers, poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties and is currently one of the most industrially produced bioplastics. However, more efforts are needed to enhance its performance and expand its applicability in this field, as packaging materials need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen, and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly focused on strategies to improve its thermal and mechanical properties, this work aims to review relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of providing a general guide for the design of PLA-based packaging materials with the desired mass transfer properties.
Collapse
Affiliation(s)
- Stefania Marano
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Pierluigi Stipa
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| |
Collapse
|
21
|
Additive Manufacturing of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Poly(D,L-lactide- co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23073895. [PMID: 35409254 PMCID: PMC8999344 DOI: 10.3390/ijms23073895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.
Collapse
|
22
|
Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae. SUSTAINABILITY 2022. [DOI: 10.3390/su14063704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the context of circular economy and sustainable production of materials, this project investigated the feasibility of producing sustainable polyhydroxyalkanoates (PHA) from microalgae and sludge used in the treatment of municipal wastewater. The overall process was studied looking at the main steps: microalgae production, fermentation of the biomass, production and characterization of the PHAs. It was possible to obtain blends of hydroxybutyrate-hydroxyvalerate copolymers with high molecular weights and different compositions depending on the nature of the feedstock (mixed volatile fatty acids). In some cases, almost completely amorphous PHA materials were obtained, suggesting a potential diversification of uses and applications.
Collapse
|
23
|
Zhang J, Cran MJ. Production of polyhydroxyalkanoate nanoparticles using a green solvent. J Appl Polym Sci 2022. [DOI: 10.1002/app.52319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities Victoria University Melbourne Australia
| | - Marlene J. Cran
- Institute for Sustainable Industries and Liveable Cities Victoria University Melbourne Australia
| |
Collapse
|
24
|
Atomization of Microfibrillated Cellulose and Its Incorporation into Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Reactive Extrusion. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study focuses on the preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films that were reinforced with cellulose microstructures to obtain new green composite materials for sustainable food packaging applications. The atomization of suspensions of microfibrillated cellulose (MFC) successfully allowed the formation of ultrathin cellulose structures of nearly 3 µm that were, thereafter, melt-mixed at 2.5, 5, and 10 wt % with PHBV and subsequently processed into films by thermo-compression. The most optimal results were attained for the intermediate MFC content of 5 wt %, however, the cellulose microstructures showed a low interfacial adhesion with the biopolyester matrix. Thus, two reactive compatibilizers were explored in order to improve the properties of the green composites, namely the multi-functional epoxy-based styrene-acrylic oligomer (ESAO) and the combination of triglycidyl isocyanurate (TGIC) with dicumyl peroxide (DCP). The chemical, optical, morphological, thermal, mechanical, and barrier properties against water and aroma vapors and oxygen were analyzed in order to determine the potential application of these green composite films in food packaging. The results showed that the incorporation of MFC yielded contact transparent films, whereas the reactive extrusion with TGIC and DCP led to green composites with enhanced thermal stability, mechanical strength and ductility, and barrier performance to aroma vapor and oxygen. In particular, this compatibilized green composite film was thermally stable up to ~280 °C, whereas it showed an elastic modulus (E) of above 3 GPa and a deformation at break (ɛb) of 1.4%. Moreover, compared with neat PHBV, its barrier performance to limonene vapor and oxygen was nearly improved by nine and two times, respectively.
Collapse
|
25
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
26
|
Parroquin Gonzalez M, Winterburn J. Enhanced biosynthesis of polyhydroxyalkanoates by continuous feeding of volatile fatty acids in Haloferax mediterranei. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Cruz RAP, Oehmen A, Reis MAM. The impact of biomass withdrawal strategy on the biomass selection and polyhydroxyalkanoates accumulation of mixed microbial cultures. N Biotechnol 2022; 66:8-15. [PMID: 34450342 DOI: 10.1016/j.nbt.2021.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
The production of polyhydroxyalkanoates (PHA) by mixed microbial cultures (MMC) has been studied as an alternative to pure cultures in order to reduce the price of PHA through use of open systems and low-cost substrates, such as agro-industrial sub-products. However, the widespread applicability of this process depends on the optimization of operational factors impacting PHA productivity. This study addresses the impact of biomass withdrawal strategy on the performance of MMC selection reactors and consequently on biomass productivity and global PHA productivity. Two selection reactors were operated in parallel under similar conditions, except for the timing of biomass withdrawal, at the end of the famine phase (Reactor 1, R1) versus at the end of the feast phase (Reactor 2, R2) at an organic loading rate of 100 Cmmol.L-1.d-1 and solids retention time of 4 days. The biomass selected in both conditions had similar PHA storing capacity as shown by the similar yields of PHA per substrate obtained in the accumulation assays; however, R1 reached a higher biomass productivity (about 4-fold higher than R2). This study demonstrated that removing the excess biomass at the end of the famine phase resulted in a much higher global PHA productivity and that the key parameter affecting the global PHA productivity of the 2-stage system was the volumetric biomass productivity. Results obtained provide important insight into how MMC systems can be best operated to maximize PHA productivity.
