1
|
Zakrzewska A, Nakielski P, Truong YB, Gualandi C, Velino C, Zargarian SS, Lanzi M, Kosik-Kozioł A, Król J, Pierini F. "Green" Cross-Linking of Poly(Vinyl Alcohol)-Based Nanostructured Biomaterials: From Eco-Friendly Approaches to Practical Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70017. [PMID: 40411475 DOI: 10.1002/wnan.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025]
Abstract
Recently, a growing need for sustainable materials in various industries, especially biomedical, environmental, and packaging applications, has been observed. Poly(vinyl alcohol) (PVA) is a versatile and widely used polymer, valued for its biocompatibility, water solubility, and easy processing, e.g., forming nanofibers via electrospinning. As a result of cross-linking, PVA turns into a three-dimensional structure-hydrogel with unusual sorption properties and mimicry of biological tissues. However, traditional cross-linking methods often involve toxic chemicals and harsh conditions, which can limit its eco-friendly potential and raise concerns about environmental impact. "Green" cross-linking approaches, such as the use of natural cross-linkers, freeze-thawing, enzymatic processes, irradiation, heat treatment, or immersion in alcohol, offer an environmentally friendly alternative that aligns with global trends toward sustainability. These methods not only reduce the use of harmful substances but also enhance the biodegradability and safety of the materials. By reviewing and analyzing the latest advancements in "green" PVA cross-linking approaches, this review provides a comprehensive overview of current techniques, their advantages, limitations, and potential applications. The main emphasis is placed on PVA nanostructured forms and applications of PVA-based biomaterials in areas such as wound dressings, drug delivery systems, tissue engineering, biological filters, and biosensors. Moreover, this article will contribute to the broader scientific understanding of how the materials based on PVA can be optimized both in terms of "greener" and safer production, as well as adjusting the final platform properties.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Yen Bach Truong
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy
| | - Cecilia Velino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Julia Król
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Aghababaei F, McClements DJ, Martinez MM, Hadidi M. Electrospun plant protein-based nanofibers in food packaging. Food Chem 2024; 432:137236. [PMID: 37657333 DOI: 10.1016/j.foodchem.2023.137236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is a relatively simple technology capable to produce nano- and micron-scale fibers with different properties depending on the electrospinning conditions. This review critically investigates the fabrication of electrospun plant protein nanofibers (EPPNFs) that can be used in food and food packaging applications. Recent progress in the development and optimization of electrospinning techniques for production of EPPNFs is discussed. Finally, current challenges to the implementation of EPPNFs in food and food packaging applications are highlighted, including potential safety and scalability issues. The production of plant protein nanofibers and microfibers is likely to increase in the future as many industries wish to replace synthetic materials with more sustainable, renewable, and environmentally friendly biopolymers. It is therefore likely that EPPNFs will find increasing applications in various fields including active food packaging and drug delivery.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | | | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| |
Collapse
|
3
|
Yao H, Wang J, Deng Y, Li Z, Wei J. Osteogenic and antibacterial PLLA membrane for bone tissue engineering. Int J Biol Macromol 2023; 247:125671. [PMID: 37406896 DOI: 10.1016/j.ijbiomac.2023.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Insufficient bone regeneration and bacterial infection are two major concerns of bone repair materials. Poly-L-lactic acid (PLLA) have been widely used in bone tissue engineering (BTE), however, lack of osteogenic and antibacterial properties have greatly limit its clinical application. Herein, PLLA membrane was firstly treated with polydopamine (PDA), and then modified with ε-polylysine (ε-PL) and alginate (ALG) via layer-by-layer method. The (ε-PL/ALG)n composite layer coated PLLA (PLLA@(ε-PL/ALG)n) could facilitates the adhesion and osteoblast differentiation of MC3T3-E1 cells. Furthermore, PLLA@(ε-PL/ALG)n presents an effective antibacterial efficacy against S. aureus and E. coli, and the bacterial survival rates of S. aureus and E. coli on PLLA@(ε-PL/ALG)10 were 21.5 ± 3.5 % and 13 ± 2.1 %, respectively. This work provides a promising method to design PLLA materials with osteogenic and antibacterial activity simultaneously. Furthermore, the method is also an optional choice to construct multifunctional coatings on the other substrate.
