1
|
Mondal I, Haick H. Smart Dust for Chemical Mapping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419052. [PMID: 40130762 PMCID: PMC12075923 DOI: 10.1002/adma.202419052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 03/26/2025]
Abstract
This review article explores the transformative potential of smart dust systems by examining how existing chemical sensing technologies can be adapted and advanced to realize their full capabilities. Smart dust, characterized by submillimeter-scale autonomous sensing platforms, offers unparalleled opportunities for real-time, spatiotemporal chemical mapping across diverse environments. This article introduces the technological advancements underpinning these systems, critically evaluates current limitations, and outlines new avenues for development. Key challenges, including multi-compound detection, system control, environmental impact, and cost, are discussed alongside potential solutions. By leveraging innovations in miniaturization, wireless communication, AI-driven data analysis, and sustainable materials, this review highlights the promise of smart dust to address critical challenges in environmental monitoring, healthcare, agriculture, and defense sectors. Through this lens, the article provides a strategic roadmap for advancing smart dust from concept to practical application, emphasizing its role in transforming the understanding and management of complex chemical systems.
Collapse
Affiliation(s)
- Indrajit Mondal
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124
, Krems‐SteinÖSTERREICH3500Austria
| |
Collapse
|
2
|
Zhong J, McClements DJ, He K, Zhang Z, Zhang R, Qiu C, Long J, Zhou X, Zhao J, Jin Z, Chen L. Innovative applications of bio-inspired technology in bio-based food packaging. Crit Rev Food Sci Nutr 2025:1-14. [PMID: 39812520 DOI: 10.1080/10408398.2025.2450524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Traditionally, food packaging was used to extend the shelf life of food or to monitor its condition. Inspired by many biological structures found in nature, bio-inspired functional materials for bio-based food packaging have been shown to have significantly improved capabilities over traditional bio-based food packaging materials in various aspects and to attract consumers through novel freshness preservation features. This review synthesizes recent advances in bio-inspired bio-based food packaging materials that mimic the structure of natural organisms with specific functionalities, with examples of specific biomimetics in different enhancement areas. In general, bio-based materials have certain disadvantages compared to polymer materials, so there is an urgent need for improvement and enhancement in many areas. Biomimicry further inspires the realization of enhancing some basic functions of bio-based materials for packaging (hydrophobicity, mechanical strength, antimicrobial properties, optical properties) and endowing bio-based materials with more new responsiveness and other functions. What is more interesting is that the inspiration of bionics is taken from nature, and such a perspective can also promote further progress and innovation of bio-based food packaging materials.
Collapse
Affiliation(s)
- Jiaqi Zhong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Kuang He
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zipei Zhang
- Food Science Program, University of Missouri, Columbia, MO, USA
| | - Ruojie Zhang
- Food Science Program, University of Missouri, Columbia, MO, USA
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Zhang J, Sun F, Xu J, Zhao ZH, Fu J. Research Progress of Human Biomimetic Self-Healing Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408199. [PMID: 39466995 DOI: 10.1002/smll.202408199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Humans can heal themselves after injury, which inspires researchers to develop bionic self-healing materials. Such materials not only equipped with the self-repair capacities akin to those of the human body, but also emulate the mechanical properties of human organs, including the tensile resilience of muscles, the fatigue resistance of skin, and the elevated modulus typical of cartilage. Based on the design concept of imitating the structure of human organs, the bionic self-healing material perfectly solves the problem of poor mechanical properties of self-healing materials caused by weak bond energy and inter-chain flow. This review discusses various organ-inspired self-healing materials in detail, summarizes their synthetic principles and introduces their fascinating mechanical properties. Finally, the application prospects of bionic self-healing polymer materials, such as bio-strain sensors, self-healing anticorrosive coatings, biomedical detection, etc., are outlined. Considering the excellent comprehensive performance and multi-functions of human biomimetic self-healing polymers, more outstanding sustainable materials will be developed, accelerating research progress in self-healing materials and realizing environmentally friendly products in multiple fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zi-Han Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
4
|
Paez-Amieva Y, Mateo-Oliveras N, Martín-Martínez JM. Polyurethanes Made with Blends of Polycarbonates with Different Molecular Weights Showing Adequate Mechanical and Adhesion Properties and Fast Self-Healing at Room Temperature. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5532. [PMID: 39597357 PMCID: PMC11595875 DOI: 10.3390/ma17225532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Dynamic non-covalent interactions between polycarbonate soft segments have been proposed for explaining the intrinsic self-healing of polyurethanes synthesized with polycarbonate polyols (PUs) at 20 °C. However, these self-healing PUs showed insufficient mechanical properties, and their adhesion properties have not been explored yet. Different PUs with self-healing at 20 °C, acceptable mechanical properties, and high shear strengths (similar to the highest ones reported in the literature) were synthesized by using blends of polycarbonate polyols of molecular weights 1000 and 2000 Da (CD1000 + CD2000). Their structural, thermal, rheological, mechanical, and adhesion (single lap-shear tests) properties were assessed. PUs with higher CD1000 polyol contents exhibited shorter self-healing times and dominant viscous properties due to the higher amount of free carbonate groups, significant carbonate-carbonate interactions, and low micro-phase separation. As the CD2000 polyol content in the PUs increased, slower kinetics and longer self-healing times and higher mechanical and adhesion properties were obtained due to a dominant rheological elastic behavior, soft segments with higher crystallinities, and greater micro-phase separation. All PUs synthesized with CD1000 + CD2000 blends exhibited a mixed phase due to interactions between polycarbonate soft segments of different lengths which favored the self-healing and mobility of the polymer chains, resulting in increased mechanical properties.
