1
|
Wang Y, Yue Y, Wang L, Li J, Duan S, Li B, Yu D. Exopolysaccharide from Bifidobacterium longum subsp. infantis E4: Structural analysis and immunoregulation activities. Int J Biol Macromol 2025:142612. [PMID: 40158566 DOI: 10.1016/j.ijbiomac.2025.142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Exopolysaccharides (EPS) have the effects of anti-inflammatory, antimicrobial and immunomodulatory. This study described the structural characteristics of EPS-1 and EPS-2 and investigated their modulatory effects on immunity by cyclophosphamide (CTX)-induced immunocompromised mice. EPS-1 primarily consisted of glucose and mannose. EPS-2 was mostly comprised of galactose, glucose and mannose. Fourier-transform infrared (FT-IR) analysis revealed that EPS-1 and EPS-2 exhibited absorption peaks including CH and CO groups. Congo red test indicated that both of them had triple-helical conformations. Methylation and nuclear magnetic resonance (NMR) analyzed the main chain of EPS-1 comprising →4,6)-α-D-Glcp-(1→,→4)-α-D-Glcp-(1→,→4,6)-α-D-Glcp-(1→,2)-α-D-Manp-(1→,→6)-α-D-Manp-(1→. The main chain of EPS-2 was composed of α-D-Manp-(1→,→4)-α-D-Galp-(1→,→2,6)-α-D-Glcp-(1→,→2)-α-D-Manp-(1→,3)-α-D-Glcp-(1→. Additionally, EPS-1 and EPS-2 alleviated decreases in spleen and thymus index in mice subjected to CTX induction. Compared with the Model control (MC) group, the Splenic lymphocyte proliferations and NK cell activity in EPS-1 and EPS-2 groups were increased. Th1, Th2, Th17 and Treg cells in EPS-1 group were increased to 5.50 %, 0.36 %, 2.87 %, 3.53 %, respectively, and 5.39 %, 0.33 %, 2.40 %, 3.33 % in EPS-2 group. The levels of serum inflammatory cytokines (such as IFN-γ, IL-1β, IL-2, IL-6, IL-10 and TNF-α) were also increased in EPS-1 and EPS-2 groups to varying degree compare with the MC group. Therefore, the results unveiled that EPS has the potential to regulate the body immunity function.
Collapse
Affiliation(s)
- Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Jinxiang Biochemical Co., LTD, Harbin 150030, China
| | - Yingxue Yue
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Le Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sufang Duan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Prathyusha AMVN, Bramhachari PV. Statistical Optimization of Exopolysaccharide and Biomass Production by Mangrove Fungi Fusarium equiseti ANP2 and its Potential Application as Bioemulsifier and Chelator. Curr Microbiol 2025; 82:190. [PMID: 40080213 DOI: 10.1007/s00284-025-04129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
The rationale of the study is to explore the bio functional industrial potential and optimized culture conditions of a Manno glucan heteropolysaccharide MF-1 (purified EPS fraction) produced by a newly discovered mangrove derived fungi Fusarium equiseti ANP2, isolated from the Krishna River delta mangrove sediments. Response surface methodology (RSM) was employed to optimize fungal EPS and Biomass production, achieving a significant 1.4-fold increase to 6.94 g/L in EPS yield and a 2.1-fold increase in biomass production. RSM identified optimal levels of glucose, NH₄NO₃, NaCl, leucine, temperature, and pH, while minimizing the required glucose and nitrogen content compared to conventional methods. Notably, MF-1 exhibited promising emulsification potential (69.5% n-hexadecane emulsification), suggesting its prospective role as a novel emulsifier, particularly for n-hexadecane-based applications. Additionally, MF-1 also displayed a chelating activity for Fe2⁺ ions, suggesting its applicability as a natural chelating agent. The current study optimized the EPS production using RSM design and explored its potential for industrial applications as emulsification and chelating properties of the purified EPS fraction. Future research could explore the structural modifications of the fungal EPS to enhance its functionalities and delve deeper into the mechanisms governing EPS and biomass for large-scale, sustainable industrial production.
Collapse
Affiliation(s)
- A M V N Prathyusha
- Department of Biosciences & Biotechnology, Krishna University, Machilipatnam, 521004, India
| | | |
Collapse
|
3
|
Phukan D, Kumar V, Kandulna W, Singh A, Anand S, Pandey N. Harnessing artificial neural networks to model caffeine degradation by High-Yield biodiesel algae Desmodesmus pannonicus. BIORESOURCE TECHNOLOGY 2025; 418:131935. [PMID: 39667629 DOI: 10.1016/j.biortech.2024.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
In this study, Desmodesmus pannonicus IITISM-DIX2, outperforming Chlorella sorokiniana IITISM-DIX3 in caffeine degradation, was used to develop an artificial neural network (ANN) model for predicting caffeine removal efficiency under varying pH, photoperiods, caffeine, and indole acetic acid (IAA) concentrations. The ANN model, designed with a 4-15-1 multilayer perceptron and trained on 120 data points, achieved high predictive accuracy (R2 > 0.96) and bias/accuracy factors between 0.95-1.11. Sensitivity analysis identified pH as the most critical factor. IAA enhanced lipid content in Desmodesmus by 91 % in caffeine-containing simulated wastewater. FAME analysis was performed under optimal lipid-producing conditions (10 ppm caffeine, 5 ppm IAA). IAA upregulated key metabolic pathways, increasing secondary metabolites in Desmodesmus and Chlorella. In summary, the modeling results are key for improving system performance, guiding parameter selection to enhance caffeine removal by Desmodesmus. IAA also enhanced resilience and lipid yield, increasing the economic feasibility of caffeine removal and biofuel production.