Collapse
Affiliation(s)
- Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China.
| |
Collapse
|
4
|
Xu Y, Wang J, Wang Z, Zhao Y, Guo W. Bio-based polyamide fibers prepared by mussel biomimetic modification of hydroxyapatite. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Recent Advances in Electrospun Nanofibrous Polymeric Yarns. ADVANCES IN POLYMER SCIENCE 2023. [DOI: 10.1007/12_2022_142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
7
|
Medeiros GB, Lima FDA, de Almeida DS, Guerra VG, Aguiar ML. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. MEMBRANES 2022; 12:membranes12090861. [PMID: 36135880 PMCID: PMC9505773 DOI: 10.3390/membranes12090861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
The development of new materials with specific functionalities for certain applications has been increasing with the advent of nanotechnology. A technique widely used for this purpose is electrospinning, because control of several parameters involved in the process can yield nanoscale fibers. In addition to the production of innovative and small-scale materials, through structural, chemical, physical, and biological modifications in the fibers produced in electrospinning, it is possible to obtain specific properties for a given application. Thus, the produced fibers can serve different purposes, such as in the areas of sensors, catalysis, and environmental and medical fields. Given this context, this article presents a review of the electrospinning technique, addressing the parameters that influence the properties of the fibers formed and some techniques used to modify them as specific treatments that can be conducted during or after electrospinning. In situ addition of nanoparticles, changes in the configuration of the metallic collector, use of alternating current, electret fibers, core/shell method, coating, electrospray-coating, plasma, reinforcing composite materials, and thermal treatments are some of the examples addressed in this work. Therefore, this work contributes to a better comprehension of some of the techniques mentioned in the literature so far.
Collapse
Affiliation(s)
- Gabriela B. Medeiros
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Felipe de A. Lima
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Daniela S. de Almeida
- Departamento de Engenharia Ambiental, Federal University of Technology-Paraná, Avenida dos Pioneiros, 3131, Londrina 86030-370, PR, Brazil
| | - Vádila G. Guerra
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Mônica L. Aguiar
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
8
|
Gao YS, Ren X, Du XZ, Wang ZZ, He ZB, Yuan SQ, Pan Z, Zhang Y, Zhi XX, Liu JG. Formation of Nano-Fibrous Patterns on Aluminum Substrates via Photolithographic Fabrication of Electrospun Photosensitive Polyimide Fibrous Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2745. [PMID: 36014610 PMCID: PMC9413137 DOI: 10.3390/nano12162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The formation of polymeric micro-patterns on various substrates via a photolithography procedure has been widely used in semiconductor fabrication. Standard polymer patterns are usually fabricated via photosensitive polymer varnishes, in which large amounts of potentially harmful solvents with weight ratios over 50 wt% have to be removed. In the current work, a novel pattern-formation methodology via solvent-free electrospun photosensitive polymeric fibrous membranes (NFMs) instead of the conventional photosensitive solutions as the starting photoresists was proposed and practiced. For this purpose, a series of preimidized negative auto-photosensitive polyimide (PSPI) resins were first prepared via the two-step chemical imidization procedure from the copolymerization reactions of 3,3',4,4'-benzophenonetetracarboxylic- dianhydride (BTDA) and two ortho-methyl-substituted aromatic diamines, including 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane (TMMDA) and 3,7-diamino-2,8-dimethyl- dibenzothiophene sulfone (TSN). The derived homopolymer PI-1 (BTDA-TMMDA) and the copolymers, including SPI-2~SPI-6, with the molar ratio of 5~25% for TSN in the diamine units, showed good solubility in polar solvents. Then, a series of PSPI NFMs were fabricated via standard electrospinning procedure with the developed PSPI solutions in N,N-dimethylacetamide (DMAc) with a solid content of 25 wt% as the starting materials. The derived PSPI NFMs showed good thermal stability with 5% weight loss temperatures higher than 500 °C in nitrogen. Meanwhile, the derived PSPIs showed good photosensitivity to the ultraviolet (UV) emitting wavelengths of i-line (365 nm), g-line (405 nm) and h-line (436 nm) of the high-pressure mercury lamps in both forms of transparent films and opaque NFMs. Fine micro-patterns with a line width of around 100 μm were directly obtained from the representative SPI-4 NFM via standard photolithography procedure.
