1
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025; 19:18003-18036. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
Shergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, Mir RH, Khan NA. Next-generation biopolymer gels: innovations in drug delivery and theranostics. J Mater Chem B 2025; 13:3222-3244. [PMID: 39903271 DOI: 10.1039/d4tb02068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, etc. have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.
Collapse
Affiliation(s)
- Danish Ahmad Shergujri
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Murtaza Ahmad Khanday
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Aisha Noor
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Iqra Arif
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Syed Naiem Raza
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Nisar Ahmad Khan
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Li L, Zheng R, Sun R. Understanding multicomponent low molecular weight gels from gelators to networks. J Adv Res 2025; 69:91-106. [PMID: 38570015 PMCID: PMC11954807 DOI: 10.1016/j.jare.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The construction of gels from low molecular weight gelators (LMWG) has been extensively studied in the fields of bio-nanotechnology and other fields. However, the understanding gaps still prevent the prediction of LMWG from the full design of those gel systems. Gels with multicomponent become even more complicated because of the multiple interference effects coexist in the composite gel systems. AIM OF REVIEW This review emphasizes systems view on the understanding of multicomponent low molecular weight gels (MLMWGs), and summarizes recent progress on the construction of desired networks of MLMWGs, including self-sorting and co-assembly, as well as the challenges and approaches to understanding MLMWGs, with the hope that the opportunities from natural products and peptides can speed up the understanding process and close the gaps between the design and prediction of structures. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, understanding the complicated multicomponent gels systems requires a systems perspective on MLMWGs. Secondly, several protocols can be applied to control self-sorting and co-assembly behaviors in those multicomponent gels system, including the certain complementary structures, chirality inducing and dynamic control. Thirdly, the discussion is anchored in challenges and strategies of understanding MLMWGs, and some examples are provided for the understanding of multicomponent gels constructed from small natural products and subtle designed short peptides.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
4
|
Babazadeh-Mamaqani M, Roghani-Mamaqani H, Rezaei M, Salami-Kalajahi M. Photo-induced time-dependent controllable wettability of dual-responsive multi-functional electrospun MXene/polymer fibers. J Colloid Interface Sci 2025; 678:1048-1063. [PMID: 39332123 DOI: 10.1016/j.jcis.2024.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Switchable wettability potential in smart fibers is of paramount importance in various applications. Light-induced controllable changes in surface wettability have a significant role in this area. Herein, smart waterborne homopolymer, functional copolymer with different polarity and flexibility, and multi-functional terpolymer particles containing a time-dependent dual-responsive acrylated spiropyran, as a polymerizable monomer, were successfully synthesized through eco-friendly single-step emulsifier-free emulsion polymerization. Presence of 10 wt% of butyl acrylate and dimethylaminoethyl methacrylate relative to methylmethacrylate as functional comonomers decreased the Tg of the samples almost 20 ℃ and increased their polarity. The optical properties of the particles were investigated, and the UV-vis and fluorescence spectroscopy results showed that not only polarity and flexibility of the polymer chains may have a positive effect on improving the optical properties, but also the simultaneous presence of functional groups has a synergistic effect. The smart polymer particles with flexibility and polarity features exhibited higher absorption and emission compared to other samples. Inspired by these findings, multi-functional smart polymer fibers were prepared using the electrospinning method. The smart multi-functional electrospun fibers containing few-layer Ti3C2 MXenes were synthesized to improve the fibers' properties and change the surface wettability due to the hydrophilic functional groups of MXene. Field-emission scanning electron microscopy images displayed the successful preparation of few-layer MXenes. Smooth and bead-free fibers with bright red fluorescence emission under UV irradiation were shown using fluorescence microscopy. The study on the surface wettability of fibers revealed that UV and visible light irradiation induced reversible time-dependent changes in the wettability of the smart multi-functional MXene/polymer electrospun fibers from hydrophobic to hydrophilic, reaching a water contact angle of 10° from an initial water contact angle of 100° under UV light and also changing to superhydrophilic state with passing time. Upon visible light exposure, the fibers returned to their original state. Furthermore, the fibers demonstrated a high stability over five alternating cycles of UV and visible light irradiation. This study shows that the fabrication of time-dependent smart fibers, utilizing the flexibility and polarity in the presence of MXenes, significantly improves and controls surface wettability changes. The outstanding dynamically photo-switchable wettability of these fibers may offer exciting opportunities in various applications, especially in the separation of oil from water contaminants.