Collapse
|
5
|
Chen Y, Wang K, Li X, Huang J, Gupta HS, Rui Y, Forster L. Impact of SWCNTs and CMCS on efficacy of anastomosis and optical properties in vivo during laser biological tissue soldering. OPTICS & LASER TECHNOLOGY 2024; 176:110869. [DOI: 10.1016/j.optlastec.2024.110869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
6
|
Xu B, Xia ZM, Zhan R, Yang KK. Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate- co-Terephthalate). Polymers (Basel) 2024; 16:2280. [PMID: 39204500 PMCID: PMC11359266 DOI: 10.3390/polym16162280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging. In our study, we address this challenge by developing a new type of dynamic network from epoxidized soybean oil (ESO) and poly(butylene adipate-co-terephthalate) (PBAT) with good strength and toughness. For the synthetic strategy, a thiol-epoxy click reaction was conducted to functionalize ESO with thiol and hydroxyl groups. Subsequently, a curing reaction with isocyanates generated dynamic thiourethane and urethane bonds with different bonding energies in the dynamic networks to reach a trade-off between dynamic features and mechanical properties; amongst these, the thiourethane bonds with a lower bonding energy provide good dynamic features, while the urethane bonds with a higher bonding energy ensure good mechanical properties. The incorporation of flexible PBAT segments to form the rational multi-phase structure with crystalline domains further enhanced the products. A typical sample, OTSO100-PBAT100, exhibited a tensile strength of 33.2 MPa and an elongation at break of 1238%, demonstrating good healing capacity and desirable mechanical performance. This study provides a promising solution to contemporary environmental and energy challenges by developing materials that combine mechanical and repair properties. It addresses the specific gap of achieving a trade-off between tensile strength and elongation at break in bio-based self-healing materials, promising a wide range of applications.
Collapse
Affiliation(s)
| | | | | | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China; (B.X.); (Z.-M.X.); (R.Z.)
| |
Collapse
|
7
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
8
|
Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Compr Rev Food Sci Food Saf 2024; 23:e13275. [PMID: 38284604 DOI: 10.1111/1541-4337.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Syahla Salsabila
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - Aulal Muna
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - David Rusliman
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | | |
Collapse
|
9
|
Yu N, An ZW, Zhang JL, Cheng BX, Ye K, Wang S, Wu W, Li RKY, Tan X, Zhao H. Recent Advances in Tailored Fabrication and Properties of Biobased Self-Healing Polyurethane. Biomacromolecules 2023; 24:4605-4621. [PMID: 37917193 DOI: 10.1021/acs.biomac.3c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
With the emergence of challenges in the environmental degradation and resource scarcity fields, the research of biobased self-healing polyurethane (BSPU) has become a prevailing trend in the technology of the polyurethane industry and a promising direction for developing biomass resources. Here, the production of BSPU from lignocellulose, vegetable oil, chitosan, collagen, and coumarin is classified, and the principles of designing polyurethane based on compelling examples using the latest methods and current research are summarized. Moreover, the impact of biomass materials on self-healing and mechanical properties, as well as the tailored performance method, are presented in detail. Finally, the applications of BSPU in biomedicine, sensors, coatings, etc. are also summarized, and the possible challenges and development prospects are explored to helpfully make progress in the development of BSPU. These findings demonstrate valuable references and practical significance for future BSPU research.