Collapse
Affiliation(s)
- Yan-shuang Gao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xi Ren
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xuan-zhe Du
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhen-zhong Wang
- RAYITEK Hi-Tech Film Company, Co., Ltd., Shenzhen 518105, China
| | - Zhi-bin He
- RAYITEK Hi-Tech Film Company, Co., Ltd., Shenzhen 518105, China
| | - Shun-qi Yuan
- RAYITEK Hi-Tech Film Company, Co., Ltd., Shenzhen 518105, China
| | - Zhen Pan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yan Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin-xin Zhi
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jin-gang Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
9
|
Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14142940. [PMID: 35890716 PMCID: PMC9318783 DOI: 10.3390/polym14142940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Bone-tissue engineering is an alternative treatment for bone defects with great potential in which scaffold is a critical factor to determine the effect of bone regeneration. Electrospun nanofibers are widely used as scaffolds in the biomedical field for their similarity with the structure of the extracellular matrix (ECM). Their unique characteristics are: larger surface areas, porosity and processability; these make them ideal candidates for bone-tissue engineering. This review briefly introduces bone-tissue engineering and summarizes the materials and methods for electrospining. More importantly, how to functionalize electrospun nanofibers to make them more conducive for bone regeneration is highlighted. Finally, the existing deficiencies of functionalized electrospun nanofibers for promoting osteogenesis are proposed. Such a summary can lay the foundation for the clinical practice of functionalized electrospun nanofibers.
Collapse
Affiliation(s)
- Xuan Yan
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
| | - Haiyan Yao
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| |
Collapse
|
10
|
Enhanced thermal stability and UV resistance of polyamide 6 filament fabric via in-situ grafting with methyl methacrylate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Wen T, Yuan J, Lai W, Liu X, Liu Y, Chen L, Jiang X. Morphology-Controlled Mesopores with Hydrophilic Pore Walls from Triblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wei Lai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiang Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xing Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Evaluation of physicochemical properties of polycaprolactone/gelatin/polydimethylsiloxane hybrid nanofibers as potential scaffolds for elastic tissue engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
14
|
Yadav P, Farnood R, Kumar V. Superhydrophobic modification of electrospun nanofibrous Si@PVDF membranes for desalination application in vacuum membrane distillation. CHEMOSPHERE 2022; 287:132092. [PMID: 34826888 DOI: 10.1016/j.chemosphere.2021.132092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Superhydrophobic nanofibers have received prominent attention owing to their exceptional properties and researchers are focused on developing high-performing MD membranes. Herein, we fabricate superhydrophobic electrospun nanofibrous membranes using polyvinylidene fluoride (PVDF) solutions with silica nanoparticles (0 wt% to 6 wt%) to create multiscale (or hierarchical) surface roughness. For superhydrophobicity, the composite membranes (Si@PVDF) were subjected to a two-step modification that included acid pre-treatment and silanization with fluoroalkylsilane (FAS) compound of low surface energy. The acid pre-treatment enhances the hydroxyl group of SiO2 nanoparticles and create active sites in abundance for silanization. The modified membranes (FAS-Si@PVDF-A) having 6 wt% SiO2 showed excellent wetting resistance with water contact angle (WCA) up to 154.6 ± 2.2°, smaller average pore size of 0.27 ± 0.3 μm, and high liquid entry pressure (LEP) of 143 ± 4 kPa. It was observed, increasing silica content decreased the fiber diameter and average pore size and increased WCA and LEP of modified membranes. The modified superhydrophobic membranes gave stable permeate flux, exhibited strong wetting resistance and excellent salt rejection in vacuum membrane distillation (VMD) test. The optimal FAS-Si@PVDF-A membrane (6 wt% SiO2) of thickness 98 ± 5 μm produced a stable permeate flux of more than 11.5 kg m-2 h-1 and salt rejection as high as 99.9% after 22 h of continuous operation using NaCl solution (3.5 wt%) as feed. Therefore, this modification provided superhydrophobic membranes possessing robust anti-wetting properties with significant permeability and has encouraging application in membrane distillation for desalination.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ramin Farnood