Collapse
Affiliation(s)
- Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mostafa Rezaei
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
5
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
6
|
Ruiz-Fresneda MA, González-Morales E, Gila-Vilchez C, Leon-Cecilla A, Merroun ML, Medina-Castillo AL, Lopez-Lopez MT. Clay-polymer hybrid hydrogels in the vanguard of technological innovations for bioremediation, metal biorecovery, and diverse applications. MATERIALS HORIZONS 2024; 11:5533-5549. [PMID: 39145624 DOI: 10.1039/d4mh00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymeric hydrogels are among the most studied materials due to their exceptional properties for many applications. In addition to organic and inorganic-based hydrogels, "hybrid hydrogels" have been gaining significant relevance in recent years due to their enhanced mechanical properties and a broader range of functionalities while maintaining good biocompatibility. In this sense, the addition of micro- and nanoscale clay particles seems promising for improving the physical, chemical, and biological properties of hydrogels. Nanoclays can contribute to the physical cross-linking of polymers, enhancing their mechanical strength and their swelling and biocompatibility properties. Nowadays, they are being investigated for their potential use in a wide range of applications, including medicine, industry, and environmental decontamination. The use of microorganisms for the decontamination of environments impacted by toxic compounds, known as bioremediation, represents one of the most promising approaches to address global pollution. The immobilization of microorganisms in polymeric hydrogel matrices is an attractive procedure that can offer several advantages, such as improving the preservation of cellular integrity, and facilitating cell separation, recovery, and transport. Cell immobilization also facilitates the biorecovery of critical materials from wastes within the framework of the circular economy. The present work aims to present an up-to-date overview on the different "hybrid hydrogels" used to date for bioremediation of toxic metals and recovery of critical materials, among other applications, highlighting possible drawbacks and gaps in research. This will provide the latest trends and advancements in the field and contribute to search for effective bioremediation strategies and critical materials recovery technologies.
Collapse
Affiliation(s)
| | | | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Mohamed L Merroun
- Universidad de Granada, Departamento de Microbiología, E-18071 Granada, Spain.
| | - Antonio L Medina-Castillo
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
- Universidad de Granada, Departamento de Química Analítica, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| |
Collapse
|
7
|
Piotrowska U, Orzechowska K. Advances in Chitosan-Based Smart Hydrogels for Colorectal Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1260. [PMID: 39458901 PMCID: PMC11510048 DOI: 10.3390/ph17101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | | |
Collapse
|
8
|
Khatoon M, Ali A, Hussain MA, Haseeb MT, Sher M, Alsaidan OA, Muhammad G, Hussain SZ, Hussain I, Bukhari SNA. A superporous and pH-sensitive hydrogel from Salvia hispanica (chia) seeds: stimuli responsiveness, on-off switching, and pharmaceutical applications. RSC Adv 2024; 14:27764-27776. [PMID: 39224645 PMCID: PMC11367392 DOI: 10.1039/d4ra04770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The use of plant seed-based hydrogels to design drug delivery systems (DDSs) has increased due to their swellable, pH-responsive, biocompatible, biodegradable, and non-toxic nature. Herein, the chia seeds hydrogel (CSH) was extracted through an aqueous extraction method to explore its pH and salt-responsive swelling behavior and sustained release potential. The CSH was characterized using Fourier transform infrared (FT-IR) and solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (solid/state CP-MAS 13C/NMR) spectra. Thermal analysis indicated that the CSH is a thermally stable material and decomposes in two steps. The scanning electron microscope (SEM) images of CSH witnessed the existence of microscopic channeling and a superporous nature with average pore sizes of 18 ± 11 μm (transverse cross-sections) and 23 ± 15 μm (longitudinal cross-sections). The CSH is a haemocompatible material. The CSH revealed pH and saline-responsive swelling in powder and compressed form (tablet) in the following order; distilled water (DW) > pH 7.4 > pH 6.8 > pH 1.2. Moreover, the swelling of CSH followed second-order kinetics. The swelling of CSH powder and tablets was decreased with increasing salt concentration. The pH, solvent, and saline responsive on/off switching (swelling/deswelling) results of the CSH and tablets disclosed its stimuli-responsive nature. The CSH prolonged the release of valsartan for 5 h at pH 7.4, whereas, negligible release (19.3%) was noted at pH 1.2. The valsartan release followed first-order kinetics and the non-Fickian diffusion. In conclusion, the CSH is a stimuli-responsive smart material with great potential to develop pH-sensitive and targeted DDSs.