Collapse
Affiliation(s)
- Dixita Phukan
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| | - Wilson Kandulna
- Applied Air and Soil Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India; Division of Environmental Hydrology, National Institute of Hydrology, Roorkee 247667, India
| | - Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Nishant Pandey
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
4
|
Pandey S, Kannaujiya VK. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int J Biol Macromol 2024; 279:135261. [PMID: 39244116 DOI: 10.1016/j.ijbiomac.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.
Collapse
Affiliation(s)
- Saumi Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Samal SK, Sahoo D, Acharya D. Alterations in structural components of extracellular polymeric substance of epilithic bacteria Brevundimonas faecalis BC1 growing on monumental rock under thermal stress. BIOFOULING 2024; 40:948-963. [PMID: 39625160 DOI: 10.1080/08927014.2024.2432970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
In this study, a comparison of biofilm formation, extracellular polymeric substances (EPS) production, protein and polysaccharides estimation, and protein profiling through SDS-PAGE, FTIR, GC-MS, ESI-MS, SEM, and AFM analysis were done for EPS from epilithic bacteria Brevundimonas faecalis BC1 obtained from monumental rock under normal room temperature and heat stressed condition. Heat stress (60 ± 2 °C) that simulates hot monumental rock surfaces during the summer season caused bacteria BC1 to produce more EPS (8.56 g/L), biofilm, protein and polysaccharides, extra SDS-PAGE protein bands of different molecular weight than their control counterpart. FTIR and GC-MS analysis showed extra polysaccharide formation in the EPS under heat stress and ESI-MS analysis clearly showed differences in structural components of EPS from two different sources. Consistently, SEM and AFM showed more branching structural components with dentate spikes in the EPS obtained from a heat-stressed source than from its counterpart, suggesting their protective role toward heat stress and adhesive potential for biofilm.
Collapse
Affiliation(s)
| | - Debadas Sahoo
- Post-Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odisha, India
| | | |
Collapse
|
6
|
Wang M, Geng L, Zhou J, Gu Z, Xue B, Shu C, Zhang J. Gut Microbiota Mediate Plutella xylostella Susceptibility to Bt Cry1Ac Protoxin and Exopolysaccharides. Int J Mol Sci 2024; 25:8483. [PMID: 39126052 PMCID: PMC11313015 DOI: 10.3390/ijms25158483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Exopolysaccharides (EPSs) are carbohydrate polymers that are synthesized and secreted into the extracellular during the growth of microorganisms. Bacillus thuringiensis (Bt) is a type of entomopathogenic bacterium, that produces various insecticidal proteins and EPSs. In our previous study, the EPSs produced by Bt strains were first found to enhance the toxicity of insecticidal crystal proteins against Plutella xylostella. However, the response of the intestinal bacterial communities of P. xylostella under the action of EPSs is still unelucidated. In this study, 16S rRNA amplicon sequencing was used to characterize the intestinal bacterial communities in P. xylostella treated with EPSs alone, Cry1Ac protoxin alone, and both the Cry1Ac protoxin and EPSs. Compared with the control group, alpha diversity indices, the Chao1 and ACE indices were significantly altered after treatment with EPSs alone, and no significant difference was observed between the groups treated with Cry1Ac protoxin alone and Cry1Ac protoxin + EPSs. However, compared with the gut bacterial community feeding on Cry1Ac protoxin alone, the relative abundance of 31 genera was significantly changed in the group treated with Cry1Ac protoxin and EPSs. The intestinal bacteria, through the oral of Cry1Ac protoxin and EPSs, significantly enhanced the toxicity of the Cry1Ac protoxin towards the axenic P. xylostella. In addition, the relative abundance of the 16S rRNA gene in the chloroplasts of Brassica campestris decreased after adding EPSs. Taken together, these results show the vital contribution of the gut microbiota to the Bt strain-killing activity, providing new insights into the mechanism of the synergistic insecticidal activity of Bt proteins and EPSs.
Collapse
Affiliation(s)
- Meiling Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (M.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Jinxi Zhou
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (M.W.)
| | - Ziqiong Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Bai Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Jie Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (M.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| |
Collapse
|
7
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
8
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
9
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
10
|
Kiran NS, Yashaswini C, Singh S, Prajapati BG. Revisiting microbial exopolysaccharides: a biocompatible and sustainable polymeric material for multifaceted biomedical applications. 3 Biotech 2024; 14:95. [PMID: 38449708 PMCID: PMC10912413 DOI: 10.1007/s13205-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Microbial exopolysaccharides (EPS) have gained significant attention as versatile biomolecules with multifarious applications across various sectors. This review explores the valorisation of EPS and its potential impact on diverse sectors, including food, pharmaceuticals, cosmetics, and biotechnology. EPS, secreted by microorganisms, possess unique physicochemical properties, such as high molecular weight, water solubility, and biocompatibility, making them attractive for numerous functional roles. Additionally, EPS exhibit significant bioactivity, contributing to their potential use in pharmaceuticals for drug delivery and tissue engineering applications. Moreover, the eco-friendly and sustainable nature of microbial EPS production aligns with the growing demand for environmentally conscious processes. However, challenges still exist in large-scale production, purification, and regulatory approval for commercial use. Advances in bioprocessing and microbial engineering offer promising solutions to overcome these hurdles. Stringent investigations have concluded EPS as novel sources for sustainable applications that are likely to emerge and develop, further reinforcing the significance of these biopolymers in addressing contemporary societal needs and driving innovation in various industrial sectors. Overall, the microbial EPS represents a thriving field with immense potential for meeting diverse industrial demands and advancing sustainable technologies.