- Department of Applied Chemistry and Chemical Engineering, University of Toronto, Ontario, M5S 3E5, Canada
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
15
|
Maleki H, Khoshnevisan K, Sajjadi-Jazi SM, Baharifar H, Doostan M, Khoshnevisan N, Sharifi F. Nanofiber-based systems intended for diabetes. J Nanobiotechnology 2021; 19:317. [PMID: 34641920 PMCID: PMC8513238 DOI: 10.1186/s12951-021-01065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF system for DM complications in detail.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Farshad Sharifi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| |
Collapse
|
16
|
Preparation and Performance of PAN-PAC Nanofibers by Electrospinning Process to Remove NOM from Water. MATERIALS 2021; 14:ma14164426. [PMID: 34442950 PMCID: PMC8400080 DOI: 10.3390/ma14164426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022]
Abstract
The technology based on electrospun membranes exhibits great potential in water treatment. This study presents experimental data involving the fabrication of nanofiber membranes with powdered activated carbon (PAC) and its application for the removal of natural organic matter. The fabricated membrane materials were characterized using various techniques. These include scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis. The incorporation of PAC nanoparticles influences the structure and physicochemical properties as well as the transport and separation characteristics of the produced membranes. The applicability of the fabricated carbon-based membrane was tested in the filtration experiments. The fabricated membrane is characterized by a high NOM removal efficiency of 79% in the filtration process. Further modification of the membrane composition may result in a further increase in the efficiency of removing contaminants from water.
Collapse
|
17
|
Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers (Basel) 2021; 13:polym13111804. [PMID: 34070820 PMCID: PMC8198691 DOI: 10.3390/polym13111804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
New bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared. A thorough characterisation by TGA, DSC, DMTA and XPS showed that the two polymers are immiscible and that PCADE preferentially segregates at the fibre surface, thus developing a very simple one-step approach to the preparation of ready-to-use surface functionalisable fibres. We demonstrated this by exploiting the epoxy groups at the PVDF fibre surface in two very different applications, namely in epoxy-based carbon fibre reinforced composites and membranes for ω-transaminase enzyme immobilisation for heterogeneous catalysis.
Collapse
|
19
|
Fabrication of Photoactive Electrospun Cellulose Acetate Nanofibers for Antibacterial Applications. ENERGIES 2021. [DOI: 10.3390/en14092598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the study was to investigate the process of electrostatic fabrication of cellulose acetate (CA) nanofibers containing methylene blue (MB) as a photosensitizer. The electrical, physicochemical, and biocidal properties of the prepared material were given. CA nanofibers were prepared by electrospinning method using a solvent mixture of acetone and distilled water (9:1 vv−1) and different concentrations of CA (i.e., 10–21%). Additionally, methylene blue was implemented into the polymer solution with a CA concentration of 17% to obtain fibers with photo-bactericidal properties. Pure electrospun CA fibers were more uniform than fibers with MB (i.e., ribbon shape). Fiber diameters did not exceed 900 nm for the tested polymer solutions and flow rate below 1.0 mL h−1. The polymer properties (i.e., concentration, resistivity) and other parameters of the process (i.e., flow rate, an applied voltage) strongly influenced the size of the fibers. Plasma treatment of nanofibers resulted in reduced biofilm formation on their surface. The results of photo-bactericidal activity (i.e., up to 180 min) confirmed the high efficiency of inactivation of Staphylococcus aureus cells using fibers containing methylene blue (i.e., with and without plasma treatment). The most effective reduction in the number of biofilm cells was equal to 99.99 ± 0.3%.