Collapse
Affiliation(s)
- Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jia-Le Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Science, Hubei University, Wuhan, 430062, China
| |
Collapse
|
10
|
Wang J, Gao Q, Zhao F, Ju J. Repair mechanism and application of self-healing materials for food preservation. Crit Rev Food Sci Nutr 2023; 64:11113-11123. [PMID: 37427571 DOI: 10.1080/10408398.2023.2232877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The traditional packaging concept has reached its limits when it comes to ensuring the quality of food and extending its shelf life. Compared to traditional packaging materials, food packaging with self-healing function is becoming more and more popular. This is because they can automatically repair the damaged area, restore the original properties and prevent the decline of food quality and loss of nutrients. Materials based on various self-healing mechanisms have been developed and used on a laboratory scale in the form of coatings and films for food packaging. However, more efforts are needed for the commercial application of these new self-healing packaging materials. Understanding the self-healing mechanism of these packaging materials is very important for their commercial application. This article first discusses the self-healing mechanism of different packaging materials and compares the self-healing efficiency of self-healing materials under different conditions. Then, the application potential of self-healing coatings and films in the food industry is systematically analyzed. Finally, we give an outlook on the application of self-healing materials in the field of food packaging.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Qingchao Gao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Xing L, Song H, Wei J, Wang X, Yang Y, Zhe P, Luan M, Xu J. Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules 2023; 28:molecules28104120. [PMID: 37241863 DOI: 10.3390/molecules28104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Thin oxide layers form easily on the surfaces of titanium (Ti) components, with thicknesses of <100 nm. These layers have excellent corrosion resistance and good biocompatibility. Ti is susceptible to bacterial development on its surface when used as an implant material, which reduces the biocompatibility between the implant and the bone tissue, resulting in reduced osseointegration. In the present study, Ti specimens were surface-negatively ionized using a hot alkali activation method, after which polylysine and polydopamine layers were deposited on them using a layer-by-layer self-assembly method, then a quaternary ammonium salt (QAS) (EPTAC, DEQAS, MPA-N+) was grafted onto the surface of the coating. In all, 17 such composite coatings were prepared. Against Escherichia coli and Staphylococcus aureus, the bacteriostatic rates of the coated specimens were 97.6 ± 2.0% and 98.4 ± 1.0%, respectively. Thus, this composite coating has the potential to increase the osseointegration and antibacterial performance of implantable Ti devices.
Collapse
Affiliation(s)
- Lei Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongyang Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250100, China
| | - Xue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaozhen Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Pengbo Zhe
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
12
|
Qu Y, Zhou X, Ren H, Yuan Y, Zhang W, Yang G, Zhang X. Study on self‐healing gel plugging agent based on non‐covalent bonding interaction for drilling fluid. J Appl Polym Sci 2023. [DOI: 10.1002/app.53874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Yuanzhi Qu
- CNPC Engineering Technology R&D Company Limited Beijing China
| | - Xinyu Zhou
- CNOOC, China Oilfield Services Limited Oilfield Chemicals R&D Institute Yanjiao Hebei China
| | - Han Ren
- CNPC Engineering Technology R&D Company Limited Beijing China
| | - YueHui Yuan
- CNPC Engineering Technology R&D Company Limited Beijing China
| | - Wenchao Zhang
- Yingmai Oil and Gas Development Department PetroChina Tarim Oilfield Company Korla Xinjiang China
| | - Gang Yang
- CNPC Greatwall Drilling Fluids Company Panjin Liaoning China
| | - Xianfa Zhang
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
| |
Collapse
|
13
|
Liu N, Wan B, Zhang Z, Fang X, Lin X, Wang Y, Tang J, Bai X, Li Y, Yao Y, Zhou G. Self-healing waterborne polyurethane coatings with high transparence and haze via cellulose nanocrystal stabilized linseed oil Pickering emulsion. Int J Biol Macromol 2023; 235:123830. [PMID: 36842743 DOI: 10.1016/j.ijbiomac.2023.123830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Protection coatings with self-healing ability can significantly enhance their anti-corrosion properties and service life. In this study, self-healing waterborne polyurethane (WPU) coatings with high transparence and haze were facile fabricated via cellulose nanocrystal (CNC) stabilized linseed oil (LO) Pickering emulsion. Sustainable CNCs displayed outstanding emulsifying ability and stability to stabilize LO Pickering emulsion. The size of LO Pickering emulsion droplets decreases with the CNC concentration, while the emulsion fraction and surface coverage by CNCs increase with CNC concentration, leading to a more stable Pickering emulsion. The self-healing rates of WPU coatings at varied time, temperature, CNC and catalyst concentration were investigated. Higher temperature, larger emulsion droplets, and with driers employed as catalysts generally lead to faster self-healing rate. The WPU self-healing coatings displayed much better abrasion resistance and mechanical properties than pristine WPU due to the incorporation of CNCs. Moreover, the WPU self-healing coatings show a high transparence and haze due to light scattering, and their applications as coatings of lamp covers and glass to achieve uniform light distribution and privacy protection with high light transmission were further demonstrated.
