1
|
Higa K, Ishiwata M, Kimoto R, Hirayama M, Yamaguchi T, Shimmura S. Human corneal organoid has a limbal function that supplies epithelium to the cornea with limbal deficiency. Regen Ther 2025; 29:247-253. [PMID: 40230358 PMCID: PMC11995013 DOI: 10.1016/j.reth.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Patients with limbal dysfunction, which occurs when corneal epithelial stem cells are depleted, require the transplantation of donor corneal epithelial stem cells or donor-independent cell sources. This study aimed to establish organoids with limbal epithelial progenitor cell function from the central cornea, where stem cells do not reside in vivo. We confirmed the regenerative capacity of organoids in a rabbit limbal deficiency model. Methods After treatment with collagenase, central corneal epithelial cells were scraped from corneal tissue and seeded onto Matrigel. For comparison, cells were collected from the limbus. The cells were cultured in Limbal Phenotype Maintenance Medium (LPMM). After 1 month, the organoids were observed in terms of number and size, immunohistochemistry, cell cycle, and colony-forming efficiency. Organoids were also transplanted into a rabbit model of limbal deficiency. Results Although we were able to form organoids from the central cornea, the number of organoids from the cornea was small (approximately one tenth compared to the limbus) after 1-month culture. Cornea-derived organoids were similar in shape and size to limbal-derived organoids, and expressed keratin 15 and p63, which are characteristics of the limbal epithelium, as well as collagen type IV, laminin, and tenascin-C, which are limbal basement membrane components. Cornea-derived organoids also showed colony forming efficiency, slow-cycling cells, and label-retaining cells. Transplanted corneal organoids were observed in the limbus of a rabbit limbal deficiency model, and the presence of organoid-derived cells extending into the host cornea was confirmed by immunohistochemistry using anti-human nuclei, -K12, -collagen type IV, and -laminin antibodies. Conclusions Our data suggest that corneal organoids de-differentiated to gain a limbal phenotype and functionally supplied corneal epithelium in a rabbit limbal deficiency model for up to 1 month.
Collapse
Affiliation(s)
- Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Mifuyu Ishiwata
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Reona Kimoto
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takefumi Yamaguchi
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, 1-1-4 Haneda-kukou, Ota-ku, Tokyo 144-0041, Japan
| |
Collapse
|
2
|
Peng Y, Yuan Q, Zhou S, Gan J, Shen Z, Xia X, Jiang Y, Chen Q, Yuan Y, He G, Wei Q, Feng X. FAK mediates mechanical signaling to maintain epithelial homeostasis through YAP/TAZ-TEADs. Histochem Cell Biol 2025; 163:31. [PMID: 39918604 DOI: 10.1007/s00418-025-02360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Epithelial homeostasis ensures that the epithelium can perform its normal physiological functions. Mechanical signaling response through integrin-mediated adhesions of the basement membrane (BM) is crucial for maintaining epithelial homeostasis. The essential mechanosensors YAP and the paralog TAZ (YAP/TAZ) have been shown to play a critical role in epithelial homeostasis, but the key regulator that mediates mechanical signaling to YAP/TAZ in maintaining epithelial homeostasis has not been fully understood. In this study, we noticed that mechanical signals correlated with YAP/TAZ activation and basal state maintenance in epithelial stem/progenitor cells through immunohistochemistry. Subsequently, we found that inhibition of focal adhesion kinase (FAK) suppressed YAP/TAZ activation in the human keratinocyte line HaCaT cells. Furthermore, inhibition of the interaction between YAP/TAZ and the transcriptional enhanced associate domains (TEADs) resulted in the differentiation of HaCaT cells. Finally, we used primary mouse epithelial cells to reconstruct the epithelium in vitro and found that FAK inhibition led to both a reduction in YAP/TAZ activity and an increase of differentiation in the basal layer cells. In conclusion, our findings reveal that FAK mediates mechanical signaling to maintain epithelial homeostasis via YAP/TAZ-TEADs.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengzhong Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, 310000, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gu He
- Department of Dermatology and Venerology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Gurdal M, Ercan G, Barut Selver O, Aberdam D, Zeugolis DI. Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding. Life (Basel) 2024; 14:1552. [PMID: 39768260 PMCID: PMC11678493 DOI: 10.3390/life14121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs). The initial step involved the fabrication and characterization of CF and CF enriched with HA (CF-HA). Subsequently, T-LESCs were seeded on CF, CF-HA, and tissue culture plastic (TCP). Thereafter, the effect of these matrices on basic cellular function and tissue-specific extracellular matrix (ECM) deposition with or without MMC was evaluated. The viability and metabolic activity of cells cultured on CF, CF-HA, and TCP were found to be similar, while CF-HA induced the highest (p < 0.05) cell proliferation. It is notable that CF and HA induced cell growth, whereas MMC increased (p < 0.05) the deposition of collagen IV, fibronectin, and laminin in the T-LESC culture. The data highlight the potential of, in particular, immortalized cells and MMC for the development of biomimetic cell culture substrates, which could be utilized in ocular surface reconstruction following further in vitro, in vivo, and clinical validation of the approach.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
| | - Gulinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
| | - Ozlem Barut Selver
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre des Cordeliers, Université de Paris, 75006 Paris, France;
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
5
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
6
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
7
|
Bonnet C, González S, Roberts JS, Robertson SYT, Ruiz M, Zheng J, Deng SX. Human limbal epithelial stem cell regulation, bioengineering and function. Prog Retin Eye Res 2021; 85:100956. [PMID: 33676006 PMCID: PMC8428188 DOI: 10.1016/j.preteyeres.2021.100956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
The corneal epithelium is continuously renewed by limbal stem/progenitor cells (LSCs), a cell population harbored in a highly regulated niche located at the limbus. Dysfunction and/or loss of LSCs and their niche cause limbal stem cell deficiency (LSCD), a disease that is marked by invasion of conjunctival epithelium into the cornea and results in failure of epithelial wound healing. Corneal opacity, pain, loss of vision, and blindness are the consequences of LSCD. Successful treatment of LSCD depends on accurate diagnosis and staging of the disease and requires restoration of functional LSCs and their niche. This review highlights the major advances in the identification of potential LSC biomarkers and components of the LSC niche, understanding of LSC regulation, methods and regulatory standards in bioengineering of LSCs, and diagnosis and staging of LSCD. Overall, this review presents key points for researchers and clinicians alike to consider in deepening the understanding of LSC biology and improving LSCD therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - JoAnn S Roberts
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarah Y T Robertson
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Maxime Ruiz
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie Zheng
- Basic Science Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Li JM, Kim S, Zhang Y, Bian F, Hu J, Lu R, Pflugfelder SC, Chen R, Li DQ. Single-Cell Transcriptomics Identifies a Unique Entity and Signature Markers of Transit-Amplifying Cells in Human Corneal Limbus. Invest Ophthalmol Vis Sci 2021; 62:36. [PMID: 34297801 PMCID: PMC8300054 DOI: 10.1167/iovs.62.9.36] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Differentiated from adult stem cells (ASCs), transit-amplifying cells (TACs) play an important role in tissue homeostasis, development, and regeneration. This study aimed to characterize the gene expression profile of a candidate TAC population in limbal basal epithelial cells using single-cell RNA sequencing (scRNA-seq). Methods Single cells isolated from the basal corneal limbus were subjected to scRNA-seq using the 10x Genomics platform. Cell types were clustered by graph-based visualization methods and unbiased computational analysis. BrdU proliferation assays, immunofluorescent staining, and real-time reverse transcription quantitative polymerase chain reaction were performed using multiple culture models of primary human limbal epithelial cells to characterize the TAC pool. Results Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters. A unique cluster (3.21% of total cells) was identified as a TAC entity, based on its less differentiated progenitor status and enriched exclusive proliferation marker genes, with 98.1% cells in S and G2/M phases. The cell cycle-dependent genes were revealed to be largely enriched by the TAC population. The top genes were characterized morphologically and functionally at protein and mRNA levels. The specific expression patterns of RRM2, TK1, CENPF, NUSAP1, UBE2C, and CDC20 were well correlated in a time- and cycle-dependent manner with proliferation stages in the cell growth and regeneration models. Conclusions For the first time, to the best of our knowledge, we have identified a unique TAC entity and uncovered a group of cell cycle-dependent genes that serve as TAC signature markers. The findings provide insight into ASCs and TACs and lay the foundation for understanding corneal homeostasis and diseases.