Collapse
|
20
|
Parreño RP, Liu YL, Beltran AB. Effect on thermal stability of microstructure and morphology of thermally-modified electrospun fibers of polybenzoxazines (PBz) blended with sulfur copolymers (SDIB). RSC Adv 2021; 11:10002-10009. [PMID: 35423484 PMCID: PMC8695406 DOI: 10.1039/d1ra00705j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Simple modification by thermal treatment is the commonly used approach to enhance the performance of electrospun fibers. This was investigated in the thermal treatment of polybenzoxazine (PBz) fibers blended with sulfur copolymers (SDIB) to determine the effect of varying treatment conditions on the microstructure and morphology of PBz fibers with the effect of incorporating sulfur functional groups on resulting properties. Mechanical properties of PBz are greatly improved by thermally-induced ring-opening polymerization (ROP) of the oxazine ring. Blending with sulfur copolymers (SDIB) could have beneficial effects on endowed features on fibers but could also affect the resulting properties of SDIB-blended PBz fibers during crosslinking reactions. Fiber mats were fabricated by electrospinning of PBz (10 wt%) blended with SDIB (10 wt%). Physical modification with varying conditions of sequential thermal treatment were evaluated and compared to the conditions applied on pristine PBz fibers. Changes in morphology and microstructure of fibers after modification were analyzed through scanning electron microscopy (SEM) while elemental compositions were identified after varying the conditions of thermal treatment. Adjustment of treatment conditions using two-step temperature sequential thermal treatment with higher temperatures of 160 °C and 240 °C showed significant changes in microstructure and morphology of fibers. Lower temperatures of 120 °C and 160 °C exhibited microstructure and morphology of fibers which affected the fiber diameter and fiber networks. Cross-sectional SEM images also confirmed the adversed effect of high-temperature treatment conditions on fibrous structures while low-temperature treatment retained the fibrous structures with more compact and stiff fiber networks. SDIB-blended PBz fibers were also evaluated by TGA and DSC to correlate the changes in structure and morphology with the thermal stability and integrity of blended SDIB/PBz fibers as compared to pristine PBz with the effect of change in treatment conditions. Fiber strength indicated slower weight loss for blended fibers and higher onset temperature of degradation which resulted in more thermally stable fibers.
Collapse
Affiliation(s)
- Ronaldo P Parreño
- Department of Chemical Engineering, De La Salle University 2401 Taft Avenue Manila 1004 Philippines
- Chemicals and Energy Division, Industrial Technology Development Institute (ITDI), Department of Science and Technology (DOST) Taguig 1631 Philippines
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 30013 Taiwan
| | - Arnel B Beltran
- Department of Chemical Engineering, De La Salle University 2401 Taft Avenue Manila 1004 Philippines
- Center for Engineering and Sustainable Development Research, De La Salle University 2401 Taft Avenue Manila 1004 Philippines
| |
Collapse
|
21
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Westrup JL, Bertoldi C, Cercena R, Dal-Bó AG, Soares RMD, Fernandes AN. Adsorption of endocrine disrupting compounds from aqueous solution in poly(butyleneadipate-co-terephthalate) electrospun microfibers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Smart Fibrous Structures Produced by Electrospinning Using the Combined Effect of PCL/Graphene Nanoplatelets. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Over the years, the development of adaptable monitoring systems to be integrated into soldiers’ body gear, making them as comfortable and lightweight as possible (avoiding the use of rigid electronics), has become essential. Electrospun microfibers are a great material for this application due to their excellent properties, especially their flexibility and lightness. Their functionalization with graphene nanoplatelets (GNPs) makes them a fantastic alternative for the development of innovative conductive materials. In this work, electrospun membranes based on polycaprolactone (PCL) were impregnated with different GNPs concentrations in order to create an electrically conductive surface with piezoresistive behavior. All the samples were properly characterized, demonstrating the homogeneous distribution and the GNPs’ adsorption onto the membrane’s surfaces. Additionally, the electrical performance of the developed systems was studied, including the electrical conductivity, piezoresistive behavior, and Gauge Factor (GF). A maximum electrical conductivity value of 0.079 S/m was obtained for the 2%GNPs-PCL sample. The developed piezoresistive sensor showed high sensitivity to external pressures and excellent durability to repetitive pressing. The best value of GF (3.20) was obtained for the membranes with 0.5% of GNPs. Hence, this work presents the development of a flexible piezoresistive sensor, based on electrospun PCL microfibers and GNPs, utilizing simple methods.
Collapse
|
24
|
Zhao K, Kang SX, Yang YY, Yu DG. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers (Basel) 2021; 13:E226. [PMID: 33440744 PMCID: PMC7827756 DOI: 10.3390/polym13020226] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
As a new kind of water pollutant, antibiotics have encouraged researchers to develop new treatment technologies. Electrospun fiber membrane shows excellent benefits in antibiotic removal in water due to its advantages of large specific surface area, high porosity, good connectivity, easy surface modification and new functions. This review introduces the four aspects of electrospinning technology, namely, initial development history, working principle, influencing factors and process types. The preparation technologies of electrospun functional fiber membranes are then summarized. Finally, recent studies about antibiotic removal by electrospun functional fiber membrane are reviewed from three aspects, namely, adsorption, photocatalysis and biodegradation. Future research demand is also recommended.