Collapse
Affiliation(s)
- Nana Liu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Bolin Wan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Xiong Fang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xiaoming Lin
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | | | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoxia Bai
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China.
| | - Yingzhan Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yao Yao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
14
|
Tang S, Lin H, Dong K, Zhang J, Zhao C. Closed-loop recycling and degradation of guaiacol-based epoxy resin and its carbon fiber reinforced composites with S-S exchangeable bonds. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
15
|
Kang F, Yang Y, Wang W, Li Z. Self-healing polyester elastomer with tuning toughness and elasticity through intermolecular quadruple hydrogen bonding. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Current Self-Healing Binders for Energetic Composite Material Applications. Molecules 2023; 28:molecules28010428. [PMID: 36615616 PMCID: PMC9823830 DOI: 10.3390/molecules28010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Energetic composite materials (ECMs) are the basic materials of polymer binder explosives and composite solid propellants, which are mainly composed of explosive crystals and binders. During the manufacturing, storage and use of ECMs, the bonding surface is prone to micro/fine cracks or defects caused by external stimuli such as temperature, humidity and impact, affecting the safety and service of ECMs. Therefore, substantial efforts have been devoted to designing suitable self-healing binders aimed at repairing cracks/defects. This review describes the research progress on self-healing binders for ECMs. The structural designs of these strategies to manipulate macro-molecular and/or supramolecular polymers are discussed in detail, and then the implementation of these strategies on ECMs is discussed. However, the reasonable configuration of robust microstructures and effective dynamic exchange are still challenges. Therefore, the prospects for the development of self-healing binders for ECMs are proposed. These critical insights are emphasized to guide the research on developing novel self-healing binders for ECMs in the future.
Collapse
|
18
|
Irannejad N, Rezaei B, Ensafi AA. Self-healing 2D/3D perovskite for efficient and stable p-i-n perovskite solar cells. CHEMOSPHERE 2023; 311:136893. [PMID: 36272622 DOI: 10.1016/j.chemosphere.2022.136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Beyond the p-i-n perovskite solar cell's high-power conversion efficiency (PCE), its moisture instability is the most challenging factor in its commercialization. Recently, the innovative use of three and two-dimensional multi-structures, by creating a barrier against the penetration of moisture and oxygen, has played a very influential role in improving the PSC's long-term stability. Here, a new strategy, the anti-solvent quenching method, is used to construct multi-structure perovskite by involving cetyltrimethylammonium bromide (CTAB) as an active agent. The solar cell efficiency is significantly improved during the perovskite formation on the substrate by creating a multidimensional (2D/3D) heterojunction perovskite. The synergistic role of using 2D/3D heterojunction perovskite structures led to the 29.2% improvement (14.58-18.84) in the PCE. The attractive ability of the 2D/3D active layer in self-healing has increased the perovskite's long-term stability under harsh environmental conditions.
Collapse
Affiliation(s)
- Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
19
|
Guadagno L, Raimondo M, Naddeo C, Vertuccio L, Russo S, Iannuzzo G, Calabrese E. Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4322. [PMID: 36500943 PMCID: PMC9735688 DOI: 10.3390/nano12234322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes the design of toughened self-healing supramolecular resins able to fulfill functional and structural requirements for industrial applications. These new nanocomposites are based on compounds acting as promotors of reversible self-healing interactions. Electrically conductive carbon nanotubes, selected among those allowing to reach the electrical percolation threshold (EPT) with a very low amount of nanofiller, were dispersed in the self-healing polymeric matrix to contrast the electrical insulating properties of epoxy matrices, as required for many applications. The formulated supramolecular systems are thermally stable, up to 360 °C. Depending on the chemical formulation, the self-healing efficiency η, assessed by the fracture test, can reach almost the complete self-repairing efficiency (η = 99%). Studies on the complex viscosity of smart nanocomposites highlight that the effect of the nanofiller dominates over those due to the healing agents. The presence of healing compounds anchored to the hosting epoxy matrix determines a relevant increase in the glass transition temperature (Tg), which results in values higher than 200 °C. Compared to the unfilled matrix, a rise from 189 °C to 223 °C is found for two of the proposed formulations.