Collapse
Affiliation(s)
- Rafaela A P Cruz
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Maria A M Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| |
Collapse
|
28
|
Production of polyhydroxyalkanoates by three novel species of Marinobacterium. Int J Biol Macromol 2022; 195:255-263. [PMID: 34914906 DOI: 10.1016/j.ijbiomac.2021.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
Several species of novel marine bacteria from the genus Marinobacterium, including M. nitratireducens, M. sediminicola, and M. zhoushanense were found to be capable of producing polyhydroxyalkanoates (PHA) using sugars and volatile fatty acids (VFAs) as the carbon source. M. zhoushanense produced poly-3-hydroxybutytate (PHB) from sucrose, achieving a product titer and PHB content of 2.89 g/L and 64.05 wt%, respectively. By contrast, M. nitratireducens accumulated 3.38 g/L PHB and 66.80 wt% polymer content using butyrate as the substrate. A third species, M. sediminicola showed favorable tolerance to propionate, butyrate, and valerate. The use of 10 g/L valerate yielded 3.37 g/L poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a 3-hydroxyvalerate (3 HV) monomer content of 94.75 mol%. Moreover, M. sediminicola could be manipulated to produce PHBV with changeable polymer compositions by feeding different mixtures of VFAs. Our results indicate that M. sediminicola is a promising halophilic bacterium for the production of PHA.
Collapse
|
29
|
Weligama Thuppahige VT, Karim MA. A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Compr Rev Food Sci Food Saf 2021; 21:689-718. [DOI: 10.1111/1541-4337.12873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Vindya Thathsaranee Weligama Thuppahige
- Department of Food Science and Technology Faculty of Agriculture, University of Ruhuna Kamburupitiya Sri Lanka
- School of Mechanical, Medical and Process Engineering Queensland University of Technology Brisbane Australia
| | - Md Azharul Karim
- School of Mechanical, Medical and Process Engineering Queensland University of Technology Brisbane Australia
| |
Collapse
|
30
|
Extrusion and Injection Molding of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx): Influence of Processing Conditions on Mechanical Properties and Microstructure. Polymers (Basel) 2021; 13:polym13224012. [PMID: 34833311 PMCID: PMC8622142 DOI: 10.3390/polym13224012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Biobased and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. However, improvements in their processing and mechanical properties are necessary. In this work, the influence of melt processing conditions on the mechanical properties and microstructure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is examined using a full factorial design of experiments (DoE) approach. We have found that strict control over processing temperature, mold temperature, screw speed, and cooling time leads to highly increased elongation at break values, mainly under influence of higher mold temperatures at 80 °C. Increased elongation of the moldings is attributed to relaxation and decreased orientation of the polymer chains together with a homogeneous microstructure at slower cooling rates. Based on the statistically substantiated models to determine the optimal processing conditions and their effects on microstructure variation and mechanical properties of PHBHHx samples, we conclude that optimizing the processing of this biopolymer can improve the applicability of the material and extend its scope in the realm of flexible packaging applications.
Collapse
|
31
|
Khattab AM, Esmael ME, Farrag AA, Ibrahim MIA. Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization. Int J Biol Macromol 2021; 190:319-332. [PMID: 34411615 DOI: 10.1016/j.ijbiomac.2021.08.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The demand for the production of biodegradable plastics has significantly increased. Bioplastics have become an essential alternative to the threats of the daily consumable plastics, sourced from fossil fuels, to the environment. Polyhydroxyalkonates (PHAs) are a ubiquitous group of bioderived and biodegradable plastics, however their production is limited by the costs associated mainly with the carbon sources. Herein, this study aims to reduce the PHAs production cost by using a by-product from the dairy industry, i.e., cheese whey (CW), as a sole carbon source. The developed process recruits an aquatic isolate, Bacillus flexus Azu-A2, and is optimized via studying various parameters using the shaking flasks technique. The results showed that the maximum PHA production (0.95 g L-1) and PHA content (20.96%, w/w), were obtained after incubation period 72 h at 45 °C, 100 rpm agitation rate, 50% CWS concentration, pH 8.5, and 1.0 g L-1 ammonium chloride. Physiochemically, Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and energy-dispersive X-ray (EDX) techniques, emphasized the type of the extracted PHA as polyhydroxybutyrate (PHB). The thermal properties of PHB were measured using differential scanning calorimetry (DSC), recording melting transition temperature (Tm) at 170.96 °C. Furthermore, a scanning electron microscope (SEM) visualized a homogenous microporous structure for the thin PHB biofilm. In essence, this study highlights the ability of Bacillus flexus Azu-A2 to produce a good yield of highly purified PHB at reduced production cost from dairy CW. Consequently, the current study paves the way for an improved whey management strategy.