Collapse
Affiliation(s)
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
11
|
Olaniyi OO, Oriade B, Lawal OT, Ayodeji AO, Olorunfemi YO, Igbe FO. Purification and biochemical characterization of pullulanase produced from Bacillus sp. modified by ethyl-methyl sulfonate for improved applications. Prep Biochem Biotechnol 2024; 54:455-469. [PMID: 37587838 DOI: 10.1080/10826068.2023.2245884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Strain improvement via chemical mutagen could impart traits with better enzyme production or improved characteristics. The present study sought to investigate the physicochemical properties of pullulanase produced from the wild Bacillus sp and the mutant. The pullulanases produced from the wild and the mutant Bacillus sp. (obtained via induction with ethyl methyl sulfonate) were purified in a-three step purification procedure and were also characterized. The wild and mutant pullulanases, which have molecular masses of 40 and 43.23 kDa, showed yields of 2.3% with 6.0-fold purification and 2.0% with 5.0-fold purification, respectively, and were most active at 50 and 40 °C and pH 7 and 8, respectively. The highest stability of the wild and mutant was between 40 and 50 °C after 1 h, although the mutant retained greater enzymatic activity between pH 6 and 9 than the wild. The mutant had a decreased Km of 0.03 mM as opposed to the wild type of 1.6 mM. In comparison to the wild, the mutant demonstrated a better capacity for tolerating metal ions and chelating agents. These exceptional characteristics of the mutant pullulanase may have been caused by a single mutation, which could improve its utility in industrial and commercial applications.
Collapse
Affiliation(s)
- Oladipo O Olaniyi
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Blessing Oriade
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Olusola T Lawal
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Department of Biological Sciences, Joseph Ayo-Babalola University, Arakeji, Nigeria
| | | | - Festus O Igbe
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
12
|
Gan L, Huang X, He Z, He T. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects. Int J Biol Macromol 2024; 264:130731. [PMID: 38471615 DOI: 10.1016/j.ijbiomac.2024.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Natural biopolymers derived from exopolysaccharides (EPSs) are considered eco-friendly and sustainable alternatives to available traditional synthetic counterparts. Salt-tolerant bacteria inhabiting harsh ecological niches have evolved a number of unique adaptation strategies allowing them to maintain cellular integrity and assuring their long-term survival; among these, producing EPSs can be adopted as an effective strategy to thrive under high-salt conditions. A great diversity of EPSs from salt-tolerant bacteria have attracted widespread attention recently. Because of factors such as their unique structural, physicochemical, and functional characteristics, EPSs are commercially valuable for the global market and their application potential in various sectors is promising. However, large-scale production and industrial development of these biopolymers are hindered by their low yields and high costs. Consequently, the research progress and future prospects of salt-tolerant bacterial EPSs must be systematically reviewed to further promote their application and commercialization. In this review, the structure and properties of EPSs produced by a variety of salt-tolerant bacterial strains isolated from different sources are summarized. Further, feasible strategies for solving production bottlenecks are discussed, which provides a scientific basis and direct reference for more scientific and rational EPS development.
Collapse
Affiliation(s)
- Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Xin Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
13
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Trilokesh C, Harish BS, Uppuluri KB. The antibiofilm potential of a heteropolysaccharide produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30. Prep Biochem Biotechnol 2024; 54:175-183. [PMID: 37184434 DOI: 10.1080/10826068.2023.2209886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofilms are the significant causes of 80% of chronic infections in the oral cavity, urinary tract, biliary tube, lungs, gastrointestinal tract, and so on to the general public. Treatment of pathogenic biofilm using bacterial exopolysaccharides (EPS) is an effective and promising strategy. In the present work, a marine bacterium was isolated, studied for exopolysaccharide production, and tested for its antibiofilm activity. Approximately 1.31 ± 0.07 g/L of a purified extracellular polysaccharide was produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30. The hydrolyzed EPS contains multiple monosaccharides such as rhamnose, fructose, glucose, and galactose. The EPS demonstrated potential antibiofilm activity on four tested pathogens in a concentration-dependent mode. The antibiofilm activity of the purified EPS was studied by crystal violet assay and fluorescence staining method. Comparative inhibition results obtained for the tested strains are 93.25% ± 5.25 and 88.56% ± 2.25 for K. pneumoniae; 92.65% ± 7.6 and 98.33% ± 0.85 for P. aeruginosa; 90.36% ± 6.3 and 52.08% ± 7.74 for S. typhi; 84.62% ± 5.6 and 77.90% ± 5.90 for S. dysenteriae. The results of the present work demonstrated the antibiofilm potential of EPS, which could be helpful in the invention of novel curative approaches in battling bacterial biofilm-related medical complications.
Collapse
Affiliation(s)
- C Trilokesh
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - B S Harish
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Kiran Babu Uppuluri
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
15
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
16
|
Jaswal AS, Elangovan R, Mishra S. Synthesis and molecular characterization of levan produced by immobilized Microbacterium paraoxydans. J Biotechnol 2023; 373:63-72. [PMID: 37451319 DOI: 10.1016/j.jbiotec.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of β-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.