Collapse
Affiliation(s)
- Jin-Miao Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sangbae Kim
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yun Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Fang Bian
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jiaoyue Hu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Rong Lu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
9
|
Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf 2021; 20:20-32. [PMID: 33388438 DOI: 10.1016/j.jtos.2020.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This study aimed to uncover novel cell types in heterogenous basal limbus of human cornea for identifying LSC at single cell resolution. METHODS Single cells of human limbal basal epithelium were isolated from young donor corneas. Single-cell RNA-Sequencing was performed using 10x Genomics platform, followed by clustering cell types through the graph-based visualization method UMAP and unbiased computational informatic analysis. Tissue RNA in situ hybridization with RNAscope, immunofluorescent staining and multiple functional assays were performed using human corneas and limbal epithelial culture models. RESULTS Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters belonging to three lineages. A smallest cluster (0.4% of total cells) was identified as LSCs based on their quiescent and undifferentiated states with enriched marker genes for putative epithelial stem cells. TSPAN7 and SOX17 are discovered and validated as new LSC markers based on their exclusive expression pattern and spatial localization in limbal basal epithelium by RNAscope and immunostaining, and functional role in cell growth and tissue regeneration models with RNA interference in cultures. Interestingly, five cell types/states mapping a developmental trajectory of LSC from quiescence to proliferation and differentiation are uncovered by Monocle3 and CytoTRACE pseudotime analysis. The transcription factor networks linking novel signaling pathways are revealed to maintain LSC stemness. CONCLUSIONS This human corneal scRNA-Seq identifies the LSC population and uncovers novel cell types mapping the differentiation trajectory in heterogenous limbal basal epithelium. The findings provide insight into LSC concept and lay the foundation for understanding the corneal homeostasis and diseases.
Collapse
|
10
|
Higa K, Higuchi J, Kimoto R, Miyashita H, Shimazaki J, Tsubota K, Shimmura S. Human corneal limbal organoids maintaining limbal stem cell niche function. Stem Cell Res 2020; 49:102012. [PMID: 33039805 DOI: 10.1016/j.scr.2020.102012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Corneal epithelial stem cells reside in the limbal area between the cornea and conjunctiva. We examined the potential use of limbal organoids as a source of transplantable limbal stem cells. After treating tissue with collagenase, limbal cells were seeded onto Matrigel and cultivated using limbal phenotype maintenance medium. After 1-month, approximately 500 organoids were formed from one donor cornea. Organoids derived from vertical sites (superior and inferior limbus) showed large colony forming efficiency, a higher ratio of slow cycling cells and N-cadherin-expressing epithelial cells compared to horizontal sites. The progenitor markers Keratin (K) 15 and p63 were expressed in epithelial sheets engineered form a single organoid. Organoids transplanted in the limbus of a rabbit limbal deficiency model confirmed the presence of organoid-derived cells extending on to host corneas by immunohistochemistry. Our data show that limbal organoids with a limbal phenotype can be maintained for up to 1 month in vitro which can each give rise to a fully stratified corneal epithelium complete with basal progenitor cells. Limbal organoids were successfully engrafted in vivo to provide epithelial cells in a rabbit limbal deficiency model, suggesting that organoids may be an efficient cell source for clinical use.
Collapse
Affiliation(s)
- Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan.
| | - Junko Higuchi
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan.
| | - Reona Kimoto
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Hideyuki Miyashita
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Shimazaki
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan; Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
11
|
Shibata S, Hayashi R, Kudo Y, Okubo T, Imaizumi T, Katayama T, Ishikawa Y, Kobayashi Y, Toga J, Taniguchi Y, Honma Y, Sekiguchi K, Nishida K. Cell-Type-Specific Adhesiveness and Proliferation Propensity on Laminin Isoforms Enable Purification of iPSC-Derived Corneal Epithelium. Stem Cell Reports 2020; 14:663-676. [PMID: 32197114 PMCID: PMC7160305 DOI: 10.1016/j.stemcr.2020.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023] Open
Abstract
A treatment for intractable diseases is expected to be the replacement of damaged tissues with products from human induced pluripotent stem cells (hiPSCs). Target cell purification is a critical step for realizing hiPSC-based therapy. Here, we found that hiPSC-derived ocular cell types exhibited unique adhesion specificities and growth characteristics on distinct E8 fragments of laminin isoforms (LNE8s): hiPSC-derived corneal epithelial cells (iCECs) and other non-CECs rapidly adhered preferentially to LN332/411/511E8 and LN211E8, respectively, through differential expression of laminin-binding integrins. Furthermore, LN332E8 promoted epithelial cell proliferation but not that of the other eye-related cells, leading to non-CEC elimination by cell competition. Combining these features with magnetic sorting, highly pure iCEC sheets were fabricated. Thus, we established a simple method for isolating iCECs from various hiPSC-derived cells without using fluorescence-activated cell sorting. This study will facilitate efficient manufacture of iCEC sheets for corneal disease treatment and provide insights into target cell-specific scaffold selection.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Osaka 544-8666, Japan
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Yuji Kudo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Osaka 544-8666, Japan
| | - Toru Okubo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Osaka 544-8666, Japan
| | - Tsutomu Imaizumi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Osaka 544-8666, Japan
| | - Tomohiko Katayama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuki Ishikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuki Kobayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Junko Toga
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukimasa Taniguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Honma
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Osaka 544-8666, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Bevacizumab Induces Upregulation of Keratin 3 and VEGFA in Human Limbal Epithelial Cells in Vitro. J Clin Med 2019; 8:jcm8111925. [PMID: 31717500 PMCID: PMC6912829 DOI: 10.3390/jcm8111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Topical application of vascular endothelial growth factor A (VEGFA) inhibitors including Bevacizumab is used for antiangiogenic therapy at the ocular surface. While clinical studies have suggested that this approach is well-tolerated, the effect of the drug on limbal epithelial stem cells has not been studied. In this study, the effect of Bevacizumab on phenotype and functionality of putative limbal epithelial stem cells (SC) was investigated. The effect of Bevacizumab on human limbal epithelial cells was assessed in terms of metabolic activity and scratch wound closure. The different treatment groups featured no difference in proliferation and colony forming efficiency (CFE) of limbal epithelial cells or their putative SC marker expression. A significant delay in scratch closure of all the Bevacizumab-treated groups was detected at 4 h. RNA and protein quantification indicated a dose-responsive increase of keratin 3. VEGFA RNA expression also increased while VEGFC and D as well as VEGFR1, 2 and 3 were unchanged. This study highlights previously unknown effects of Bevacizumab on cultured putative limbal epithelial SC: a dose-related increase of keratin 3, an increase in VEGFA as well as a delay in scratch wound closure. These in vitro data should be considered when using Bevacizumab in the context of limbal epithelial SC transplantation.