Collapse
Affiliation(s)
| | | | | | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, 516 Jun-Gong Road, Shanghai 200093, China; (K.Z.); (S.-X.K.); (Y.-Y.Y.)
| |
Collapse
|
25
|
Fang R, Shiu BC, Ye Y, Zhang Y, Xue H, Lou CW, Lin JH. Electrospun cationic nanofiber membranes for adsorption and determination of Cr( vi) in aqueous solution: adsorption characteristics and discoloration mechanisms. RSC Adv 2021; 11:31795-31806. [PMID: 35496856 PMCID: PMC9041616 DOI: 10.1039/d1ra05917c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel cationic nanofiber membrane with various functional groups, good structural stability, and high adsorption capacity of Cr(vi) is presented. This nanofiber membrane is prepared by electrospinning a mixed aqueous solution of a cationic polycondensate (CP) and polyvinyl alcohol (PVA). With the aid of PVA, CP can be smoothly electrospun without using any organic solvents, and the cross-linking between CP and PVA improves the stability of membrane in acidic solution. Chemical and morphology characterization reveals that the CP/PVA membrane is composed of interwoven nanofibers that contain numerous cationic groups. Due to its high cationicity and hydrophilicity, the CP/PVA membrane shows great affinity for HCr2O7− and Cr2O72−. Adsorption experiments indicate that the CP/PVA membrane can remove Cr(vi) from simulated wastewater rapidly and efficiently in both batch and continuous mode. Besides, the presence of most coexisting ions will not interfere with the adsorption. Due to the redox reaction between the CP/PVA membrane and adsorbed Cr(vi), the CP/PVA membrane exhibits distinct color change after Cr(vi) adsorption and the discoloration is highly dependent on the adsorption amount. Therefore, in addition to serving as a highly efficient adsorbent, the CP/PVA membrane is also expected to be a convenient and low-cost method for semi-quantitative determination of Cr(vi) in wastewater. Cationic nanofiber membranes are prepared by electrospinning mixed aqueous solution of a cationic polycondensate (CP) and PVA. Apart from being a highly efficient Cr(vi) adsorbent, it can also serve as a convenient method for Cr(vi) determination.![]()
Collapse
Affiliation(s)
- Run Fang
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Bing-Chiuan Shiu
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Yuansong Ye
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Yuchi Zhang
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Hanyu Xue
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Ching-Wen Lou
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan, China
| | - Jia-Horng Lin
- Department of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan, China
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, China
| |
Collapse
|
26
|
Soberman MJ, Farnood RR, Tabe S. Functionalized powdered activated carbon electrospun nanofiber membranes for adsorption of micropollutants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Mousa HM, Alfadhel H, Abouel Nasr E. Engineering and Characterization of Antibacterial Coaxial Nanofiber Membranes for Oil/Water Separation. Polymers (Basel) 2020; 12:E2597. [PMID: 33167337 PMCID: PMC7694370 DOI: 10.3390/polym12112597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, a coaxial nanofiber membrane was developed using the electrospinning technique. The developed membranes were fabricated from hydrophilic cellulose acetate (CA) polymer and hydrophobic polysulfone (PSf) polymer as a core and shell in an alternative way with addition of 0.1 wt.% of ZnO nanoparticles (NPs). The membranes were treated with a 2M NaOH solution to enhance hydrophilicity and thus increase water separation flux. Chemical and physical characterizations were performed, such as Fourier transform infrared (FTIR) spectroscopy, and surface wettability was measured by means of water contact angle (WCA), mechanical properties, surface morphology via field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and microscopy energy dispersive (EDS) mapping and point analysis. The results show higher mechanical properties for the coaxial nanofiber membranes which reached a tensile strength of 7.58 MPa, a Young's modulus of 0.2 MPa, and 23.4 M J.m-3 of toughness. However, treated mebranes show lower mechanical properties (tensile strength of 0.25 MPa, Young's modulus of 0.01 MPa, and 0.4 M J.m-3 of toughness). In addition, the core and shell nanofiber membranes showed a uniform distribution of coaxial nanofibers. Membranes with ZnO NPs showed a porous structure and elimination of nanofibers after treatment due to the formation of nanosheets. Interestingly, membranes changed from hydrophobic to hydrophilic (the WCA changed from 90 ± 8° to 14 ± 2°). Besides that, composite nanofiber membranes with ZnO NPs showed antibacterial activity against Escherichia coli. Furthermore, the water flux for the modified membranes was improved by 1.6 times compared to the untreated membranes.