Collapse
Affiliation(s)
- Maria Khatoon
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Arshad Ali
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan +923468614959
| | | | - Muhammad Sher
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Omar A Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore Lahore 54000 Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Aljouf 72388 Saudi Arabia
| |
Collapse
|
9
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
10
|
Lou Y, Xi J, Jiang S, Chu Y, Deng W, Bian H, Xu Z, Xiao H, Wu W. Nanocellulose-based membranes with pH- and temperature-responsive pore size for selective separation. Int J Biol Macromol 2024; 263:130176. [PMID: 38368977 DOI: 10.1016/j.ijbiomac.2024.130176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Smart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.75 nm to 144.81 nm, and the pure water flux can be regulated from 342 to 2118 L·m-2·h-1 with remarkable variation in the pH range of 1-11 and temperature range of 20-60 °C. The adjustability of pore size is able to achieve the gradient selective separation of particles and polymers with different sizes. In addition, owing to the underwater superoleophobicity and the nanoscale pore structure, the membrane separation efficiencies of emulsified oils are higher than 99 %. Moreover, the controllable pore size endows the membrane with good self-cleaning performance. This nanocellulose-based smart gating membrane has potential applications in the fields of controllable permeation, selective separation, fluid transport, and drug/chemical controlled release systems.
Collapse
Affiliation(s)
- Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Garg A, Agrawal R, Singh Chauhan C, Deshmukh R. In-situ gel: A smart carrier for drug delivery. Int J Pharm 2024; 652:123819. [PMID: 38242256 DOI: 10.1016/j.ijpharm.2024.123819] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
In-situ gel technology is a promising drug delivery strategy that undergoes a 'sol to gel' transition upon administration, providing controlled and prolonged drug release. These gels are composed of cross-linked 3D networks of polymers, with hydrogels being a specific type of absorbing water while retaining their shape. Gelation can be triggered by various stimuli, such as temperature, pH, ions, and light. They offer several advantages like improved patient compliance, extended drug residence time, localized drug delivery, etc, but also have some disadvantages like drug degradation and limited mechanical strength. In-situ gel falls into three categories: temperature-sensitive, ion-sensitive, and pH-sensitive, but multi-responsive gels that respond to multiple stimuli have better drug release characteristics. The mechanism of in-situ gel formation involves physical and chemical mechanisms. There are various applications of in-situ gel, like ocular drug delivery, nose-to-brain delivery, etc. In this review, we have discussed the types, and mechanisms of in-situ gel & use of in-situ gel in the treatment of different diseases through various routes like buccal, vaginal, ocular, nasal, etc., along with its use in targeted drug delivery.