Collapse
|
13
|
Higa K, Higuchi J, Kimoto R, Satake Y, Yamaguchi T, Tomida D, Shimazaki J. Effects of Amniotic Membrane–Derived Fibroblast Supernatant on Corneal Epithelium. ACTA ACUST UNITED AC 2019; 60:3718-3726. [DOI: 10.1167/iovs.19-27041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Junko Higuchi
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Reona Kimoto
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Yoshiyuki Satake
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Daisuke Tomida
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Jun Shimazaki
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| |
Collapse
|
14
|
Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Colloids Surf B Biointerfaces 2019; 177:121-129. [PMID: 30716697 DOI: 10.1016/j.colsurfb.2019.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Limbal epithelial stem cells (LESCs) are responsible for the renewal of corneal epithelium. Cultivated limbal epithelial transplantation is the current treatment of choice for restoring the loss or dysfunction of LESCs. To perform this procedure, a substratum is necessary for in vitro culturing of limbal epithelial cells and their subsequent transplantation onto the ocular surface. In this work, we evaluated poly-L/DL-lactic acid 70:30 (PLA) films functionalized with type IV collagen (col IV) as potential in vitro carrier substrata for LESCs. We first demonstrated that PLA-col IV films were biocompatible and suitable for the proliferation of human corneal epithelial cells. Subsequently, limbal epithelial cell suspensions, isolated from human limbal rings, were cultivated using culture medium that did not contain animal components. The cells adhered significantly faster to PLA-col IV films than to tissue culture plastic (TCP). The mRNA expression levels for the LESC specific markers, K15, P63α and ABCG2 were similar or greater (significantly in the case of K15) in limbal epithelial cells cultured on PLA-col IV films than limbal epithelial cells cultured on TCP. The percentage of cells expressing the corneal (K3, K12) and the LESC (P63α, ABCG2) specific markers was similar for both substrata. These results suggest that the PLA-col IV films promoted LESC attachment and helped to maintain their undifferentiated stem cell phenotype. Consequently, these substrata offer an alternative for the transplantation of limbal cells onto the ocular surface.
Collapse
|
15
|
Notara M, Behboudifard S, Kluth MA, Maßlo C, Ganss C, Frank MH, Schumacher B, Cursiefen C. UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation. Sci Rep 2018; 8:12564. [PMID: 30135547 PMCID: PMC6105637 DOI: 10.1038/s41598-018-30021-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/16/2018] [Indexed: 11/09/2022] Open
Abstract
UVB irradiation has been linked to pathogenesis of pterygium, a conjunctival tumor growing onto transparent cornea, the windscreen of the eye. Due to corneal anatomy, ambient UVB irradiation is amplified at the stem cell-containing nasal limbus. The aim of this study was to analyse the effect of a UV-blocking contact lens (UVBCL, senofilcon A, Class 1 UV blocker) on limbal epithelial cells and fibroblasts under UVB irradiation compared to a non-UVB-blocking contact lens. UVBCL prevented UVB-induced DNA damage (as assessed by cyclobutane pyrimidine dimer immunostaining) as well as a decrease in proliferation and scratch wound closure rate of both limbal epithelial and fibroblast cells. Similarly, UVBCL protected limbal epithelial cells from UVB-induced loss of their phenotype in terms of colony forming efficiency and stem cell marker expression (ABCB5, P63α, integrin β1) compared to controls. Moreover, with UVBCL pro-inflammatory cytokines such as TNFα and MCP1 remained unchanged. These data demonstrate the significance of UV-protection in preserving the limbal niche in response to at least short-term UVB. Our data support the use of UVBCL in protecting limbal niche cells, especially after limbal stem cell transplantation and in patients after pterygium surgery, to help prevent recurrences.
Collapse
Affiliation(s)
- M Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany.
| | - S Behboudifard
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - M A Kluth
- TICEBA GmbH, Im Neuenheimer Feld 517, Heidelberg, Germany
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - C Maßlo
- TICEBA GmbH, Im Neuenheimer Feld 517, Heidelberg, Germany
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - C Ganss
- TICEBA GmbH, Im Neuenheimer Feld 517, Heidelberg, Germany
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - M H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - B Schumacher
- Institute for Genome Stability in Ageing and Disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMK), University of Cologne, Cologne, Germany
| | - C Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMK), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Ghaemi SR, Delalat B, Harding FJ, Irani YD, Williams KA, Voelcker NH. Identification and In Vitro Expansion of Buccal Epithelial Cells. Cell Transplant 2018; 27:957-966. [PMID: 29860901 PMCID: PMC6050911 DOI: 10.1177/0963689718773330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ex vivo-expanded buccal mucosal epithelial (BME) cell transplantation has
been used to reconstruct the ocular surface. Methods for enrichment and maintenance of BME
progenitor cells in ex vivo cultures may improve the outcome of BME cell
transplantation. However, the parameter of cell seeding density in this context has
largely been neglected. This study investigates how varying cell seeding density
influences BME cell proliferation and differentiation on tissue culture polystyrene
(TCPS). The highest cell proliferation activity was seen when cells were seeded at
5×104 cells/cm2. Both below and above this density, the cell
proliferation rate decreased sharply. Differential immunofluorescence analysis of surface
markers associated with the BME progenitor cell population (p63, CK19, and ABCG2), the
differentiated cell marker CK10 and connexin 50 (Cx50) revealed that the initial cell
seeding density also significantly affected the progenitor cell marker expression profile.
Hence, this study demonstrates that seeding density has a profound effect on the
proliferation and differentiation of BME stem cells in vitro, and this is
relevant to downstream cell therapy applications.
Collapse
Affiliation(s)
- Soraya Rasi Ghaemi
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Bahman Delalat
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Frances J Harding
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Yazad D Irani
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Keryn A Williams
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Nicolas H Voelcker
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
17
|
Patruno M, Perazzi A, Martinello T, Gomiero C, Maccatrozzo L, Iacopetti I. Investigations of the corneal epithelium in Veterinary Medicine: State of the art on corneal stem cells found in different mammalian species and their putative application. Res Vet Sci 2018; 118:502-507. [PMID: 29758534 DOI: 10.1016/j.rvsc.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The existence of progenitor cells that can readily differentiate into a specific cell type is a common cellular strategy for physiological tissue growth and repair mechanisms. In the mammalian cornea, many aspects regarding the nature and location of these cells are still unclear. In the human limbus (peripheral area of the cornea) progenitor cells have been found and characterized but in non-human mammals, the picture is not so clear. In this review, we examine current knowledge about the morphology of limbus and the localization of corneal epithelial stem cells in all species studied so far, comparing data with humans. We have also explored different research directions in the veterinary field in order to discuss the: i) currently used protocols and ii) best range of treatments for ocular pathologies in which corneal stem cells are involved.
Collapse
Affiliation(s)
- M Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy.
| | - A Perazzi
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - T Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - C Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - L Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - I Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| |
Collapse
|
18
|
Shirzadeh E, Heidari Keshel S, Ezzatizadeh V, Jabbehdari S, Baradaran-Rafii A. Unrestricted somatic stem cells, as a novel feeder layer: Ex vivo culture of human limbal stem cells. J Cell Biochem 2017; 119:2666-2678. [PMID: 29087592 DOI: 10.1002/jcb.26434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Ex vivo culture of limbal stem cells (LSCs) is a current promising approach for reconstruction of the ocular surface. In this context, 3T3 feeder layer cells (mouse embryo fibroblast) are generally utilized to maintain and expand LSCs. The aim of this study is to develop a novel culture method (animal-derived products free) to expand LSCs, using umbilical cord derived human unrestricted somatic stem cells (hUSSCs) instead of 3T3 cell with an emphasis on maintaining of the Stemness in LSCs. Using flow-cytometer, isolated hUSSCs were characterized for CD105, CD90, CD166, CD34, CD45, CD31 cell surface markers and their differentiation capability into adipogenic as well as osteogenic lineages were evaluated. In addition to colony-forming efficiency (CFE), epithelial lineage differentiation and karyotyping, LSC properties were evaluated for ABCG2, ΔNP63-α, CK19, CK3, and CK12 mRNA and protein expressions using quantitative RT-PCR (qRT-PCR) and immunocytochemistry, when these cells were co-cultured with hUSSCs (in comparison with 3T3 feeder layer). LSCs, co-cultured with hUSSCs, showed normal karyotype (46, XX), while they could efficiently form colony (86 ± 3) and display up-regulation of the genes associated with stemness and down-regulation of corneal epithelial differentiation genes. Consistent with 3T3 feeder cells, hUSSCs with spindle-shaped morphology and quick splitting up properties had ability to preserve the stem like-cell phenotype of LSCs. These findings were confirmed by qRT-PCR and flow-cytometer. Findings of present study suggest hUSSCs as a promising alternative method for 3T3 feeder layer cells, to preserve growth and stemness of LSCs ex vivo culture.