Collapse
Affiliation(s)
- Avijeet Singh Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India.
| |
Collapse
|
17
|
Chang X, He Y, Song L, Ding J, Ren S, Lv M, Chen L. Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131528. [PMID: 37121041 DOI: 10.1016/j.jhazmat.2023.131528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The widespread occurrence of methylparaben (MPB) has aroused great concern due to its weak estrogenic endocrine-disrupting property and potential toxic effects. However, the degradation potential and pathway of MPB by microalgae have rarely been reported. Here, microalgae Chlorella vulgaris and Phaeodactylum tricornutum were used to investigate their responses, degradation potential and mechanisms towards MPB. MPB showed low-dose stimulation (by 86.02 ± 0.07% at 1 mg/L) and high-dose inhibition (by 60.17 ± 0.05% at 80 mg/L) towards the growth of C. vulgaris, while showed inhibition for P. tricornutum (by 6.99 ± 0.05%-20.14 ± 0.19%). The degradation efficiencies and rates of MPB were higher in C. vulgaris (100%, 1.66 ± 0.54-5.60 ± 0.86 day-1) than in P. tricornutum (4.3-34.2%, 0.04 ± 0.01-0.08 ± 0.00 day-1), which could be explained by the significantly higher extracellular enzyme activity and more fluctuation of the protein ratio for C. vulgaris, indicating a higher ability of C. vulgaris to adapt to pollutant stress. Biodegradation was the main removal mechanism of MPB for both the two microalgae. Furthermore, two different degradation pathways of MPB by the two microalgae were proposed. MPB could be mineralized and completely detoxified by C. vulgaris. Overall, this study provides novel insights into MPB degradation by microalgae and strategies for simultaneous biodegradation and detoxification of MPB in the environment.
Collapse
Affiliation(s)
- Xianbo Chang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuanyuan He
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| |
Collapse
|
18
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Kaur N, Dey P. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Res Microbiol 2023; 174:104024. [PMID: 36587857 DOI: 10.1016/j.resmic.2022.104024] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Microbial exopolysaccharides (EPS) are extracellular carbohydrate polymers forming capsules or slimy coating around the cells. EPS can be secreted by various bacterial genera that can help bacterial cells in attachment, environmental adaptation, stress tolerance and are an integral part of microbial biofilms. Several gut commensals (e.g., Lactobacillus, Bifidobacterium) produce EPS that possess diverse bioactivities. Bacterial EPS also has extensive commercial applications in the pharmaceutical and food industries. Owing to the structural and functional diversity, genetic and metabolic engineering strategies are currently employed to increase EPS production. Therefore, the current review provides a comprehensive overview of the fundamentals of bacterial exopolysaccharides, including their classification, source, biosynthetic pathways, and functions in the microbial community. The review also provides an overview of the diverse bioactivities of microbial EPS, including immunomodulatory, anti-diabetic, anti-obesity, and anti-cancer properties. Since several gut microbes are EPS producers and gut microbiota helps maintain a functional gut barrier, emphasis has been given to the intestinal-level bioactivities of the gut microbial EPS. Collectively, the review provides a comprehensive overview of microbial bioactive exopolysaccharides.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
20
|
Li F, Hu X, Sun X, Li H, Lu J, Li Y, Bao M. Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD. Glycoconj J 2022; 39:773-787. [PMID: 36367683 DOI: 10.1007/s10719-022-10087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
21
|
In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicol In Vitro 2022; 86:105507. [DOI: 10.1016/j.tiv.2022.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
22
|
Olaniyi OO, Damilare AO, Lawal OT, Igbe FO. Properties of a neutral, thermally stable and surfactant-tolerant pullulanase from worker termite gut-dwelling Bacillus safensis as potential for industrial applications. Heliyon 2022; 8:e10617. [PMID: 36158107 PMCID: PMC9489966 DOI: 10.1016/j.heliyon.2022.e10617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The gut of termite has been observed to host communities of bacteria which exhibited pullulan-degrading ability. Bacillus safensis displayed maximum pullulanase (a debranching enzyme) activity and it was therefore selected for production, purification and characterization of pullulanase which was the aim of the study. The crude enzyme obtained from the pullulanase production medium was subjected to ammonium sulphate precipitation, ion exchange and gel-filtration chromatography and the physicochemical properties of the purified was thereafter characterized. A purified pullulanase with the yield of 13% and 24-fold purification was obtained and its homogeneity was established by molecular weight of 42 kDa. The optimum pH 7 and 60 °C were obtained while the enzyme was stable between 40-60 °C and pH 4–5 and 7–8 respectively with significant amount of residual activities recorded. The purified pullulanase was stimulated in the presence of Ca2+, urea and SDS while Al3+, Fe2+, Co2+, Cu2+, Mg2+ and chelating agent, EDTA mildly inhibited the activity of the enzyme in a concentration-dependent manner. The Km and Vmax were found to be 0.324 μmol/ml/min and 6.85 mg/ml respectively. The exceptional physicochemical properties of B. safensis pullulanase could find application in several industrial processes.