Collapse
Affiliation(s)
- Hamouda M. Mousa
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Husain Alfadhel
- Department of Mechanical Engineering, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Emad Abouel Nasr
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
- Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Cairo 11732, Egypt
| |
Collapse
|
28
|
Kopeć K, Wojasiński M, Ciach T. Superhydrophilic Polyurethane/Polydopamine Nanofibrous Materials Enhancing Cell Adhesion for Application in Tissue Engineering. Int J Mol Sci 2020; 21:ijms21186798. [PMID: 32947971 PMCID: PMC7555238 DOI: 10.3390/ijms21186798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
The use of nanofibrous materials in the field of tissue engineering requires a fast, efficient, scalable production method and excellent wettability of the obtained materials, leading to enhanced cell adhesion. We proposed the production method of superhydrophilic nanofibrous materials in a two-step process. The process is designed to increase the wettability of resulting scaffolds and to enhance the rate of fibroblast cell adhesion. Polyurethane (PU) nanofibrous material was produced in the solution blow spinning process. Then the PU fibers surface was modified by dopamine polymerization in water solution. Two variants of the modification were examined: dopamine polymerization under atmospheric oxygen (V-I) and using sodium periodate as an oxidative agent (V-II). Hydrophobic PU materials after the treatment became highly hydrophilic, regardless of the modification variant. This effect originates from polydopamine (PDA) coating properties and nanoscale surface structures. The modification improved the mechanical properties of the materials. Materials obtained in the V-II process exhibit superior properties over those from the V-I, and require shorter modification time (less than 30 min). Modifications significantly improved fibroblasts adhesion. The cells spread after 2 h on both PDA-modified PU nanofibrous materials, which was not observed for unmodified PU. Proposed technology could be beneficial in applications like scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kamil Kopeć
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Correspondence: ; Tel.: +48-790-829-799
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
29
|
Toriello M, Afsari M, Shon HK, Tijing LD. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. MEMBRANES 2020; 10:membranes10090204. [PMID: 32872232 PMCID: PMC7559347 DOI: 10.3390/membranes10090204] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.
Collapse
Affiliation(s)
- Mariela Toriello
- Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Leonard D. Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
- Correspondence:
| |
Collapse
|
30
|
Leonés A, Lieblich M, Benavente R, Gonzalez JL, Peponi L. Potential Applications of Magnesium-Based Polymeric Nanocomposites Obtained by Electrospinning Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1524. [PMID: 32759696 PMCID: PMC7466477 DOI: 10.3390/nano10081524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
In the last few decades, the development of new electrospun materials with different morphologies and advanced multifunctional properties are strongly consolidated. There are several reviews that describe the processing, use and characterization of electrospun nanocomposites, however, based on our knowledge, no review on electrospun nanocomposites reinforced with nanoparticles (NPs) based on magnesium, Mg-based NPs, are reported. Therefore, in the present review, we focus attention on the fabrication of these promising electrospun materials and their potential applications. Firstly, the electrospinning technique and its main processing window-parameters are described, as well as some post-processing methods used to obtain Mg-based materials. Then, the applications of Mg-based electrospun nanocomposites in different fields are pointed out, thus taking into account the current trend in developing inorganic-organic nanocomposites to gradually satisfy the challenges that the industry generates. Mg-based electrospun nanocomposites are becoming an attractive field of research for environmental remediation (waste-water cleaning and air filtration) as well as for novel technical textiles. However, the mayor application of Mg-based electrospun materials is in the biomedical field, as pointed out. Therefore, this review aims to clarify the tendency in using electrospinning technique and Mg-based nanoparticles to huge development at industrial level in the near future.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain; (M.L.); (J.L.G.)
| | - Rosario Benavente
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
| | - José Luis Gonzalez
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain; (M.L.); (J.L.G.)