Collapse
Affiliation(s)
- Ebrahim Shirzadeh
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran.,Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cell and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Medical Genetics Department, Royesh Medical Laboratory Centre, Tehran, Iran
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| |
Collapse
|
19
|
Barut Selver Ö, Yağcı A, Eğrilmez S, Gürdal M, Palamar M, Çavuşoğlu T, Ateş U, Veral A, Güven Ç, Wolosin JM. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation. Turk J Ophthalmol 2017; 47:285-291. [PMID: 29109898 PMCID: PMC5661179 DOI: 10.4274/tjo.72593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 12/01/2022] Open
Abstract
The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using xenobiotic-free systems is becoming widely accepted both in Turkey and worldwide.
Collapse
Affiliation(s)
- Özlem Barut Selver
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Ayşe Yağcı
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Sait Eğrilmez
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Mehmet Gürdal
- Ege University Faculty of Medicine, Department of Medical Biochemistry, İzmir, Turkey
| | - Melis Palamar
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Türker Çavuşoğlu
- Ege University Faculty of Medicine, Department of Histology and Embriology, İzmir, Turkey
| | - Utku Ateş
- İstanbul Bilim University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Ali Veral
- Ege University Faculty of Medicine, Department of Pathology, İzmir, Turkey
| | - Çağrı Güven
- Ege University Faculty of Medicine, Department of Gynecology and Obstetrics, İzmir, Turkey
| | - Jose Mario Wolosin
- Icahn Faculty of Medicine at Mount Sinai, Department of Ophthalmology and Black Family Stem Cell Institute, New York, USA
| |
Collapse
|
20
|
The characterization of human oral mucosal fibroblasts and their use as feeder cells in cultivated epithelial sheets. Future Sci OA 2017; 3:FSO243. [PMID: 29134127 PMCID: PMC5674271 DOI: 10.4155/fsoa-2017-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023] Open
Abstract
Aim To characterize human oral mucosa middle interstitial tissue fibroblasts (hOMFs) and their application in the cultivation of epithelial sheets. Methodology hOMFs were cultured with methylcellulose to form cell clusters. hOMFs amplified in adhesive culture were analyzed by flow cytometry, and were found to differentiate into multiple cell types suitable for the cultivation of human corneal epithelial sheets. hOMFs were expanded from clusters to analyze CD56 and PDGFRα expression. Results These cells showed similar differentiation patterns as keratocytes, and similar expression patterns as mesenchymal and neural cells. Furthermore, we established human corneal epithelial sheets using hOMFs. Conclusion hOMFs may be of neural crest origin and possess multipotent differentiation capacity, and are suitable for use as an autologous cell source for corneal regeneration.
Collapse
|
21
|
Li J, Xiao Y, Coursey TG, Chen X, Deng R, Lu F, Pflugfelder SC, Li DQ. Identification for Differential Localization of Putative Corneal Epithelial Stem Cells in Mouse and Human. Sci Rep 2017; 7:5169. [PMID: 28701781 PMCID: PMC5507988 DOI: 10.1038/s41598-017-04569-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/17/2017] [Indexed: 01/22/2023] Open
Abstract
Human Corneal epithelial stem cells (CESCs) have been identified to reside in limbus for more than 2 decades. However, the precise location of CESCs in other mammalian remains elusive. This study was to identify differential localization of putative CESCs in mice. Through a series of murine corneal cross-sections from different directions, we identified that anatomically and morphologically the murine limbus is composed of the thinnest epithelium and the thinnest stroma without any palisades of Vogt-like niche structure. The cells expressing five of stem/progenitor cell markers are localized in basal layer of entire murine corneal epithelium. BrdU label-retaining cells, a key characteristic of epithelial stem cells, are detected in both limbal and central cornea of mouse eye. Functionally, corneal epithelium can be regenerated in cultures from central and limbal explants of murine cornea. Such a distribution of mouse CESCs is different from human cornea, where limbal stem cell concept has been well established and accepted. We are aware that some new evidence supports limbal stem cell concept in mouse recently. However, it is important to know that central cornea may provide an alternative source of stem cells when one utilizes mice as animal model for corneal research.
Collapse
Affiliation(s)
- Jin Li
- Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Yangyan Xiao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China.,Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Terry G Coursey
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Xin Chen
- Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Ruzhi Deng
- Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Fan Lu
- Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
22
|
Molladavoodi S, Robichaud M, Wulff D, Gorbet M. Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS One 2017; 12:e0178981. [PMID: 28662184 PMCID: PMC5491001 DOI: 10.1371/journal.pone.0178981] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cells that form the corneal epithelium, the outermost layer of the cornea, are exposed to shear stress through blinking during waking hours. In this in vitro study, the effect of fluid shear stress on human corneal epithelial cells (HCECs) was investigated. Following exposure to shear stresses of 4 and 8 dyn/cm2, HCECs showed cytoskeletal rearrangement with more prominent, organized and elongated filamentous actin. Cytoskeletal changes were time-dependent, and were most significant after 24 hours of shear stress. Higher rates of migration and proliferation, as evaluated by a scratch assay, were also observed following 24 hours of low shear stress exposure (4 dyn/cm2). This result contrasted the poor migration observed in samples scratched before shear exposure, indicating that shear-induced cytoskeletal changes played a key role in improved wound healing and must therefore precede any damage to the cell layer. HCEC cytoskeletal changes were accompanied by an upregulation in integrin β1 and downregulation of ICAM-1. These results demonstrate that HCECs respond favourably to flow-induced shear stress, impacting their proliferation and migration properties as well as phenotype.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Robichaud
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - David Wulff
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Chen J, Lan J, Liu D, Backman LJ, Zhang W, Zhou Q, Danielson P. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Transl Med 2017; 6:1356-1365. [PMID: 28276172 PMCID: PMC5442716 DOI: 10.1002/sctm.16-0441] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. Stem Cells Translational Medicine2017;6:1356–1365
Collapse
Affiliation(s)
- Jialin Chen
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Jie Lan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Dongle Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Wei Zhang
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden.,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Kasinathan JR, Namperumalsamy VP, Veerappan M, Chidambaranathan GP. A novel method for a high enrichment of human corneal epithelial stem cells for genomic analysis. Microsc Res Tech 2016; 79:1165-1172. [PMID: 27862636 DOI: 10.1002/jemt.22771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Abstract
Understanding the molecular mechanisms that regulate the corneal epithelial stem cells (CESCs) in maintaining corneal homeostasis remains elusive largely due to the lack of a specific marker for their isolation. This study aims to enrich CESCs from human donor limbal epithelium and to evaluate the level of enrichment based on expression of ΔNp63α, a putative CESC marker. A two-stage enrichment of CESCs was carried out. (a) The limbal basal epithelial cells were isolated by differential enzymatic treatment and five-fold enrichment was achieved from 2% of CESCs present in the total limbal epithelium. The CESCs were quantified on the basis of two parameters-high expression of p63/ABCG2 and nucleus to cytoplasmic (N/C) ratio ≥0.7. (b) Cytospin smears of isolated basal cells were Giemsa stained and cells with N/C ratio ≥0.7 were separated by laser capture microdissection. This strategy resulted in an enrichment of CESCs to 78.57% based on two-parameter analysis using p63 and 76.66% using ABCG2. RT-PCR was carried out for ΔNp63 isoforms (α, β, and γ) and connexin-43, with GAPDH for normalization. The expression of ΔNp63α was restricted to the enriched population of CESCs in contrast to its absence in limbal basal cells with N/C ratio <0.7 and CCECs. The unique expression of ΔNp63α and 5.9-fold reduced connexin-43 expression in the enriched population of CESCs indicates its high purity. Further analysis of these cells will help in elucidating the molecular mechanisms associated with stemness and also in identifying a specific marker for CESCs.