Collapse
Affiliation(s)
- Akash Garg
- Bhupal Noble's University, New Shiv Nagar, Central Area, Udaipur, Rajasthan 313001, India.
| | - Rutvi Agrawal
- Bhupal Noble's University, New Shiv Nagar, Central Area, Udaipur, Rajasthan 313001, India
| | - Chetan Singh Chauhan
- Bhupal Noble's University, New Shiv Nagar, Central Area, Udaipur, Rajasthan 313001, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
12
|
Li X, Duan Q, Khan M, Yang D, Liu Q, Yin F, Hu Q, Yu L. Development of the viscosity biosensor for the detection of DNase I based on the flow distance on the paper with DNA mucus. Talanta 2024; 266:124994. [PMID: 37536109 DOI: 10.1016/j.talanta.2023.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Deoxyribonuclease I (DNase I) is a biomarker which has important applications in various biological processes. Thus, it is highly important to develop a user-friendly method for the detection of DNase I. Here, we present a paper-based distance sensor for the rapid detection of DNase I based on changes in the viscosity of DNA mucus. The viscosity of DNA mucus varies with different concentrations of DNase I, showing different water flow lengths on the pH test papers, this makes the quantification of DNase I possible. This method has a wide linear range (0.01-10 U/mL), excellent sensitivity, remarkable specificity and excellent reproducibility. The detection limit reaches 0.003 U/mL. Additionally, it can be well applied to detection of DNase I inhibitors, assay of DNase I in human serum and quality evaluation of nucleic acid scavengers. In general, this study offers a brief, convenient, label-free, and economical method to construct paper-based distance sensors using DNA mucus, which is very promising in the detection of DNase I in various applications.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Danhong Yang
- Shandong Kehong Medical Technology Co., Ltd., 2018, Dezhou, 253011, China
| | - Qian Liu
- Shandong Kehong Medical Technology Co., Ltd., 2018, Dezhou, 253011, China
| | - Fangchao Yin
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
13
|
Wang Y, Jiang X, Li X, Ding K, Liu X, Huang B, Ding J, Qu K, Sun W, Xue Z, Xu W. Bionic ordered structured hydrogels: structure types, design strategies, optimization mechanism of mechanical properties and applications. MATERIALS HORIZONS 2023; 10:4033-4058. [PMID: 37522298 DOI: 10.1039/d3mh00326d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Natural organisms, such as lobsters, lotus, and humans, exhibit exceptional mechanical properties due to their ordered structures. However, traditional hydrogels have limitations in their mechanical and physical properties due to their disordered molecular structures when compared with natural organisms. Therefore, inspired by nature and the properties of hydrogels similar to those of biological soft tissues, researchers are increasingly focusing on how to investigate bionic ordered structured hydrogels and render them as bioengineering soft materials with unique mechanical properties. In this paper, we systematically introduce the various structure types, design strategies, and optimization mechanisms used to enhance the strength, toughness, and anti-fatigue properties of bionic ordered structured hydrogels in recent years. We further review the potential applications of bionic ordered structured hydrogels in various fields, including sensors, bioremediation materials, actuators, and impact-resistant materials. Finally, we summarize the challenges and future development prospects of bionic ordered structured hydrogels in preparation and applications.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xinyu Jiang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xusheng Li
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Kexin Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xianrui Liu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Bin Huang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Junjie Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Keyu Qu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenzhi Sun
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Zhongxin Xue
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| |
Collapse
|
14
|
Malkin AY, Derkach SR, Kulichikhin VG. Rheology of Gels and Yielding Liquids. Gels 2023; 9:715. [PMID: 37754396 PMCID: PMC10529254 DOI: 10.3390/gels9090715] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
In this review, today's state of the art in the rheology of gels and transition through the yield stress of yielding liquids is discussed. Gels are understood as soft viscoelastic multicomponent solids that are in the incomplete phase separation state, which, under the action of external mechanical forces, do not transit into a fluid state but rupture like any solid material. Gels can "melt" (again, like any solids) due to a change in temperature or variation in the environment. In contrast to this type of rheology, yielding liquids (sometimes not rigorously referred to as "gels", especially in relation to colloids) can exist in a solid-like (gel-like) state and become fluid above some defined stress and time conditions (yield stress). At low stresses, their behavior is quite similar to that of permanent solid gels, including the frequency-independent storage modulus. The gel-to-sol transition considered in colloid chemistry is treated as a case of yielding. However, in many cases, the yield stress cannot be assumed to be a physical parameter since the solid-to-liquid transition happens in time and is associated with thixotropic effects. In this review, special attention is paid to various time effects. It is also stressed that plasticity is not equivalent to flow since (irreversible) plastic deformations are determined by stress but do not continue over time. We also discuss some typical errors, difficulties, and wrong interpretations of experimental data in studies of yielding liquids.