Collapse
Affiliation(s)
- Abdelrahman M Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mahmoud E Esmael
- Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ayman A Farrag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed I A Ibrahim
- Laboratory of Marine Chemistry, Marine Environment Division, National Institute of Oceanography and Fisheries, NIOF, Egypt.
| |
Collapse
|
32
|
Zhang J, Wang L, Sun J, Jiang S, Li H, Zhang S, Yang W, Gu X, Qiao H. A novel hollow microsphere acting on crystallization, mechanical, and thermal performance of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate). POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingfan Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Li Wang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Jun Sun
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Shengling Jiang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Hongfei Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Sheng Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Wantai Yang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Xiaoyu Gu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| | - Hu Qiao
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China
| |
Collapse
|
33
|
Schmid MT, Sykacek E, O'Connor K, Omann M, Mundigler N, Neureiter M. Pilot scale production and evaluation of mechanical and thermal properties of P(
3HB
) from
Bacillus megaterium
cultivated on desugarized sugar beet molasses. J Appl Polym Sci 2021. [DOI: 10.1002/app.51503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maximilian T. Schmid
- Institute of Environmental Biotechnology University of Natural Resources and Life Sciences Tulln Austria
| | - Eva Sykacek
- Institute of Natural Materials Technology University of Natural Resources and Life Sciences Tulln Austria
| | | | - Markus Omann
- AGRANA Research & Innovation Center GmbH Tulln Austria
| | - Norbert Mundigler
- Institute of Natural Materials Technology University of Natural Resources and Life Sciences Tulln Austria
| | - Markus Neureiter
- Institute of Environmental Biotechnology University of Natural Resources and Life Sciences Tulln Austria
| |
Collapse
|
34
|
De Donno Novelli L, Moreno Sayavedra S, Rene ER. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. BIORESOURCE TECHNOLOGY 2021; 331:124985. [PMID: 33819906 DOI: 10.1016/j.biortech.2021.124985] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
Collapse
Affiliation(s)
- Laura De Donno Novelli
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Sarah Moreno Sayavedra
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands.
| |
Collapse
|
35
|
Jayakrishnan U, Deka D, Das G. Regulation of volatile fatty acid accumulation from waste: Effect of inoculum pretreatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1019-1031. [PMID: 33259657 DOI: 10.1002/wer.1490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The study investigates the implications of waste feedstock, inoculum origin, and pretreatment on volatile fatty acids accumulation (VFA). The acidogenic fermentation of the feedstocks, rice mill effluent (RME), and brewery effluent (BE) was studied using untreated and pretreated (cyclic heat-acid shock) brewery anaerobic sludge as inoculum. The pretreatment was successful in refining and stabilizing VFA production from the feedstocks. The fermentation of RME with pretreated sludge had an enhanced acetate yield of 0.37 ± 0.02 mgCOD/mgCOD, even to odd ratio of 20.97 ± 0.08 mg/mg and the highest butyrate yield of 0.39 ± 0.01 mgCOD/mgCOD compared to untreated system. The pretreated system had stability in COD and pH profile, while VFA content depends on the origin of inoculum. Pretreatment inhibited the carbon sinks and augmented acetate-butyrate type metabolism with stable performance. The fermentation of RME by pretreated sludge produced a higher even-numbered VFAs and enhanced even to odd ratio in comparison with fermentation of BE, thereby affecting polymer composition and property. PRACTITIONER POINTS: The pretreated system had stable acidification, chemical oxygen demand, and pH profile. The pretreated system had higher acetate and butyrate yield compared to the untreated system. Rice mill effluent acidified with pretreated sludge had the highest even to odd ratio, 20.97 mg/mg. The even to odd ratio for acidification of brewery effluent was insignificant. Pretreatment, the origin of sludge, and the effluent had a regulatory effect on acidification.