Collapse
Affiliation(s)
- Jhansi Rani Kasinathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| | | | - Muthukkaruppan Veerappan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| |
Collapse
|
25
|
Higa K, Takeshima N, Moro F, Kawakita T, Kawashima M, Demura M, Shimazaki J, Asakura T, Tsubota K, Shimmura S. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 22:2261-76. [PMID: 21092419 DOI: 10.1163/092050610x538218] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biological carriers, such as the amniotic membrane and serum-derived fibrin, are currently used to deliver cultivated corneal epithelial sheets to the ocular surface. Such carriers require being transparent and allowing the diffusion of metabolites in order to maintain a healthy ocular surface. However, safety issues concerning biological agents encouraged the development of safer, biocompatible materials as cell carriers. We examined the application of porous silk fibroin films with high molecular permeability prepared by mixing silk fibroin and poly(ethylene glycol) (PEG), and then removal of PEG from the silk-PEG films. Molecular permeability of porous silk fibroin film is higher than untreated silk fibroin film. Epithelial cells were isolated from rabbit limbal epithelium, and seeded onto silk fibroin coated wells and co-cultured with mitomycin C-treated 3T3 fibroblasts. Stratified epithelial sheets successfully engineered on porous silk fibroin film expressed the cornea-specific cytokeratins K3 and K12, as well as the corneal epithelial marker pax6. Basement membrane components such as type-IV collagen and integrin β1 were expressed in the stratified epithelial sheets. Further more, colony-forming efficiency of dissociated cells was similar to primary corneal epithelial cells showing that progenitor cells were preserved. The biocompatibility of fibroin films was confirmed in rabbit corneas for up to 6 months. Porous silk fibroin film is a highly transparent, biocompatible material that may be useful as a carrier of cultivated epithelial sheets in the regeneration of corneal epithelium.
Collapse
Affiliation(s)
- Kazunari Higa
- a Department of Ophthalmology and Cornea Center, Tokyo Dental College, Sugano 5-11-13, Chiba 272-8513, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines. Stem Cell Res 2015; 15:643-654. [DOI: 10.1016/j.scr.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023] Open
|
27
|
Sapkota D, Bruland O, Parajuli H, Osman TA, Teh MT, Johannessen AC, Costea DE. S100A16 promotes differentiation and contributes to a less aggressive tumor phenotype in oral squamous cell carcinoma. BMC Cancer 2015; 15:631. [PMID: 26353754 PMCID: PMC4564982 DOI: 10.1186/s12885-015-1622-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 02/01/2023] Open
Abstract
Background Altered expression of S100A16 has been reported in human cancers, but its biological role in tumorigenesis is not fully understood. This study aimed to investigate the clinical significance and functional role of S100A16 in oral squamous cell carcinoma (OSCC) suppression. Methods S100A16 mRNA and/or protein levels were examined by quantitative RT-PCR and immunohistochemistry in whole- and laser microdissected-specimens of normal human oral mucosa (NHOM, n = 65), oral dysplastic lesions (ODL, n = 21), OSCCs (n = 132) and positive cervical nodes (n = 17). S100A16 protein expression in OSCC was examined for correlations with clinicopathological variables and patient survival. S100A16 was over-expressed and knocked-down in OSCC-derived (CaLH3 and H357) cells by employing retroviral constructs to investigate its effects on cell proliferation, sphere formation and three dimensional (3D)-organotypic invasive abilities in vitro and tumorigenesis in a mouse xenograft model. Results Both S100A16 mRNA and protein levels were found to be progressively down-regulated from NHOM to ODL and OSCC. Low S100A16 protein levels in OSCC significantly correlated with reduced 10-year overall survival and poor tumor differentiation. Analysis of two external OSCC microarray datasets showed a positive correlation between the mRNA expression levels of S100A16 and keratinocyte differentiation markers. CaLH3 and H357 cell fractions enriched for differentiated cells either by lack of adherence to collagen IV or FACS sorting for low p75NTR expression expressed significantly higher S100A16 mRNA levels than the subpopulations enriched for less differentiated cells. Corroborating these findings, retroviral mediated S100A16 over-expression and knock-down in CaLH3 and H357 cells led to respective up- and down-regulation of differentiation markers. In vitro functional studies showed significant reduction in cell proliferation, sphere formation and 3D-invasive abilities of CaLH3 and H357 cells upon S100A16 over-expression. These functional effects were associated with concomitant down-regulation of self-renewal (Bmi-1 and Oct 4A) and invasion related (MMP1 and MMP9) molecules. S100A16 over-expression also suppressed tumorigenesis of H357 cells in a mouse xenograft model and the resulting tumor xenografts displayed features/expression of increased differentiation and reduced proliferation/self-renewal. Conclusions These results indicate that S100A16 is a differentiation promoting protein and might function as a tumor suppressor in OSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1622-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dipak Sapkota
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway.
| | - Ove Bruland
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, N-5021, Bergen, Norway.
| | - Himalaya Parajuli
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway.
| | - Tarig A Osman
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway.
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, England, UK.
| | - Anne C Johannessen
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Daniela Elena Costea
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
28
|
Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency. J Funct Biomater 2015; 6:863-88. [PMID: 26343740 PMCID: PMC4598682 DOI: 10.3390/jfb6030863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.
Collapse
Affiliation(s)
- Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
| | - Øygunn Aass Utheim
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Kristoffer Ommundsen
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| |
Collapse
|
29
|
Zhang ZH, Liu HY, Liu K, Xu X. Comparison of Explant and Enzyme Digestion Methods for Ex Vivo Isolation of Limbal Epithelial Progenitor Cells. Curr Eye Res 2015; 41:318-25. [PMID: 25860821 DOI: 10.3109/02713683.2015.1014566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To compare the effectiveness of two isolation systems for stemness, proliferation and mesenchymal contamination of ex vivo cultured limbal epithelial cells (LECs). METHODS Whole explant and dispase digestion methods were used to isolate LECs. For whole explant isolation, one limbal explant was cultivated up to four consecutive times (through LEC1 to LEC4). The performance of LECs isolated with both systems was evaluated according to the following parameters: immunofluorescent staining for adenosine 5'-triphosphate-binding cassette member 2 (ABCG2), p63, cytokeratin 3 (K3), Ki67, and vimentin, and flow cytometry analysis for ABCG2, Ki67 and vimentin. RESULTS Twelve LEC cultures were established using whole explant isolation, and nine LEC cultures were established using dispase digestion isolation. In immunofluorescent staining analysis, the ABCG2, p63 and Ki67 expressions were higher in LECs isolated with dispase compared to any LECs isolated with explant. Only the differences in ABCG2 and Ki67 were statistically significant. Further, LEC4 isolated with explant had the highest percentage of cells positive for vimentin, and LEC1 had the highest percentage of cells positive for K3. However, no significant differences were detected. In flow cytometry analysis, the expressions of ABCG2 and Ki67 were statistically higher for LECs isolated with dispase compared to any LECs isolated with explant. CONCLUSION Dispase digestion isolation technique was significantly superior to explant isolation techniques in terms of progenitor and proliferative cell contents.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- a Department of Ophthalmology , Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai , China
| | - Hai-Yun Liu
- a Department of Ophthalmology , Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai , China
| | - Kun Liu
- a Department of Ophthalmology , Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai , China
| | - Xun Xu
- a Department of Ophthalmology , Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai , China
| |
Collapse
|
30
|
Qu Y, Chi W, Hua X, Deng R, Li J, Liu Z, Pflugfelder SC, Li DQ. Unique expression pattern and functional role of periostin in human limbal stem cells. PLoS One 2015; 10:e0117139. [PMID: 25658308 PMCID: PMC4319935 DOI: 10.1371/journal.pone.0117139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
Periostin is a non-structural matricellular protein. Little is known about periostin in human limbal stem cells (LSCs). This study was to explore the unique expression pattern and functional role of periostin in maintaining the properties of human LSCs. Fresh donor corneal tissues were used to make cryosections for evaluation of periostin expression on ex vivo tissues. Primary human limbal epithelial cells (HLECs) were generated from limbal explant culture. In vitro culture models for proliferation and epithelial regeneration were performed to explore functional role of periostin in LSCs. The mRNA expression was determined by reverse transcription and quantitative real-time PCR (RT-qPCR), and the protein production and localization were detected by immunofluorescent staining and Western blot analysis. Periostin protein was found to be exclusively immunolocalized in the basal layer of human limbal epithelium. Periostin localization was well matched with nuclear factor p63, but not with corneal epithelial differentiation marker Keratin 3. Periostin transcripts was also highly expressed in limbal than corneal epithelium. In primary HLECs, periostin expression at mRNA and protein levels was significantly higher in 50% and 70% confluent cultures at exponential growth stage than in 100% confluent cultures at slow growth or quiescent condition. This expression pattern was similar to other stem/progenitor cell markers (p63, integrin β1 and TCF4). Periostin expression at transcripts, protein and immunoreactivity levels increased significantly during epithelial regeneration in wound healing process, especially in 16-24 hours at wound edge, which was accompanied by similar upregulation and activation of p63, integrin β1 and TCF4. Our findings demonstrated that periostin is exclusively produced by limbal basal epithelium and co-localized with p63, where limbal stem cells reside. Periostin promotes HLEC proliferation and regeneration with accompanied activation of stem/progenitor cell markers p63, integrin β1 and TCF4, suggesting its novel role in maintaining the phenotype and functional properties of LSC.