Collapse
Affiliation(s)
| | | | - Olusola Tosin Lawal
- Department of Biochemistry, Federal University of Technology, PMB 704, Akure, Nigeria
| | - Festus Omotere Igbe
- Department of Biochemistry, Federal University of Technology, PMB 704, Akure, Nigeria
| |
Collapse
|
23
|
Kurniawan SB, Imron MF, Sługocki Ł, Nowakowski K, Ahmad A, Najiya D, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155564. [PMID: 35504385 DOI: 10.1016/j.scitotenv.2022.155564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Bioflocculants gain attention as alternatives to chemical flocculants because they are more environmentally friendly and highly biodegradable. This study aims to improve the bioflocculant production by Serratia marcescens using one-variable-at-a-time (OVAT) analysis and analyze its flocculating activity performance, toxicity, and the flocculation mechanism. The effect of multiple variables including initial inoculum size, pH, mixing speed, temperature, growth medium, and incubation period was assessed through OVAT. Flocculating activity was then determined via jar test analysis, and toxicity test was performed using Daphnia magna and Daphnia pulex. The flocculation mechanism was determined via particle size distribution and zeta potential analysis. The optimum conditions for the improved bioflocculant production were as follows: 10% v/v initial inoculum size, pH 7, mixing speed of 150 rpm, room temperature, nutrient broth medium, and 72 h of incubation period. Scanning electron microscopy showed flake-like intact structure with coarse surface. The produced bioflocculant showed flocculating activity of 48% in 5227 ± 580 NTU initial kaolin turbidity with 1 mg/L concentration and 5% v/v dosage of bioflocculant, following the second-order kinetics. Toxicity test to D. magna and D. pulex showed the 48 h LC50 values of 8.06 and 6.42 g/L, respectively; these values are greatly higher than the fabricated chemical flocculants. The flocculation process using bioflocculant produced by S. marcescens was suggested to occur via bridging mechanism because it greatly affected the particle size distribution. Results indicated that bioflocculant produced by S. marcescens is much environmentally friendly and has great potential for turbidity removal in water/wastewater.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia.
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712 Szczecin, Poland; Center of Molecular Biology and Biotechnology, University of Szczecin, Wąska 13, 71-715 Szczecin, Poland
| | - Kacper Nowakowski
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712 Szczecin, Poland
| | - Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100 Putrajaya, Malaysia
| | - Dhuroton Najiya
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
24
|
Wang Y, Li J, Lei Y, Cui R, Liang A, Li X, Kit Leong Y, Chang JS. Enhanced sulfonamides removal via microalgae-bacteria consortium via co-substrate supplementation. BIORESOURCE TECHNOLOGY 2022; 358:127431. [PMID: 35671911 DOI: 10.1016/j.biortech.2022.127431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Both co-cultivation and co-substrate addition strategies have exhibited massive potential in microalgae-based antibiotic bioremediation. In this study, glucose and sodium acetate were employed as co-substrate in the cultivation of microalgae-bacteria consortium for enhanced sulfadiazine (SDZ) and sulfamethoxazole (SMX) removal. Glucose demonstrated a two-fold increase in biomass production with a maximum specific growth rate of 0.63 ± 0.01 d-1 compared with sodium acetate. The supplementation of co-substrate enhanced the degradation of SDZ significantly up to 703 ± 18% for sodium acetate and 290 ± 22% for glucose, but had almost no effect on SMX. The activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase decreased with co-substrate supplementation. Chlorophyll a was associated with protection against sulfonamides and chlorophyll b might contribute to SDZ degradation. The addition of co-substrates influenced bacterial community structure greatly. Glucose enhanced the relative abundance of Proteobacteria, while sodium acetate improved the relative abundance of Bacteroidetes significantly.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Rong Cui
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Aiping Liang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
25
|
Lucena MDA, Ramos IFDS, Geronço MS, de Araújo R, da Silva Filho FL, da Silva LMLR, de Sousa RWR, Ferreira PMP, Osajima JA, Silva-Filho EC, Rizzo MDS, Ribeiro AB, da Costa MP. Biopolymer from Water Kefir as a Potential Clean-Label Ingredient for Health Applications: Evaluation of New Properties. Molecules 2022; 27:3895. [PMID: 35745016 PMCID: PMC9231297 DOI: 10.3390/molecules27123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × 105 Da. The biopolymer also showed microcrystalline structure and characteristic thermal stability with maximum thermal degradation at 250 °C. The analysis of the monosaccharides of the EPSwk by gas chromatography demonstrated that the material is composed of glucose units (98 mol%). Additionally, EPSwk exhibited excellent emulsifying properties, film-forming ability, a low photodegradation rate (3.8%), and good mucoadhesive properties (adhesion Fmax of 1.065 N). EPSwk presented cytocompatibility and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results of this study expand the potential application of the exopolysaccharide from water kefir as a potential clean-label raw material for pharmaceutical, biomedical, and cosmetic applications.
Collapse
Affiliation(s)
- Monalisa de Alencar Lucena
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Igor Frederico da Silveira Ramos
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Maurycyo Silva Geronço
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Ricardo de Araújo
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | | | - Luís Manuel Lopes Rodrigues da Silva
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal;
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Josy Anteveli Osajima
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Edson Cavalcanti Silva-Filho
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Márcia dos Santos Rizzo
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marcilia Pinheiro da Costa
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
- College of Pharmacy, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| |
Collapse
|
26
|
Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022; 34:1166-1190. [PMID: 35699356 DOI: 10.1002/chir.23477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.