Collapse
Affiliation(s)
| | - Deepmoni Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopal Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
36
|
Kuenneth C, Schertzer W, Ramprasad R. Copolymer Informatics with Multitask Deep Neural Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christopher Kuenneth
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William Schertzer
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
37
|
Dutt Tripathi A, Paul V, Agarwal A, Sharma R, Hashempour-Baltork F, Rashidi L, Khosravi Darani K. Production of polyhydroxyalkanoates using dairy processing waste - A review. BIORESOURCE TECHNOLOGY 2021; 326:124735. [PMID: 33508643 DOI: 10.1016/j.biortech.2021.124735] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.
Collapse
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Fataneh Hashempour-Baltork
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran
| | - Ladan Rashidi
- Department of Food and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| | - Kianoush Khosravi Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
38
|
Lorini L, Martinelli A, Capuani G, Frison N, Reis M, Sommer Ferreira B, Villano M, Majone M, Valentino F. Characterization of Polyhydroxyalkanoates Produced at Pilot Scale From Different Organic Wastes. Front Bioeng Biotechnol 2021; 9:628719. [PMID: 33681164 PMCID: PMC7931994 DOI: 10.3389/fbioe.2021.628719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) production at pilot scale has been recently investigated and carried out exploiting different process configurations and organic wastes. More in detail, three pilot platforms, in Treviso (North-East of Italy), Carbonera (North-East of Italy) and Lisbon, produced PHAs by open mixed microbial cultures (MMCs) and different organic waste streams: organic fraction of municipal solid waste and sewage sludge (OFMSW-WAS), cellulosic primary sludge (CPS), and fruit waste (FW), respectively. In this context, two stabilization methods have been applied, and compared, for preserving the amount of PHA inside the cells: thermal drying and wet acidification of the biomass at the end of PHA accumulation process. Afterward, polymer has been extracted following an optimized method based on aqueous-phase inorganic reagents. Several PHA samples were then characterized to determine PHA purity, chemical composition, molecular weight, and thermal properties. The polymer contained two types of monomers, namely 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) at a relative percentage of 92.6-79.8 and 7.4-20.2 w/w, respectively, for Treviso and Lisbon plants. On the other hand, an opposite range was found for 3HB and 3HV monomers of PHA from Carbonera, which is 44.0-13.0 and 56.0-87.0 w/w, respectively. PHA extracted from wet-acidified biomass had generally higher viscosity average molecular weights (M v ) (on average 424.8 ± 20.6 and 224.9 ± 21.9 KDa, respectively, for Treviso and Lisbon) while PHA recovered from thermally stabilized dried biomass had a three-fold lower M v .
Collapse
Affiliation(s)
- Laura Lorini
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Giorgio Capuani
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Maria Reis
- Department of Chemistry, Nova University of Lisbon, Lisbon, Portugal
| | | | - Marianna Villano
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Francesco Valentino
- Department of Environmental Science, Informatics and Statistics, “Ca Foscari” University of Venice, Venice, Italy
| |
Collapse
|
39
|
Pagliano G, Galletti P, Samorì C, Zaghini A, Torri C. Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review. Front Bioeng Biotechnol 2021; 9:624021. [PMID: 33644018 PMCID: PMC7902716 DOI: 10.3389/fbioe.2021.624021] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
An overview of the main polyhydroxyalkanoates (PHA) recovery methods is here reported, by considering the kind of PHA-producing bacteria (single bacterial strains or mixed microbial cultures) and the chemico-physical characteristics of the extracted polymer (molecular weight and polydispersity index). Several recovery approaches are presented and categorized in two main strategies: PHA recovery with solvents (halogenated solvents, alkanes, alcohols, esters, carbonates and ketones) and PHA recovery by cellular lysis (with oxidants, acid and alkaline compounds, surfactants and enzymes). Comparative evaluations based on the recovery, purity and molecular weight of the recovered polymers as well as on the potential sustainability of the different approaches are here presented.