Collapse
Affiliation(s)
- Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carlo Naddeo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Salvatore Russo
- Leonardo Aircraft Division, Viale Dell’Aeronautica, 80038 Pomigliano d’Arco, Italy
| | - Generoso Iannuzzo
- Leonardo Aircraft Division, Viale Dell’Aeronautica, 80038 Pomigliano d’Arco, Italy
| | - Elisa Calabrese
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
20
|
Chen H, Li X, Li D. Superhydrophilic–superhydrophobic patterned surfaces: From simplified fabrication to emerging applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0013222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Superhydrophilic–superhydrophobic patterned surfaces constitute a branch of surface chemistry involving the two extreme states of superhydrophilicity and superhydrophobicity combined on the same surface in precise patterns. Such surfaces have many advantages, including controllable wettability, enrichment ability, accessibility, and the ability to manipulate and pattern water droplets, and they offer new functionalities and possibilities for a wide variety of emerging applications, such as microarrays, biomedical assays, microfluidics, and environmental protection. This review presents the basic theory, simplified fabrication, and emerging applications of superhydrophilic–superhydrophobic patterned surfaces. First, the fundamental theories of wettability that explain the spreading of a droplet on a solid surface are described. Then, the fabrication methods for preparing superhydrophilic–superhydrophobic patterned surfaces are introduced, and the emerging applications of such surfaces that are currently being explored are highlighted. Finally, the remaining challenges of constructing such surfaces and future applications that would benefit from their use are discussed.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiaoping Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Stretchable elastomers with self-healing and shape memory properties based on functionalized TMC and DLLA copolymers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Bernal-Chávez SA, Alcalá-Alcalá S, Tapia-Guerrero YS, Magaña JJ, Del Prado-Audelo ML, Leyva-Gómez G. Cross-linked polyvinyl alcohol-xanthan gum hydrogel fabricated by freeze/thaw technique for potential application in soft tissue engineering. RSC Adv 2022; 12:21713-21724. [PMID: 36043115 PMCID: PMC9353671 DOI: 10.1039/d2ra02295h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The search for materials and process parameters capable of generating hydrogels for soft tissue engineering applications, based on an experimental design strategy that allows the evaluation of several factors involved in their development and performance, has greatly increased. Nevertheless, the fabrication technique can influence their mechanical properties, swelling, crystallinity, and even their susceptibility to contamination by microorganisms, compromising their performance within the tissue or organ. This study aimed to evaluate the influence of the freeze/thaw technique on different characteristics of polyvinyl alcohol-xanthan gum hydrogel. Methods: this research analyzed the critical variables of the freeze/thaw process through a systematic study of a 2 k factorial design of experiments, such as the proportion and concentration of polymers, freezing time and temperature, and freeze/thaw cycles. Additionally, physicochemical analysis, susceptibility to bacterial growth, and cell viability tests were included to approximate its cytotoxicity. The optimized hydrogel consisted of polyvinyl alcohol and xanthan gum at a 95 : 5 ratio, polymer mixture concentration of 15%, and 12 h of freezing with three cycles of freeze/thaw. The hydrogel was crystalline, flexible, and resistant, with tensile strengths ranging from 9 to 87 kPa. The hydrogel was appropriate for developing scaffolds for soft tissue engineering such as the cardiac and skeletal muscle, dermis, thyroid, bladder, and spleen. Also, the hydrogel did not expose an in vitro cytotoxic effect, rendering it a candidate for biomedical applications.
Collapse
Affiliation(s)
- Sergio Alberto Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos Mexico
| | - Y S Tapia-Guerrero
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII) Ciudad de México 14389 Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII) Ciudad de México 14389 Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| |
Collapse
|
23
|
Fu W, Mei H, Zhang Z, Wang Q, Li R, Zhang S, Wang G, Wei H, Zhang C, Lin C, Wang L. Self‐healing and chemical resistance polyurethane elastomers based on 2‐ureido‐4[
1
H
]pyrimidinone. J Appl Polym Sci 2022. [DOI: 10.1002/app.52931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenyu Fu
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
- State Key Laboratory for Marine Corrosion and Protection Luoyang Ship Material Research Institute Qingdao China
| | - Huifeng Mei
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Zhijia Zhang
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Qiang Wang
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Rui Li
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Songsong Zhang
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Guojun Wang
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Hao Wei
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Chenyuan Zhang
- Qingdao Innovation and Development Center of Harbin Engineering University, Key Laboratory of Ultra‐Light Materials and Surface Technology, Ministry of Education School of Materials Science and Chemical Engineering, Harbin Engineering University Harbin China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection Luoyang Ship Material Research Institute Qingdao China
| | - Lei Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| |
Collapse
|
24
|
Zhang Y, Zheng J, Ma W, Zhang X, Du Y, Li K, Liu Y, Yu G, Jia Y. Ultra-low-temperature self-healing polyurethane with enhanced strength and elongation based on dual synergetic crosslinking strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Wang R, Chi W, Wan F, Wei J, Ping H, Zou Z, Xie J, Wang W, Fu Z. Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21278-21286. [PMID: 35471924 DOI: 10.1021/acsami.2c00317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biocomposite hydrogels are promising for applications in wearable flexible strain sensors. Nevertheless, the existing biocomposite hydrogels are still hard to meet all requirements, which limits the practical application. Here, inspired by the structure and composition of natural ferritin, we design a PAAm-Ferritin hybrid hydrogel through a facile method. Ferritin is uniformly distributed in the cross-linking networks and acts as a nanocage spring model, leading to the enhanced tensile strength of the hydrogel. The fracture stress is 99 kPa at 1400% maximum elongation. As fabricated PAAm-Ferritin hybrid hydrogels exhibit high toughness and low elastic modulus (21 kPa). The PAAm-Ferritin hybrid hydrogels present excellent biocompatibility and increased conductivity compared with PAAm hydrogel. Impressively, as a wearable flexible strain sensor, the PAAm-Ferritin hybrid hydrogels have high sensitivity (gauge factor = 2.06), excellent reliability, and cycling stability. This study indicates the feasibility of utilizing ferritin to synthesize functional materials, which is conducive to expanding the use of protein synthesis of materials technology and application fields.