Collapse
Affiliation(s)
- Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
27
|
Patel D, Mamtora D, Kamath A, Shukla A. Rogue one: A plastic story. MARINE POLLUTION BULLETIN 2022; 177:113509. [PMID: 35290835 DOI: 10.1016/j.marpolbul.2022.113509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Plastic comprises of variety of polymers and has many applications, but the waste generated by plastic pose threat to environment and marine life. Plastic can be classified into two types: thermoplastics and thermosetting and are divided into 7 different categories: (Polyethylene Terephthalate [PETE], High-Density Polyethylene [HDPE], Polyvinyl Chloride [PVC], Low-Density Polyethylene [LDPE], Polypropylene [PP], Polystyrene or Styrofoam [PS] & Polycarbonate or ABS [others]). To curb the deleterious effects of plastic waste various methods have been devised and utilized that include chemical, physical and biological treatments. One of the aspects primarily focused by the researchers is the phenomenon of biodegradation and there are many microorganisms (bacteria) that have the ability to carry out this particular process. These bacteria assist biodegradation by production of several enzymes like PETases and MHETases. There are few microorganisms that have been listed which cannot be applied for industrial use due to its low biodegradation capacity. To overcome this problem, PHA is one of the alternatives to replace the synthetic plastic due to its high degrading capacity.
Collapse
Affiliation(s)
- Dhara Patel
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar 382426, India.
| | - Dhruv Mamtora
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar 382426, India
| | - Anushree Kamath
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar 382426, India.
| | - Arpit Shukla
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
28
|
Mehta K, Shukla A, Saraf M. Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants. Heliyon 2021; 7:e08446. [PMID: 34877428 PMCID: PMC8628041 DOI: 10.1016/j.heliyon.2021.e08446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Microbial exopolysaccharide (EPS) is composed of a mixture of macromolecules such as proteins, polysaccharides, humic-like compounds, and nucleic acids, which encase microbial cells in a three-dimensional matrix. The literature shows that the EPS possess significant properties such as renewable, biodegradable, eco-friendly, non-toxic, and economically valued product, representing it as a green alternative to the synthetic polymer. The cost-effective and green synthesis of the EPS must be encouraged by using agro-waste as a raw material. The main objective of the manuscript is to provide a comprehensive update on the various aspects pertaining to EPS, including the economic aspects of EPS production, provide an insight into the latest tools and techniques used for detailed structural EPS characterization along with updates in the integration of CRISPR/Cas9 technology for engineering the modification in EPS production, the role of newly discovered EPR3 as a signalling molecule in plant growth-promoting properties (PGP) or agricultural microbiology. Furthermore, the EPS achieved prospective interest prevailing potential environmental issues which can be subject to EPS treatment including, landfill leachate treatment, decolourization of dye from the effluent or waste generated by an industry, removal of radionuclides, heavy metals and toxic compounds from the various environments (aquatic and terrestrial), industry effluents, waste waters etc. are comprehensively discussed.
Collapse
Affiliation(s)
- Krina Mehta
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Arpit Shukla
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar 382426, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
- Corresponding author.
| |
Collapse
|
29
|
Shukla A, Shukla G, Parmar P, Patel B, Goswami D, Saraf M. Exemplifying the next generation of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition. Sci Rep 2021; 11:22421. [PMID: 34789810 PMCID: PMC8599845 DOI: 10.1038/s41598-021-01845-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023] Open
Abstract
There persists a constant threat from multidrug resistance being acquired by all human pathogens that challenges the well-being of humans. This phenomenon is predominantly led by Pseudomonas aeruginosa which is already resistant to the current generations of antibiotic by altering its metabolic pathways to survive. Specifically for this microbe the phenomenon of quorum sensing (QS) plays a crucial role in acquiring virulence and pathogenicity. QS is simply the cross talk between the bacterial community driven by signals that bind to receptors, enabling the entire bacterial microcosm to function as a single unit which has led to control P. aeruginosa cumbersome even in presence of antibiotics. Inhibition of QS can, therefore, be of a significant importance to curb such virulent and pathogenic strains of P. aeruginosa. Natural compounds are well known for their antimicrobial properties, of which, information on their mode of action is scarce. There can be many antimicrobial phytochemicals that act by hindering QS-pathways. The rationale of the current study is to identify such natural compounds that can inhibit QS in P. aeruginosa driven by LasR, PhzR, and RhlR dependent pathways. To achieve this rationale, in silico studies were first performed to identify such natural compounds which were then validated by in vitro experiments. Gingerol and Curcumin were identified as QS-antagonists (QSA) which could further suppress the production of biofilm, EPS, pyocyanin, and rhamnolipid along with improving the susceptibility to antibiotics.