Collapse
Affiliation(s)
- Giorgia Pagliano
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Paola Galletti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| | - Chiara Samorì
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| | - Agnese Zaghini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Cristian Torri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| |
Collapse
|
40
|
Szacherska K, Oleskowicz-Popiel P, Ciesielski S, Mozejko-Ciesielska J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers (Basel) 2021; 13:polym13030321. [PMID: 33498279 PMCID: PMC7863920 DOI: 10.3390/polym13030321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Waste of industrial origin produced from synthetic materials are a serious threat to the natural environment. The ending resources of fossil raw materials and increasingly restrictive legal standards for the management of plastic waste have led to research on the use of biopolymers, which, due to their properties, may be an ecological alternative to currently used petrochemical polymers. Polyhydroxyalkanoates (PHAs) have gained much attention in recent years as the next generation of environmentally friendly materials. Currently, a lot of research is being done to reduce the costs of the biological process of PHA synthesis, which is the main factor limiting the production of PHAs on the industrial scale. The volatile fatty acids (VFAs) produced by anaerobic digestion from organic industrial and food waste, and various types of wastewater could be suitable carbon sources for PHA production. Thus, reusing the organic waste, while reducing the future fossil fuel, originated from plastic waste. PHA production from VFAs seem to be a good approach since VFAs composition determines the constituents of PHAs polymer and is of great influence on its properties. In order to reduce the overall costs of PHA production to a more reasonable level, it will be necessary to design a bioprocess that maximizes VFAs production, which will be beneficial for the PHA synthesis. Additionally, a very important factor that affects the profitable production of PHAs from VFAs is the selection of a microbial producer that will effectively synthesize the desired bioproduct. PHA production from VFAs has gained significant interest since VFAs composition determines the constituents of PHA polymer. Thus far, the conversion of VFAs into PHAs using pure bacterial cultures has received little attention, and the majority of studies have used mixed microbial communities for this purpose. This review discusses the current state of knowledge on PHAs synthesized by microorganisms cultured on VFAs.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| |
Collapse
|
41
|
Jayakrishnan U, Deka D, Das G. Influence of inoculum variation and nutrient availability on polyhydroxybutyrate production from activated sludge. Int J Biol Macromol 2020; 163:2032-2047. [PMID: 32949626 DOI: 10.1016/j.ijbiomac.2020.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Carbon recovery through polyhydroxybutyrate (PHB) production can create a value-added waste management system. Activated sludge as inoculum enables PHB production using cheap and renewable carbons source, bringing PHB at par to conventional plastics. The PHB accumulating potential of activated sludge needs to be improved to realize the objective. The interaction between the origin of activated sludge, petroleum refinery sludge and brewery sludge, and nitrogen availability was explored to effect culture enrichment, improve PHB accumulation, and polymer characteristics through aerobic dynamic feeding. Consequently, nitrogen excess and limitation enrichment of both sludges produced mix microbial culture with adequate PHB storage of 7.8 ± 0.05%, 14.4 ± 0.04%, 14.4 ± 0.04%, 13.4 ± 0.02% respectively. Batch accumulation revealed higher PHB accumulation of 76.1 ± 0.03% and 71.7 ± 0.05% under nitrogen limitation for PRS and BS enriched under nitrogen excess condition compared to any other combination. The higher decomposition temperature of 285 °C, 293 °C, and a lower melting point of 168 °C, 165 °C with a higher molecular weight of 4.3x105g/mol and semi-crystalline arrangement indicates the potential applications for extracted PHB. PHB production enhanced under nitrogen limited conditions with culture enriched under nitrogen excess condition. However, similar PHB storage, physiochemical property, and overlapping microbial community show an insignificant effect of sludge origin on PHB production.
Collapse
Affiliation(s)
- U Jayakrishnan
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Deepmoni Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
42
|
Bossu J, Angellier-Coussy H, Totee C, Matos M, Reis M, Guillard V. Effect of the Molecular Structure of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) Produced from Mixed Bacterial Cultures on Its Crystallization and Mechanical Properties. Biomacromolecules 2020; 21:4709-4723. [DOI: 10.1021/acs.biomac.0c00826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Bossu
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| | - Hélène Angellier-Coussy
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| | - Cedric Totee
- ICGM, CNRS, ENSCM, University of Montpellier, Montpellier F-34095, France
| | - Mariana Matos
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), Caparica 2829-516, Portugal
| | - Maria Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), Caparica 2829-516, Portugal
| | - Valérie Guillard
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| |
Collapse
|
43
|
Munir S, Jamil N. Polyhydroxyalkanoate (PHA) production in open mixed cultures using waste activated sludge as biomass. Arch Microbiol 2020; 202:1907-1913. [PMID: 32448962 DOI: 10.1007/s00203-020-01912-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
In this work, volatile fatty acids (VFAs) were used as a carbon source to assess the ability of bacteria present in waste activated sludge (WAS), as indigenous flora, to accumulate polyhydroxyalkanoates (PHA). Acetic acid and propionic acid were used both separately and in combination as feedstock, producing either homopolymer poly(3-hydroxybutyrate) (3PHB) and/or the co-polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV). The overall potential to use waste activated sludge as biomass for production of valuable polymers was assessed, and a quality assessment of the as-produced polymers was run, with the extracted polymer being analyzed for properties such as thermal, microstructure and molecular weight. It was found that a blend of copolymers was typically produced, with thermal properties being similar to those reported elsewhere. The overall PHA cell content obtained was 0.29 gPHA gVSS-1.