Collapse
Affiliation(s)
- Rongjie Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Wenhao Chi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Fuqiang Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Jingjiang Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
26
|
Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Tazieva RE, Murzakhanov FF, Gafurov MR, Zelenikhin PV, Subakaeva EV, Sokolova EA, Gerasimov AV, Gorodov VV, Islamov DR, Cragg PJ, Stoikov II. Self-Healing Thiolated Pillar[5]arene Films Containing Moxifloxacin Suppress the Development of Bacterial Biofilms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1604. [PMID: 35564312 PMCID: PMC9102331 DOI: 10.3390/nano12091604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films demonstrated the ability to self-heal through the action of atmospheric oxygen. Using UV-vis, 2D 1H-1H NOESY, and DOSY NMR spectroscopy, the pillar[5]arene was shown to form complexes with the antimicrobial drug moxifloxacin in a 2:1 composition (logK11 = 2.14 and logK12 = 6.20). Films containing moxifloxacin effectively reduced Staphylococcus aureus and Klebsiella pneumoniae biofilms formation on adhesive surfaces.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| | - Yulia I. Aleksandrova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| | - Olga A. Mostovaya
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| | - Viktoriya A. Nazmutdinova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| | - Regina E. Tazieva
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| | - Fadis F. Murzakhanov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (F.F.M.); (M.R.G.)
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (F.F.M.); (M.R.G.)
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (P.V.Z.); (E.V.S.); (E.A.S.)
| | - Evgenia V. Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (P.V.Z.); (E.V.S.); (E.A.S.)
| | - Evgenia A. Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (P.V.Z.); (E.V.S.); (E.A.S.)
| | - Alexander V. Gerasimov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| | - Vadim V. Gorodov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya, 70, 117393 Moscow, Russia;
| | - Daut R. Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo, 2/31, 420111 Kazan, Russia;
| | - Peter J. Cragg
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK;
| | - Ivan I. Stoikov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (Y.I.A.); (O.A.M.); (V.A.N.); (R.E.T.); (A.V.G.)
| |
Collapse
|
27
|
Lai SM, Li ZY, Chen YC, Huang GL, Wu YH, Cho YJ. Self-Healing and Shape Memory Behavior of Functionalized Polyethylene Elastomer Modified by Zinc Oxide and Stearic Acid. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2065757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sun-Mou Lai
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Zong-Yu Li
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Yan-Chang Chen
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Guan-Lin Huang
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Yu-Hsuan Wu
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Yi-Ju Cho
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| |
Collapse
|
28
|
Cerdan K, Brancart J, Roels E, Vanderborght B, Van Puyvelde P. Humins Blending in Thermoreversible Diels-Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics. Polymers (Basel) 2022; 14:1657. [PMID: 35566827 PMCID: PMC9101211 DOI: 10.3390/polym14091657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Humins waste valorization is considered to be an essential pathway to improve the economic viability of many biorefinery processes and further promote their circularity by avoiding waste formation. In this research, the incorporation of humins in a Diels-Alder (DA) polymer network based on furan-maleimide thermoreversible crosslinks was studied. A considerable enhancement of the healing efficiency was observed by just healing for 1 h at 60 °C at the expense of a reduction of the material mechanical properties, while the unfilled material showed no healing under the same conditions. Nevertheless, the thermal healing step favored the irreversible humins polycondensation, thus strengthening the material while keeping the enhanced healing performance. Our hypothesis states a synergistic healing mechanism based on humins flowing throughout the damage, followed by thermal humins crosslinking during the healing trigger, together with DA thermoreversible bonds recombination. A multi-material soft robotic gripper was manufactured out of the proposed material, showing not only improved recovery of the functional performance upon healing but also stiffness-tunable features by means of humins thermal crosslinking. For the first time, both damage healing and zone reinforcement for further damage prevention are achieved in a single intrinsic self-healing system.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium;
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Ellen Roels
- Brubotics and Imec, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (E.R.); (B.V.)
| | - Bram Vanderborght
- Brubotics and Imec, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (E.R.); (B.V.)
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium;
| |
Collapse
|
29
|
Ren S, Tian F, Zhang S, Zhou W, Du Y. Bio‐based
benzoxazine from renewable
L‐tyrosine
: Synthesis, polymerization, and properties. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shitong Ren
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment Shijiazhuang Tiedao University Shijiazhuang China
| | - Fangjing Tian
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
| | - Shaoheng Zhang
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
| | - Weicong Zhou
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
| | - Yonggang Du
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment Shijiazhuang Tiedao University Shijiazhuang China
| |
Collapse
|
30
|
Mashkoor F, Lee SJ, Yi H, Noh SM, Jeong C. Self-Healing Materials for Electronics Applications. Int J Mol Sci 2022; 23:622. [PMID: 35054803 PMCID: PMC8775691 DOI: 10.3390/ijms23020622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sun Jin Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics, 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
31
|
Zhang Y, Zheng J, Zhang X, Du Y, Li K, Liu Y, Yu G, Jia Y, Song S. Dual dynamic bonds self-healing polyurethane with superior mechanical properties over a wide temperature range. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
ding F, dong Y, wu R, fu L, tang W, Zhang R, Zheng K, Wu S, Zou X. Oxidized alginate linked tough conjoined-network hydrogel with self-healing and conductive properties for strain sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj02006h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we prepared a conjoined-network hydrogel with acrylamide-modified chitosan, oxidized alginate and polyacrylamide. The oxidized alginate can not only crosslink with chitosan to form a hydrogel network but...