Collapse
Affiliation(s)
- Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Gaurav Shukla
- Pandit Deendayal Energy University, Raysan, Gandhinagar, Gujarat, 382426, India
| | - Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Baldev Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
30
|
Yuksekdag Z, Ahlatcı NS, Hajikhani R, Darilmaz DO, Beyatli Y. Safety and metabolic characteristics of 17 Enterococcus faecium isolates. Arch Microbiol 2021; 203:5683-5694. [PMID: 34468805 DOI: 10.1007/s00203-021-02536-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
In the present study, metabolic characteristics, such as lactic acid, hydrogen peroxide, exopolysaccharide (EPS) production, and antimicrobial activities, of 17 Enterococcus faecium isolates from white cheese samples were assessed. In E. faecium isolates, the amount of lactic acid obtained between in MRS medium 0.61-1.22% and in skim milk 0.75-1.08%, and the amount of H2O2 was found between 0.57 and 3.17 µg mL-1. In MRS and skim milk, the amount of EPS production was 59-185 mg L-1, 155-255 mg L-1 for isolates, respectively. The antimicrobial activities of E. faecium isolates on eight different pathogenic bacteria were also performed by an agar well diffusion method. The highest inhibition zones 8.60 mm were observed with culture supernatants of RI-71 isolate against Escherichia coli ATCC 35218. The safety of the E. faecium isolates was assessed by determining gelatinase activity, hemolytic activity, the resistance to ten different antibiotics, biofilm forming, and virulence genes (van A, van B, gelE, cylA, cylB, esp, agg, and asa1, efaAfm, cob, ccf, hyl). The isolates did not show gelatinase activity, β-hemolysis, and biofilm formation. All E. faecium isolates were susceptible to vancomycin, penicillin-G, tetracycline, ampicillin, and chloramphenicol. The efaAfm gene was detected most frequently (94%) followed by cob (82%), van B (59%), and ccf (53%). For enterococci to be recommended as co-starter or probiotic adjunct cultures, it is necessary to determine whether they have virulence genes and resistance to antibiotics.
Collapse
Affiliation(s)
- Zehranur Yuksekdag
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey.
| | - Nur Seda Ahlatcı
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Rasta Hajikhani
- Nikan Alley, 10 Sohrevardi Shomali Ave., Ostad Motahhari, 1567714413, Tehran, Iran
| | - Derya Onal Darilmaz
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Yavuz Beyatli
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| |
Collapse
|
31
|
CRISPR: The Multidrug Resistance Endgame? Mol Biotechnol 2021; 63:676-685. [PMID: 34021472 DOI: 10.1007/s12033-021-00340-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/15/2021] [Indexed: 12/25/2022]
Abstract
The flexibility of microbes to undergo or adapt to the changes in their physiology and genotypical traits has enabled the microbes acquiring resistance to latest or recently discovered drugs which have consequently led to the menace of multidrug resistance (MDR). There is a surge in the discovery of novel antibiotics to counter the rising MDR phenomena, and in such a quest, for investigating an efficient alternative mechanism or compound to combat MDR, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has piqued the interests of the researchers across the globe. CRISPR-Cas9 technology is a genome-editing tool with successful widespread applications in cell lines, plants, animals, and even in human clinical trials, and it is seriously being considered as a potential candidate for countering MDR. This review encompasses the broad scope of CRISPR-Cas9 along with its various variations, underlying principles, mechanisms, as well as applications. Furthermore, the implications of recent advancements in various disciplines are highlighted to enhance the applicability of this technique. Consequently, its research gaps and challenges are also identified so that they can be addressed in the possible future thereby further expanding the lore of CRISPR-Cas9 technique.
Collapse
|
32
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
33
|
Wu J, Yan D, Liu Y, Luo X, Li Y, Cao C, Li M, Han Q, Wang C, Wu R, Zhang L. Purification, Structural Characteristics, and Biological Activities of Exopolysaccharide Isolated From Leuconostoc mesenteroides SN-8. Front Microbiol 2021; 12:644226. [PMID: 33841368 PMCID: PMC8033024 DOI: 10.3389/fmicb.2021.644226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel exopolysaccharide (EPS) was extracted from Leuconostoc mesenteroides Shen Nong's (SN)-8 which can be obtained from Dajiang. After the purification step, EPS-8-2 was obtained with molecular weights of 1.46 × 105 Da. The structural characterization of EPS indicated that the EPS belonged to the class polysaccharide, mainly composed of glucan and also contained certain mannose residues that were found to be connected by α-1,6 glycosidic bonds. Moreover, the results demonstrated that EPS displayed a significant capacity to scavenge free radical to some extent, and this anti-oxidant potential was found to be concentration dependent. The results further revealed that EPS displayed a significant inhibitory potential on the growth of HepG2 cells by promoting apoptosis and induced cell cycle arrest in G1 and G2 phases. Overall, these results suggested that EPS can be explored as a possible anti-cancer agent.
Collapse
Affiliation(s)
- Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chengxu Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qi Han
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Cong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
34
|
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020; 19:203. [PMID: 33160356 PMCID: PMC7648308 DOI: 10.1186/s12934-020-01464-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Human vagina is colonised by a diverse array of microorganisms that make up the normal microbiota and mycobiota. Lactobacillus is the most frequently isolated microorganism from the healthy human vagina, this includes Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii. These vaginal lactobacilli have been touted to prevent invasion of pathogens by keeping their population in check. However, the disruption of vaginal ecosystem contributes to the overgrowth of pathogens which causes complicated vaginal infections such as bacterial vaginosis (BV), sexually transmitted infections (STIs), and vulvovaginal candidiasis (VVC). Predisposing factors such as menses, pregnancy, sexual practice, uncontrolled usage of antibiotics, and vaginal douching can alter the microbial community. Therefore, the composition of vaginal microbiota serves an important role in determining vagina health. Owing to their Generally Recognised as Safe (GRAS) status, lactobacilli have been widely utilised as one of the alternatives besides conventional antimicrobial treatment against vaginal pathogens for the prevention of chronic vaginitis and the restoration of vaginal ecosystem. In addition, the effectiveness of Lactobacillus as prophylaxis has also been well-founded in long-term administration. This review aimed to highlight the beneficial effects of lactobacilli derivatives (i.e. surface-active molecules) with anti-biofilm, antioxidant, pathogen-inhibition, and immunomodulation activities in developing remedies for vaginal infections. We also discuss the current challenges in the implementation of the use of lactobacilli derivatives in promotion of human health. In the current review, we intend to provide insights for the development of lactobacilli derivatives as a complementary or alternative medicine to conventional probiotic therapy in vaginal health.