Collapse
Affiliation(s)
- Alexander Ya. Malkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Prosp. 29, 119991 Moscow, Russia;
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia;
| | - Valery G. Kulichikhin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Prosp. 29, 119991 Moscow, Russia;
| |
Collapse
|
15
|
Budhori A, Tiwari A, Tiwari V, Sharma A, Kumar M, Gautam G, Virmani T, Kumar G, Alhalmi A, Noman OM, Hasson S, Mothana RA. QbD Design, Formulation, Optimization and Evaluation of Trans-Tympanic Reverse Gelatination Gel of Norfloxacin: Investigating Gene-Gene Interactions to Enhance Therapeutic Efficacy. Gels 2023; 9:657. [PMID: 37623112 PMCID: PMC10454480 DOI: 10.3390/gels9080657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Traditional otic drug delivery methods lack controlled release capabilities, making reverse gelatination gels a promising alternative. Reverse gelatination gels are colloidal systems that transition from a sol to a gel phase at the target site, providing controlled drug release over an extended period. Thermosensitive norfloxacin reverse gelatination gels were developed using a Quality by Design (QbD)-based optimization approach. The formulations were evaluated for their in vitro release profile, rheological behavior, visual appearance, pH, gelling time, and sol-gel transition temperature. The results show that the gelation temperatures of the formulations ranged from 33 to 37 °C, with gelling durations between 35 and 90 s. The drug content in the formulations was uniform, with entrapment efficiency ranging from 55% to 95%. Among the formulations, F10 exhibited the most favorable properties and was selected for a stability study lasting 60 days. Ex-vivo release data demonstrate that the F10 formulation achieved 95.6percentage of drug release at 360 min. This study successfully developed thermosensitive norfloxacin reverse gelatination gels using a QbD-based optimization approach. The selected formulation, F10, exhibited desirable properties in terms of gelling temperature, drug content, and release profile. These gels hold potential for the controlled delivery of norfloxacin in the treatment of ear infections.
Collapse
Affiliation(s)
- Amit Budhori
- Devsthali Vidyapeeth Institute of Pharmacy, Lalpur, Rudrapur 263148, India;
| | | | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Moradabad 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India;
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana 142024, India;
| | | | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Omar Mohammed Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.M.N.); (R.A.M.)
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UG, UK;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.M.N.); (R.A.M.)
| |
Collapse
|
16
|
Salehi S, Naghib SM, Garshasbi HR, Ghorbanzadeh S, Zhang W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front Bioeng Biotechnol 2023; 11:1104126. [PMID: 36911200 PMCID: PMC9992555 DOI: 10.3389/fbioe.2023.1104126] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Hydrogels are widely used biomaterials in the delivery of therapeutic agents, including drugs, genes, proteins, etc., as well as tissue engineering, due to obvious properties such as biocompatibility and their similarity to natural body tissues. Some of these substances have the feature of injectability, which means that the substance is injected into the desired place in the solution state and then turns into the gel, which makes it possible to administer them from a way with a minimal amount of invasion and eliminate the need for surgery to implant pre-formed materials. Gelation can be caused by a stimulus and/or spontaneously. Suppose this induces due to the effect of one or many stimuli. In that case, the material in question is called stimuli-responsive because it responds to the surrounding conditions. In this context, we introduce the different stimuli that cause gelation and investigate the different mechanisms of the transformation of the solution into the gel in them. Also, we study special structures, such as nano gels or nanocomposite gels.
Collapse
Affiliation(s)
- Saba Salehi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, Iran University of Science and Technology (IUST), ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, Iran University of Science and Technology (IUST), ACECR, Tehran, Iran
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, Iran University of Science and Technology (IUST), ACECR, Tehran, Iran
| | - Sadegh Ghorbanzadeh
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| |
Collapse
|
17
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|