Collapse
Affiliation(s)
- Sajida Munir
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan. .,Nur International University, Lahore, Pakistan.
| | - Nazia Jamil
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
44
|
Kerketta A, Vasanth D. Madhuca indica flower extract as cheaper carbon source for production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using Ralstonia eutropha. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Rodrigues PR, Assis DJ, Druzian JI. Simultaneous production of polyhydroxyalkanoate and xanthan gum: From axenic to mixed cultivation. BIORESOURCE TECHNOLOGY 2019; 283:332-339. [PMID: 30925313 DOI: 10.1016/j.biortech.2019.03.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
In the present study, mixed and axenic submerged cultures of Cupriavidus necator and Xanthomonas campestris were performed for simultaneous and individual PHA and XG productions using palm oil (Elaeis guineensis) as substrate. Rotational Central Compound Design (RCCD) was successfully used in the optimization of individual productions of PHA (3.39 g L-1, Mw = 692.6 kDa) and XG (1.77 g L-1, Mw = 36.6 × 105 kDa). Novel simultaneous production of PHA (6.43 g L-1, Mw = 629.2 kDa) and XG (1.98 g L-1, Mw = 25.0 × 105 kDa), executed in bacterial co-cultivation, revealed to be a successful strategy to increment polymer synthesis, especially PHA. XG bioconversions followed a general trend of lower production in co-culture. Culture configurations also altered polymers properties and characteristics.
Collapse
Affiliation(s)
- Plínio R Rodrigues
- University of Campinas - UNICAMP, Graduate Program in Chemical Engineering, Av. Albert Einstein, n 500, Cidade Universitária, 13083-852 Campinas, SP, Brazil.
| | - Denilson J Assis
- Federal University of Bahia - UFBA, Graduate Program in Chemical Engineering, Rua Aristides Novis, n 2, Federação, 40210-630 Salvador, BA, Brazil
| | - Janice I Druzian
- Federal University of Bahia - UFBA, Graduate Program in Chemical Engineering, Rua Aristides Novis, n 2, Federação, 40210-630 Salvador, BA, Brazil
| |
Collapse
|
46
|
Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. BIORESOURCE TECHNOLOGY 2019; 282:361-369. [PMID: 30884455 DOI: 10.1016/j.biortech.2019.03.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio acid lauric to biomass of 2:1 and 3 h of contact time.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, Palermo, IT, Italy.
| | - Dario Presti
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, Palermo, IT, Italy
| | - Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria. Edifici Q Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria. Edifici Q Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
47
|
Fradinho J, Oehmen A, Reis M. Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions. Int J Biol Macromol 2019; 126:1085-1092. [DOI: 10.1016/j.ijbiomac.2018.12.270] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/31/2018] [Indexed: 01/03/2023]
|
48
|
Ferre-Guell A, Winterburn J. Biosynthesis and Characterization of Polyhydroxyalkanoates with Controlled Composition and Microstructure. Biomacromolecules 2018; 19:996-1005. [DOI: 10.1021/acs.biomac.7b01788] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Ferre-Guell
- School of Chemical Engineering and Analytical Science, The Mill, The University of Manchester, Manchester M13 9PL, U.K
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The Mill, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
49
|
Munir S, Jamil N. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. J Basic Microbiol 2018; 58:247-254. [DOI: 10.1002/jobm.201700276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sajida Munir
- Department of Microbiology and Molecular Genetics; University of the Punjab; Lahore Pakistan
- Department of Zoology; University of Lahore; Sargodha Pakistan
| | - Nazia Jamil
- Department of Microbiology and Molecular Genetics; University of the Punjab; Lahore Pakistan
| |
Collapse
|
50
|
Guerra-Blanco P, Cortes O, Poznyak T, Chairez I, García-Peña E. Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: Effect of culture conditions over microbial population and biopolymer yield and composition. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|