Collapse
Affiliation(s)
- Wallace Jeng Yang Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
35
|
Rheology of sphingans in EPS–surfactant systems. Carbohydr Polym 2020; 248:116778. [DOI: 10.1016/j.carbpol.2020.116778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
|
36
|
Comprehensive depiction of novel heavy metal tolerant and EPS producing bioluminescent Vibrio alginolyticus PBR1 and V. rotiferianus PBL1 confined from marine organisms. Microbiol Res 2020; 238:126526. [PMID: 32603934 DOI: 10.1016/j.micres.2020.126526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
The current study depicts the isolation of luminescent bacteria from fish and squid samples that were collected from Veraval fish harbour. From Indian mackerel, total 14 and from squid, total 23 bioluminescent bacteria were isolated using luminescence agar medium. Two bioluminescent bacteria with highest relative luminescence intensity PBR1 and PBL1 were selected. These two isolates were subjected to detailed biochemical characterization and were tested positive for 5 out of 13 biochemical tests. Furthermore, both PBR1 and PBL1 were able to ferment cellobiose, dextrose, fructose, galactose, maltose, mannose, sucrose and trehalose with acid production. Based on 16S rRNA partial gene sequence analysis, PBR1 was identified as Vibrio alginolyticus and PBL1 as V. rotiferianus. Antibiotic susceptibility test using paper-disc method showed that PBR1 and PBL1 were sensitive to chloramphenicol, ciprofloxacin, co-trimoxazole, gatifloxacin, levofloxacin, linezolid ad roxithromycin out of 18 antibiotics tested. Moreover, both strains were evaluated for their exopolysachharide (EPS) producing ability where PBR1 and PBL1 were able to yield 1.34 g% (w/v) and 2.45 g% (w/v) EPS respectively from 5 g% (v/v) sucrose concentration. Heavy metal toxicity assessment was carried out using agar well diffusion method with eight heavy metals and both the strains were sensitive to As(III), Cd(II), Ce(II), Cr(III), Cu(II), Hg(II) and while they showed resistance to Pb(II) and Sr(II). Based on these results, a study was conducted to demonstrate bio-removal of Pb and Sr by EPS of PBR1 and PBL1. Fourier transform infrared (FTIR) spectra revealed the functional groups of EPS involved in interaction with the heavy metals. Owing to the sensitivity for the remaining heavy metals, these bioluminescent bacteria can be used further for the development of luminescence-based biosensor.
Collapse
|
37
|
Shukla A, Parmar P, Goswami D, Patel B, Saraf M. Characterization of novel thorium tolerant Ochrobactrum intermedium AM7 in consort with assessing its EPS-Thorium binding. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122047. [PMID: 31954311 DOI: 10.1016/j.jhazmat.2020.122047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Currently, radioactive waste is disposed primarily by burial in a deep geological repository. Microorganisms thriving in such contaminated environment show tolerance to radionuclides. In the present study the bacterial flora, from soil sample collected from an area around atomic power station exposed to radionuclides and heavy metals, was cultivated and assessed for thorium (Th) tolerance. Of all the isolates, strain AM7 identified as O. intermedium was selected since it could thrive at high levels of Th (1000 mg L-1). AM7 was characterized physico-chemically and its culture medium was optimized using central composite design of response surface methodology for assessing its growth properties in presence of Th. The strain also showed exceptional exopolysaccharide (EPS) production and its yield was further analyzed using one factor study to investigate the influence of each medium component. On supplementing the EPS medium with Th, no significant decrease in yield was observed. FTIR spectroscopy revealed the functional groups of EPS involved in EPS-Th binding. To the best of our knowledge, this is the first report showing exceptional Th-tolerance by any bacteria. Such study will help other researchers to strategize an environment-friendly way of radwaste disposal.
Collapse
Affiliation(s)
- Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Baldev Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
38
|
Coltelli MB, Danti S, De Clerk K, Lazzeri A, Morganti P. Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. J Funct Biomater 2020; 11:jfb11010020. [PMID: 32197310 PMCID: PMC7151585 DOI: 10.3390/jfb11010020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
The present review had the aim of describing the methodologies of synthesis and properties of biobased pullulan, a microbial polysaccharide investigated in the last decade because of its interesting potentialities in several applications. After describing the implications of pullulan in nano-technology, biodegradation, compatibility with body and skin, and sustainability, the current applications of pullulan are described, with the aim of assessing the potentialities of this biopolymer in the biomedical, personal care, and cosmetic sector, especially in applications in contact with skin.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (M.-B.C.); (P.M.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
| | - Karen De Clerk
- Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 70A, 9052 Ghent, Belgium;
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Pierfrancesco Morganti
- Department of Mental Health and Physics and Preventive Medicine, Unit of Dermatology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Academy of History of Health Care Art, 00193 Rome, Italy
- Correspondence: (M.-B.C.); (P.M.)
| |
Collapse
|
39
|
Andrew M, Jayaraman G. Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res 2020; 487:107881. [DOI: 10.1016/j.carres.2019.107881] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
|