Collapse
|
33
|
Wang Y, Li Y, He M, Bai J, Liu B, Li Z. Effect of chain extender on microphase structure and performance of self‐healing polyurethane and poly(urethane‐urea). J Appl Polym Sci 2021. [DOI: 10.1002/app.51371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yulong Wang
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Yaqiong Li
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Maoyong He
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Jingjing Bai
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Bingxiao Liu
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Zhenzhong Li
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| |
Collapse
|
34
|
Lai SM, Tu SN, Zhang BX, Cai JX, Pan JW. Synergistic Effects of Thermal and Near-Infrared Radiation Heating on the Self-Healing Effect of Shape Memory Polyethylene Elastomer Nanocomposites. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1968618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sun-Mou Lai
- Dept. of Chemical and Materials Engineering, National I-Lan University, Taiwan, ROC
| | - Shu-Ning Tu
- Dept. of Chemical and Materials Engineering, National I-Lan University, Taiwan, ROC
| | - Bo-Xiang Zhang
- Dept. of Chemical and Materials Engineering, National I-Lan University, Taiwan, ROC
| | - Jian-Xing Cai
- Dept. of Chemical and Materials Engineering, National I-Lan University, Taiwan, ROC
| | - Jien-Wei Pan
- Dept. of Chemical and Materials Engineering, National I-Lan University, Taiwan, ROC
| |
Collapse
|
35
|
Huang J, Wróblewska AA, Steinkoenig J, Maes S, Du Prez FE. Assembling Lipoic Acid and Nanoclay into Nacre-Mimetic Nanocomposites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Huang
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Aleksandra Alicja Wróblewska
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Jan Steinkoenig
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Stephan Maes
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
36
|
Caprioli M, Roppolo I, Chiappone A, Larush L, Pirri CF, Magdassi S. 3D-printed self-healing hydrogels via Digital Light Processing. Nat Commun 2021; 12:2462. [PMID: 33911075 PMCID: PMC8080574 DOI: 10.1038/s41467-021-22802-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/25/2021] [Indexed: 01/17/2023] Open
Abstract
Self-healing hydrogels may mimic the behavior of living tissues, which can autonomously repair minor damages, and therefore have a high potential for application in biomedicine. So far, such hydrogels have been processed only via extrusion-based additive manufacturing technology, limited in freedom of design and resolution. Herein, we present 3D-printed hydrogel with self-healing ability, fabricated using only commercially available materials and a commercial Digital Light Processing printer. These hydrogels are based on a semi-interpenetrated polymeric network, enabling self-repair of the printed objects. The autonomous restoration occurs rapidly, at room temperature, and without any external trigger. After rejoining, the samples can withstand deformation and recovered 72% of their initial strength after 12 hours. The proposed approach enables 3D printing of self-healing hydrogels objects with complex architecture, paving the way for future applications in diverse fields, ranging from soft robotics to energy storage.
Collapse
Affiliation(s)
- Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy.
| | - Annalisa Chiappone
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Liraz Larush
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Turin, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel.