- CIBER-BBN, 28040 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
31
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
32
|
|
33
|
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 2020; 19:479-502. [DOI: 10.1111/1541-4337.12536] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cen Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Yang Li
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Peng Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Hui Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang University Hangzhou China
- Ningbo Research InstituteZhejiang University Ningbo China
| |
Collapse
|
34
|
Dehghan-Manshadi N, Fattahi S, Hadizadeh M, Nikukar H, Moshtaghioun SM, Aflatoonian B. The influence of elastomeric polyurethane type and ratio on the physicochemical properties of electrospun polyurethane/silk fibroin hybrid nanofibers as potential scaffolds for soft and hard tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. NANOMATERIALS 2019; 9:nano9091215. [PMID: 31466357 PMCID: PMC6780329 DOI: 10.3390/nano9091215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023]
Abstract
In this work, cyclopropylamine (CPA) monomer was plasma-polymerized on poly (ε-caprolactone) nanofiber meshes using various deposition durations to obtain amine-rich surfaces in an effort to improve the cellular response of the meshes. Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate the surface morphology and surface chemical composition of the PCL samples, respectively. The measured coating thickness was found to linearly increase with deposition duration at a deposition rate of 0.465 nm/s. XPS analysis revealed that plasma exposure time had a considerable effect on the surface N/C and O/C ratio as well as on amino grafting efficiency and amino selectivity. In addition, cell studies showed that cell adhesion and proliferation significantly improved for all coated samples.
Collapse
|
36
|
Hydrophobic nano-bamboo fiber-reinforced acrylonitrile butadiene styrene electrospun membrane for the filtration of crude biodiesel. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01140-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Castagna R, Donini S, Colnago P, Serafini A, Parisini E, Bertarelli C. Biohybrid Electrospun Membrane for the Filtration of Ketoprofen Drug from Water. ACS OMEGA 2019; 4:13270-13278. [PMID: 31460455 PMCID: PMC6704435 DOI: 10.1021/acsomega.9b01442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
A current challenge in materials science and biotechnology is to express a specific and controlled functionality on the large interfacial area of a nanostructured material to create smart biohybrid systems for targeted applications. Here, we report on a biohybrid system featuring poly(vinyl alcohol) as the supporting synthetic polymer and bovine serum albumin as the biofunctional element. The optimal processing conditions to produce these self-standing composite membranes are determined, and the composition and distribution of the bioactive agent within the polymeric matrices are analyzed. A post-processing cross-linking using glutaraldehyde enables this functional membrane to be used as a chemical filter in aqueous environments. By demonstrating that our mats can remove large amounts of ketoprofen from water, we show that the combination of a BSA-induced biofunctionality with a nanostructured fibrous material allows for the development of an efficient biohybrid filtering device for the large and widely used family of nonsteroidal anti-inflammatory drugs (NSAIDs). The crystal structure of the complex between BSA and ketoprofen is determined for the first time and confirms the interaction between the two species.
Collapse
Affiliation(s)
- Rossella Castagna
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza L. da Vinci 32, 20133 Milano, Italy
| | - Stefano Donini
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
| | - Paolo Colnago
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea Serafini
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli, 7, 20131 Milano, Italy
| | - Emilio Parisini
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza L. da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
38
|
|
39
|
Goreninskii S, Guliaev R, Stankevich K, Danilenko N, Bolbasov E, Golovkin A, Mishanin A, Filimonov V, Tverdokhlebov S. “Solvent/non-solvent” treatment as a method for non-covalent immobilization of gelatin on the surface of poly(l-lactic acid) electrospun scaffolds. Colloids Surf B Biointerfaces 2019; 177:137-140. [DOI: 10.1016/j.colsurfb.2019.01.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
40
|
Two-stage phase separation of cellulose acetate membranes modified with plasma-treated natural zeolite: Response surface modeling. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Pei H, Yan F, Ma X, Li X, Liu C, Li J, Cui Z, He B. In situ one-pot formation of crown ether functionalized polysulfone membranes for highly efficient lithium isotope adsorptive separation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|