Collapse
Affiliation(s)
- Yangluowa Qu
- The Eye Institute, Xiamen University, Xiamen, China
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Chi
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Zhongshan Ophthalmic Center, State Key laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China
| | - Xia Hua
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ruzhi Deng
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jin Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zuguo Liu
- The Eye Institute, Xiamen University, Xiamen, China
- * E-mail: (ZL); (DQL)
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (ZL); (DQL)
| |
Collapse
|
31
|
Postnikoff CK, Pintwala R, Williams S, Wright AM, Hileeto D, Gorbet MB. Development of a curved, stratified, in vitro model to assess ocular biocompatibility. PLoS One 2014; 9:e96448. [PMID: 24837074 PMCID: PMC4023926 DOI: 10.1371/journal.pone.0096448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 04/08/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To further improve in vitro models of the cornea, this study focused on the creation of a three-dimensional, stratified, curved epithelium; and the subsequent characterization and evaluation of its suitability as a model for biocompatibility testing. METHODS Immortalized human corneal epithelial cells were grown to confluency on curved cellulose filters for seven days, and were then differentiated and stratified using an air-liquid interface for seven days before testing. Varying concentrations of a commercial ophthalmic solution containing benzalkonium chloride (BAK), a known cytotoxic agent, and two relevant ocular surfactants were tested on the model. A whole balafilcon A lens soaked in phosphate buffered saline (BA PBS) was also used to assess biocompatibility and verify the validity of the model. Viability assays as well as flow cytometry were performed on the cells to investigate changes in cell death and integrin expression. RESULTS The reconstructed curved corneal epithelium was composed of 3-5 layers of cells. Increasing concentrations of BAK showed dose-dependent decreased cell viability and increased integrin expression and cell death. No significant change in viability was observed in the presence of the surfactants. As expected, the BA PBS combination appeared to be very biocompatible with no adverse change in cell viability or integrin expression. CONCLUSIONS The stratified, curved, epithelial model proved to be sensitive to distinct changes in cytotoxicity and is suitable for continued assessment for biocompatibility testing of contact lenses. Our results showed that flow cytometry can provide a quantitative measure of the cell response to biomaterials or cytotoxic compounds for both the supernatant and adherent cell populations. As a specifically designed in vitro model of the corneal epithelium, this quantitative model for biocompatibility at the ocular surface may help improve our understanding of cell-material interactions and reduce the use of animal testing.
Collapse
Affiliation(s)
| | - Robert Pintwala
- Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sara Williams
- Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ann M. Wright
- Alcon/CIBAVision, Duluth, Georgia, United States of America
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud B. Gorbet
- Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Abstract
Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.
Collapse
|
33
|
Wezel F, Pearson J, Southgate J. Plasticity of in vitro-generated urothelial cells for functional tissue formation. Tissue Eng Part A 2014; 20:1358-68. [PMID: 24350594 DOI: 10.1089/ten.tea.2013.0394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tissue-engineering and regenerative medicine strategies for the bladder and urinary tract are dependent on the ability to generate adequate numbers of differentiation-competent uro-epithelial cells. In situ, urothelium is a mitotically quiescent, but highly regenerative epithelium. Although evidence supports a resident, basally located urothelial progenitor population, no specific stem cell has been identified. Our aim was to isolate basal and suprabasal urothelial subpopulations and characterize their regenerative and differentiation potentials in vitro. We showed that the low-affinity nerve growth factor receptor (NGFR) is a cell surface-expressed marker that is restricted to basal cells in normal human and porcine urothelia in situ. We used NGFR immunoseparation and differential adherence to collagen to isolate subpopulations of urothelial cells for culture. Isolated basal-derived porcine NGFR⁺ urothelial cells initially showed a higher proliferative and clonogenic phenotype than their suprabasal NGFR⁻ counterparts in vitro. However, after a short period of adaptation to culture, both NGFR⁺ and NGFR⁻ subpopulations became indistinguishable and displayed similar long-term growth and differentiation potentials. Both populations generated hierarchically organized, differentiated tissue equivalents similar to native urothelium, including a fully reconstituted NGFR⁺ basal cell layer by the NGFR⁻ suprabasal-derived population. Similarly, slow collagen-adherent human urothelial cells initially displayed a longer lag phase than rapid-adherent cultures, but after adaptation, both populations showed similar long-term proliferation, exponential growth rates, and capacity to form a functional barrier urothelium. Our results support a model where urothelial cell phenotype is plastic and determined by the niche or local environment. This has direct implications for tissue-engineering strategies requiring urothelial cell expansion and provides a new perspective toward understanding urothelial regeneration and differentiated tissue hierarchy.