| |
Collapse
|
37
|
Yang Y, Xu LP, Zhang X, Wang S. Bioinspired wettable-nonwettable micropatterns for emerging applications. J Mater Chem B 2021; 8:8101-8115. [PMID: 32785360 DOI: 10.1039/d0tb01382j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Superhydrophilic and superhydrophobic surfaces are prevalent in nature and have received tremendous attention due to their importance in both fundamental research and practical applications. With the high interdisciplinary research and great development of microfabrication techniques, artificial wettable-nonwettable micropatterns inspired by the water-collection behavior of desert beetles have been successfully fabricated. A combination of the two extreme states of superhydrophilicity and superhydrophobicity on the same surface precisely, wettable-nonwettable micropatterns possess unique functionalities, such as controllable superwetting, anisotropic wetting, oriented adhesion, and other properties. In this review, we briefly describe the methods for fabricating wettable-nonwettable patterns, including self-assembly, electrodeposition, inkjet printing, and photolithography. We also highlight some of the emerging applications such as water collection, controllable bioadhesion, cell arrays, microreactors, printing techniques, and biosensors combined with various detection methods. Finally, the current challenges and prospects of this renascent and rapidly developing field are proposed and discussed.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China. and School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
38
|
Rong J, Zhong J, Yan W, Liu M, Zhang Y, Qiao Y, Fu C, Gao F, Shen L, He H. Study on waterborne self-healing polyurethane with dual dynamic units of quadruple hydrogen bonding and disulfide bonds. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Sutherland WJ, Atkinson PW, Broad S, Brown S, Clout M, Dias MP, Dicks LV, Doran H, Fleishman E, Garratt EL, Gaston KJ, Hughes AC, Le Roux X, Lickorish FA, Maggs L, Palardy JE, Peck LS, Pettorelli N, Pretty J, Spalding MD, Tonneijck FH, Walpole M, Watson JEM, Wentworth J, Thornton A. A 2021 Horizon Scan of Emerging Global Biological Conservation Issues. Trends Ecol Evol 2020; 36:87-97. [PMID: 33213887 DOI: 10.1016/j.tree.2020.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
We present the results from our 12th annual horizon scan of issues likely to impact biological conservation in the future. From a list of 97 topics, our global panel of 25 scientists and practitioners identified the top 15 issues that we believe society may urgently need to address. These issues are either novel in the biological conservation sector or represent a substantial positive or negative step-change in impact at global or regional level. Six issues, such as coral reef deoxygenation and changes in polar coastal productivity, affect marine or coastal ecosystems and seven relate to human and ecosystem-level responses to climate change. Identification of potential forthcoming issues for biological conservation may enable increased preparedness by researchers, practitioners, and decision-makers.
Collapse
Affiliation(s)
- William J Sutherland
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.
| | | | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Sam Brown
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Mick Clout
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, PB 90129 Auckland, New Zealand
| | - Maria P Dias
- BirdLife International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; MARE Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisboa, Portugal
| | - Lynn V Dicks
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Helen Doran
- Natural England, Eastbrook, Shaftesbury Road, Cambridge CB2 8DR, UK
| | - Erica Fleishman
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizabeth L Garratt
- UK Research and Innovation, Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, PR China
| | - Xavier Le Roux
- Microbial Ecology Centre, UMR1418 INRAE, CNRS, University Lyon 1, VetAgroSup, 69622 Villeurbanne, France; BiodivERsA, Fondation pour la Recherche sur la Biodiversité, 195 rue Saint Jacques, 75005 Paris, France
| | - Fiona A Lickorish
- UK Research and Consultancy Services (RCS) Ltd, Valletts Cottage, Westhope, Hereford HR4 8BU, UK
| | - Luke Maggs
- Natural Resources Wales, Cambria House, 29 Newport Road, Cardiff CF24 0TP, UK
| | - James E Palardy
- The Pew Charitable Trusts, 901 E St NW, Washington, DC 20004, USA
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Jules Pretty
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mark D Spalding
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; The Nature Conservancy, Department of Physical, Earth and Environmental Sciences, University of Siena, Pian dei Mantellini, Siena 53100, Italy
| | | | - Matt Walpole
- Fauna and Flora International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - James E M Watson
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, QLD, 4072, Australia; Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Jonathan Wentworth
- Parliamentary Office of Science and Technology, 14 Tothill Street, Westminster, London SW1H 9NB, UK
| | - Ann Thornton
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| |
Collapse
|
40
|
Rahman SS, Arshad M, Qureshi A, Ullah A. Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51927-51939. [PMID: 33156602 DOI: 10.1021/acsami.0c14220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel self-healable, fully reprocessable, and inkjet three-dimensional (3D) printable partially biobased elastomer is reported in this work. A long-chain unsaturated diacrylate monomer was first synthesized from canola oil and then cross-linked with a partially oxidized silicon-based copolymer containing free thiol groups and disulfide bonds. The elastomer is fabricated through inkjet 3D printing utilizing the photoinitiated thiol-ene click chemistry and reprocessed by compression molding exploiting the dynamic nature of disulfide bond. Self-healing is enabled by phosphine-catalyzed disulfide metathesis. The elastomer displayed a tensile strength of ∼52 kPa, a breaking strain of ∼24, and ∼86% healing efficiency at 80 °C temperature after 8 h. Moreover, the elastomer showed excellent thermal stability, and the highest thermal degradation temperature was recorded to be ∼524 °C. After reprocessing through compression molding, the elastomer fully recovered its mechanical and thermal properties. These properties of the elastomer yield an ecofriendly alternative of fossil fuel-based elastomers that can find broad applications in soft robotics, flexible wearable devices, strain sensors, health care, and next-generation energy-harvesting and -storage devices.
Collapse
Affiliation(s)
- Saadman Sakib Rahman
- Department of Mechanical Engineering, University of Alberta, 05-293 Donadeo Innovation Centre for Engineering 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Muhammad Arshad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Ahmed Qureshi
- Department of Mechanical Engineering, University of Alberta, 05-293 Donadeo Innovation Centre for Engineering 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
41
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|