Collapse
Affiliation(s)
- Felix Wezel
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York , York, United Kingdom
| | | | | |
Collapse
|
34
|
Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2014; 2:219-31. [PMID: 24527395 PMCID: PMC3923224 DOI: 10.1016/j.stemcr.2013.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/21/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF) in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation. Small-molecule induction directs early stage differentiation Subsequent maturation yields homogeneous populations of p63-positive cells p63-positive progenitor cells are capable of terminal differentiation The serum-free and feeder-free method can be upgraded to fully defined and xeno free
Collapse
|
35
|
Yabuta C, Yano F, Fujii A, Shearer T, Azuma M. Galectin-3 Enhances Epithelial Cell Adhesion and Wound Healing in Rat Cornea. Ophthalmic Res 2013; 51:96-103. [DOI: 10.1159/000355846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022]
|
36
|
Yin JQ, Liu WQ, Liu C, Zhang YH, Hua JL, Liu WS, Dou ZY, Lei AM. Reconstruction of damaged corneal epithelium using Venus-labeled limbal epithelial stem cells and tracking of surviving donor cells. Exp Eye Res 2013; 115:246-54. [DOI: 10.1016/j.exer.2013.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
|
37
|
Human limbal epithelial progenitor cells express αvβ5-integrin and the interferon-inducible chemokine CXCL10/IP-10. Stem Cell Res 2013; 11:888-901. [PMID: 23838123 DOI: 10.1016/j.scr.2013.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023] Open
Abstract
Stem cell (SC) therapy is the main treatment modality for patients with limbal stem cell deficiency. If limbal epithelial stem cells (LESC) can be more readily identified, isolated and maintained ex vivo, patients could be treated with better quality grafts. With prior knowledge that vitronectin (VN) is present within the LESC niche and that it supports LESC in vitro, we postulated that VN receptors (integrins αvβ3/5) are expressed by, and can be used to identify and isolate LESC. Immunolocalization studies were conducted on human corneas. Corneas were also used to expand limbal epithelial cells from either biopsies or enzyme-dissociated tissue and αvβ3/5 expression determined by flow cytometry. Integrin expressing cells were isolated by magnetic activated cell sorting then assessed by immunocytology, colony forming efficiency, RT-PCR and microarray analysis. Integrin αvβ5(+) cells co-localized to N-cadherin(+)/CK-15(+) putative LESC. αvβ5 was restricted to less than 4% of the total limbal epithelial cells, which expressed higher levels of CK-15 and formed more colonies compared to αvβ5(-) cells. Transcriptional profiling of αvβ5(+/-) cells by microarray identified several highly expressed interferon-inducible genes, which localize to putative LESC. Integrin αvβ5 is a candidate LESC marker since its expression is restricted to the limbus and αvβ5(+) limbal epithelial cells have phenotypic and functional properties of LESC. Knowledge of the niche's molecular composition and the genes expressed by its SC will facilitate isolation and maintenance of these cells for therapeutic purposes.
Collapse
|
38
|
Chakraborty A, Dutta J, Das S, Datta H. Comparison of ex vivo cultivated human limbal epithelial stem cell viability and proliferation on different substrates. Int Ophthalmol 2013; 33:665-70. [PMID: 23529791 DOI: 10.1007/s10792-013-9765-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
Abstract
Ocular surface injury causes serious vision-related problems especially when limbal stem cells are affected. Treatment lies in the transplantation of viable donor cells. Various substrates are used for the cultivation of limbal epithelial stem cells. In the present study, viability and proliferation of ex vivo cultured limbal epithelial stem cells were examined on a variety of substrates like collagen type IV, direct plastic Petri plate, intact amniotic membrane and denuded amniotic membrane. Viability and proliferation of cells were examined by colorimetric assay and [(3)H]-thymidine incorporation study. Furthermore, matrix metalloproteinase is known to be a key regulator in stem cell migration and proliferation. This enzyme activity was studied by gelatinolytic zymography. It was found from this study that although human limbal epithelial stem cells could be cultivated on different substrates such as collagen type IV, direct plastic Petri plate, intact amniotic membrane and denuded amniotic membrane, maximum growth and proliferation was observed when cultured on intact amniotic membrane. The number of patients suffering from limbal epithelial stem cell deficiency is large compared to donor tissues available for transplantation. Hence, increased cell viability and proliferation is required to serve more patients.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Neurobiology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | | | | | | |
Collapse
|
39
|
Zhang W, Gao Z, Shao D, Zhang L, Wang C, Zhang Y. Atomic force microscopy analysis of progenitor corneal epithelial cells fractionated by a rapid centrifugation isolation technique. PLoS One 2013; 8:e59282. [PMID: 23555648 PMCID: PMC3608637 DOI: 10.1371/journal.pone.0059282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the use of atomic force microscopy (AFM) to image the three groups of corneal epithelial cells fractionated by a novel rapid centrifugation isolation technique. Methods Epithelial cells harvested from primary cultures of rabbit limbal rings were centrifuged onto uncoated dishes, first at 1400 rpm and then at 1800 rpm. The adherent cells after centrifugation at 1400 rpm (ATC1), the adherent cells at 1800 rpm (ATC2) and the non-adherent cells at 1800 rpm (NAC) were investigated for BrdU retention and were subjected to contact mode AFM and Transmission Electron Microscopy (TEM). Results Compared with unfractionated cells, the ATC1 group, accounting for about 10% of the whole population, was enriched in BrdU label-retaining cells. There were dramatic overall shape, surface membrane and intra-cellular ultrastructure differences noted among ATC1, ATC2 and NAC populations. The whole cell roughness measurements were 21.1±1.5 nm, 79.5±3.4 nm and 103±4.6 nm for the ATC1, ATC2 and NAC groups, respectively. The mero-nucleus roughness measurements were 34.2±1.7 nm, 13.0±0.8 nm and 8.5±0.5 nm in the ATC1, ATC2 and NAC populations, respectively. Conclusions AFM was found to be a good tool for distinguishing among the three groups of cells. BrdU label retention, the AFM parameters and TEM together suggest that the ATC1, ATC2 and NAC populations may be progenitor corneal epithelial cells, transit amplifying cells and terminal differentiation cells, respectively.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Zongyin Gao
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Dongping Shao
- Department of Ophthalmology, the Affiliated Nanhai Hospital of Southern Medical University, Foshan, Guangdong Province, P. R. China
| | - Liu Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
40
|
Loureiro RR, Cristovam PC, Martins CM, Covre JL, Sobrinho JA, Ricardo JRDS, Hazarbassanov RM, Höfling-Lima AL, Belfort R, Nishi M, Gomes JÁP. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells. Mol Vis 2013; 19:69-77. [PMID: 23378720 PMCID: PMC3559094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/17/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. METHODS Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5'-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT-PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. RESULTS Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. CONCLUSIONS Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM.
Collapse
Affiliation(s)
- Renata Ruoco Loureiro
- Ocular Surface Advanced Center (CASO), Federal University of São Paulo, São Paulo, Brazil
| | | | - Caio Marques Martins
- Ocular Surface Advanced Center (CASO), Federal University of São Paulo, São Paulo, Brazil
| | - Joyce Luciana Covre
- Ocular Surface Advanced Center (CASO), Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Rossen Myhailov Hazarbassanov
- Ocular Surface Advanced Center (CASO), Federal University of São Paulo, São Paulo, Brazil,Cornea and External Disease Service, Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana Luisa Höfling-Lima
- Cornea and External Disease Service, Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Rubens Belfort
- Cornea and External Disease Service, Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Mauro Nishi
- Cornea and External Disease Service, Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - José Álvaro Pereira Gomes
- Ocular Surface Advanced Center (CASO), Federal University of São Paulo, São Paulo, Brazil,Cornea and External Disease Service, Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Abstract
The transplantation of cultured limbal epithelial cells (LEC) has since its first application in 1997 emerged as a promising technique for treating limbal stem cell deficiency. The culture methods hitherto used vary with respect to preparation of the harvested tissue, choice of culture medium, culture time, culture substrates, and supplementary techniques. In this chapter, we describe a procedure for establishing human LEC cultures using a feeder-free explant culture technique with human amniotic membrane (AM) as the culture substrate.
Collapse
|
42
|
Biomaterials-Enabled Regenerative Medicine in Corneal Applications. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
43
|
Extracellular Matrix is an Important Component of Limbal Stem Cell Niche. J Funct Biomater 2012; 3:879-94. [PMID: 24955751 PMCID: PMC4030928 DOI: 10.3390/jfb3040879] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix plays an important role in stem cell niche which maintains the undifferentiated stem cell phenotype. Human corneal epithelial stem cells are presumed to reside mainly at the limbal basal epithelium. Efforts have been made to characterize different components of the extracellular matrix that are preferentially expressed at the limbus. Mounting evidence from experimental data suggest that these components are part of the stem cell niche and play a role in the homeostasis of limbal stem cells. The extracellular matrix provides a mechanical and structural support as well as regulates cellular functions such as adhesion, migration, proliferation, self-renewal and differentiation. Optimization of the extracellular matrix components might be able to recreate an ex vivo stem cell niche to expand limbal stem cells.
Collapse
|
44
|
Lin J, Yoon KC, Zhang L, Su Z, Lu R, Ma P, De Paiva CS, Pflugfelder SC, Li DQ. A native-like corneal construct using donor corneal stroma for tissue engineering. PLoS One 2012; 7:e49571. [PMID: 23166715 PMCID: PMC3499466 DOI: 10.1371/journal.pone.0049571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in corneal reconstruction.
Collapse
Affiliation(s)
- Jing Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Kyung-Chul Yoon
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Lili Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Zhitao Su
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rong Lu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Ma
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cintia S. De Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ordonez P, Di Girolamo N. Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 2012; 30:100-7. [PMID: 22131201 DOI: 10.1002/stem.794] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea contains a reservoir of self-regenerating epithelial cells that are essential for maintaining its transparency and good vision. The study of stem cells in this functionally important organ has grown over the past four decades, partly due to the ease with which this tissue is visualized, its accessibility with minimally invasive instruments, and the fact that its stem cells are segregated within a transitional zone between two functionally diverse epithelia. While human, animal, and ex vivo models have been instrumental in progressing the corneal stem cell field, there is still much to be discovered about this exquisitely sensitive window for sight. This review will provide an overview of the human cornea, where its stem cells reside and how components of the microenvironment including extracellular matrix proteins and their integrin receptors are thought to govern corneal stem cell homeostasis.
Collapse
Affiliation(s)
- Paula Ordonez
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
46
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
47
|
Priya CG, Arpitha P, Vaishali S, Prajna NV, Usha K, Sheetal K, Muthukkaruppan V. Adult human buccal epithelial stem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye (Lond) 2011; 25:1641-9. [PMID: 21941360 DOI: 10.1038/eye.2011.230] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify adult human buccal epithelial stem cells (SCs) on the basis of two parameters (high p63 expression and greater nucleus/cytoplasmic (N/C) ratio) and to evaluate clinical efficacy of ex-vivo expanded autologous epithelium in bilateral limbal SC-deficient (LSCD) patients. METHODS The epithelial cells were isolated from buccal biopsy and cultured on human amnion in culture inserts with 3T3 feeder layer. The SCs were identified on the basis of two-parameter analysis using confocal microscopy, surface markers, and colony-forming efficiency (CFE). The cultured epithelium was transplanted in 10 LSCD patients followed by penetrating keratoplasty in 4 patients. The clinical outcome was followed up to 3 years. RESULTS A distinct population (3.0±1.7%) of small cells expressing high levels of p63 with greater N/C ratio was observed in buccal epithelium. The N/C ratio was found to be more appropriate than cell diameter for two-parameter analysis. These cells located in the basal layer were negative for connexin-43 and positive for melanoma-associated chondroitin sulfate proteoglycan, containing holoclones with 0.2% CFE, thus representing the SC population. After transplantation of cultured epithelium with increased (sixfold) SC content, anatomical and visual improvement was observed at 13-34 months in 3/10 LSCD patients. CONCLUSIONS The two-parameter SC marker is useful to identify and quantify buccal epithelial SCs. The transplantation of bioengineered SC-rich buccal epithelium is a strategy for corneal surface reconstruction in bilateral LSCD. However, further studies are required to optimize the culture conditions and to look for other sources of adult SCs for better visual outcome.
Collapse
Affiliation(s)
- C G Priya
- Department of Immunology and Cell Biology, Aravind Medical Research Foundation, Dr G Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
48
|
Nieto-Miguel T, Calonge M, de la Mata A, López-Paniagua M, Galindo S, de la Paz MF, Corrales RM. A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium. Mol Vis 2011; 17:2102-17. [PMID: 21850186 PMCID: PMC3156782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Corneal epithelium is maintained by a population of stem cells (SCs) that have not been identified by specific molecular markers. The objective of this study was to find new putative markers for these SCs and to identify associated molecular pathways. METHODS Real time PCR (rt-PCR) was performed in 24 human limbal and central corneal epithelial samples to evaluate the gene expression profile of known corneal epithelial SC-associated markers. A pool of those samples was further analyzed by a rt-PCR array (RT²-PCR-A) for 84 genes related to the identification, growth, maintenance, and differentiation of SCs. RESULTS Cells from the corneal epithelium SC niche showed significant expression of ATP-binding cassette sub-family G member 2 (ABCG2) and cytokeratin (KRT)15, KRT14, and KRT5 genes. RT²-PCR-A results indicated an increased or decreased expression in 21 and 24 genes, respectively, in cells from the corneal SC niche compared to cells from the central corneal epithelium. Functional analysis by proprietary software found 4 different associated pathways and a novel network with the highest upregulated genes in the corneal SC niche. This led to the identification of specific molecules, chemokine (C-X-C motif) ligand 12 (CXCL12), islet-1 transcription factor LIM/homeodomain (ISL1), collagen-type II alpha 1 (COL2A), neural cell adhesion molecule 1 (NCAM1), aggrecan (ACAN), forkhead box A2 (FOXA2), Gap junction protein beta 1/connexin 32 (GJB1/Cnx32), and Msh homeobox 1 (MSX1), that could be used to recognize putative corneal epithelial SCs grown in culture and intended for transplantation. Other molecules, NCAM1 and GJB1/Cnx32, potentially could be used to positively purify them, and Par-6 partitioning defective 6 homolog alpha (PARD6A) to negatively purify them. CONCLUSIONS Knowledge of these gene and molecular pathways has provided a better understanding of the signaling molecular pathways associated with progenitor-rich limbal epithelium. This knowledge potentially could give support to the design and development of innovative therapies with the potential to reverse corneal blindness arising from ocular surface failure.
Collapse
Affiliation(s)
- Teresa Nieto-Miguel
- Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Margarita Calonge
- Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Ana de la Mata
- Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Marina López-Paniagua
- Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Sara Galindo
- Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | | | - Rosa M. Corrales
- Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
49
|
Zhou J, Chen F, Xiao J, Li C, Liu Y, Ding Y, Wan P, Wang X, Huang J, Wang Z. Enhanced functional properties of corneal epithelial cells by coculture with embryonic stem cells via the integrin β1-FAK-PI3K/Akt pathway. Int J Biochem Cell Biol 2011; 43:1168-1177. [PMID: 21550417 DOI: 10.1016/j.biocel.2011.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 12/16/2022]
Abstract
Adult stem cells are important cell sources in regenerative medicine, but isolating them is technically challenging. This study employed a novel strategy to generate stem-like corneal epithelial cells and promote the functional properties of these cells by coculture with embryonic stem cells. The primary corneal epithelial cells were labelled with GFP and cocultured with embryonic stem cells in a transwell or by direct cell-cell contact. The embryonic stem cells were pre-transfected with HSV-tk-puro plasmids and became sensitive to ganciclovir. After 10 days of coculture, the corneal epithelial cells were isolated by treating the cultures with ganciclovir to kill the embryonic stem cells. The expression of stem cell-associated markers (ABCG2, p63) increased whereas the differentiation mark (Keratin 3) decreased in corneal epithelial cells isolated from the cocultures as evaluated by RT-PCR and flow cytometry. Their functional properties of corneal epithelial cells, including cell adhesion, migration and proliferation, were also enhanced. These cells could regenerate a functional stratified corneal epithelial equivalent but did not form tumors. Integrin β1, phosphorylated focal adhesion kinase and Akt were significantly upregulated in corneal epithelial cells. FAK Inhibitor 14 that suppressed the expression of phosphorylated focal adhesion kinase and Akt inhibited cell adhesion, migration and proliferation. LY294002 that suppressed phosphorylated Akt but not phosphorylated focal adhesion kinase inhibited cell proliferation but had no effect on cell adhesion or migration. These findings demonstrated that the functional properties of stem-like corneal epithelial cells were enhanced by cocultured embryonic stem cells via activation of the integrin β1-FAK-PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Jin Zhou
- State Key Laboratory of Ophthalmology, Sun yet-sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 2011; 32:4076-84. [DOI: 10.1016/j.biomaterials.2010.12.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 12/24/2010] [Indexed: 12/13/2022]
|