1
|
Le PM, Pal-Ghosh S, Stepp MA, Menko AS. Shared Phenotypes of Immune Cells Recruited to the Cornea and the Surface of the Lens in Response to Formation of Corneal Erosions. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:960-981. [PMID: 39889825 PMCID: PMC12016862 DOI: 10.1016/j.ajpath.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Injuries to the cornea can lead to recurrent corneal erosions, compromising its barrier function and increasing the risk of infection. Vital as corneal integrity is to the eye's optical power and homeostasis, the immune response to corneal erosions remains poorly understood. It is also unknown whether there is coordinated immune activation between the cornea and other regions of the anterior segment to protect against microbial invasion and limit the spread of inflammation when corneal erosions occur. Herein, a corneal debridement wounding model was used to characterize the immune cell phenotypes populating the cornea in response to erosion formation, and whether and which immune cells are concurrently recruited to the surface of the lens was investigated. The formation of corneal erosions induced an influx of myeloid lineage phenotypes, both M2 macrophages associated with tissue healing and wound repair, and Ly6G+ Ly6C+ myeloperoxidase+ cells resembling neutrophils/polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), with few regulatory T cells, into the corneal stroma under erosion sites. This leukocyte migration into the cornea when erosions develop was paralleled by the recruitment of immune cells, predominantly neutrophils/PMN-MDSCs, to the anterior, cornea-facing lens capsule. Both cornea-infiltrating and lens capsule-associated neutrophil/PMN-MDSC-like immune cells produce the anti-inflammatory cytokine IL-10. These findings suggest a collaborative role for the lens capsule-associated immune cells in preventing infections, controlling inflammation, and maintaining homeostasis of the anterior segment during recurrent corneal erosions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Abu-Romman A, Scholand KK, Govindarajan G, Yu Z, Pal-Ghosh S, Stepp MA, de Paiva CS. Age-Related Differences in the Mouse Corneal Epithelial Transcriptome and Their Impact on Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38739085 PMCID: PMC11098051 DOI: 10.1167/iovs.65.5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Aging is a risk factor for dry eye. We sought to identify changes in the aged mouse corneal epithelial transcriptome and determine how age affects corneal sensitivity, re-epithelialization, and barrier reformation after corneal debridement. Methods Corneal epithelium of female C57BL/6J (B6) mice of different ages (2, 12, 18, and 24 months) was collected, RNA extracted, and bulk RNA sequencing performed. Cornea sensitivity was measured with an esthesiometer in 2- to 3-month-old, 12- to 13-month-old, 18- to 19-month-old, and 22- to 25-month-old female and male mice. The 2-month-old and 18-month-old female and male mice underwent unilateral corneal debridement using a blunt blade. Wound size and fluorescein staining were visualized and photographed at different time points, and a re-epithelialization rate curve was calculated. Results There were 157 differentially expressed genes in aged mice compared with young mice. Several pathways downregulated with age control cell migration, proteoglycan synthesis, and collagen trimerization, assembly, biosynthesis, and degradation. Male mice had decreased corneal sensitivity compared with female mice at 12 and 24 months of age. Aged mice, irrespective of sex, had delayed corneal re-epithelialization in the first 48 hours and worse corneal fluorescein staining intensity at day 14 than young mice. Conclusions Aged corneal epithelium has an altered transcriptome. Aged mice regardless of sex heal more slowly and displayed more signs of corneal epithelial defects after wounding than young mice. These results indicate that aging significantly alters the corneal epithelium and its ability to coordinate healing.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Zhiyuan Yu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mary A. Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
4
|
Atalay E, Altuğ B, Çalışkan ME, Ceylan S, Özler ZS, Figueiredo G, Lako M, Figueiredo F. Animal Models for Limbal Stem Cell Deficiency: A Critical Narrative Literature Review. Ophthalmol Ther 2024; 13:671-696. [PMID: 38280103 PMCID: PMC10853161 DOI: 10.1007/s40123-023-00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
This literature review will provide a critical narrative overview of the highlights and potential pitfalls of the reported animal models for limbal stem cell deficiency (LSCD) and will identify the neglected aspects of this research area. There exists significant heterogeneity in the literature regarding the methodology used to create the model and the predefined duration after the insult when the model is supposedly fully fit for evaluations and/or for testing various therapeutic interventions. The literature is also replete with examples wherein the implementation of a specific model varies significantly across different studies. For example, the concentration of the chemical, as well as its duration and technique of exposure in a chemically induced LSCD model, has a great impact not only on the validity of the model but also on the severity of the complications. Furthermore, while some models induce a full-blown clinical picture of total LSCD, some are hindered by their ability to yield only partial LSCD. Another aspect to consider is the nature of the damage induced by a specific method. As thermal methods cause more stromal scarring, they may be better suited for assessing the anti-fibrotic properties of a particular treatment. On the other hand, since chemical burns cause more neovascularisation, they provide the opportunity to tap into the potential treatments for anti-neovascularisation. The animal species (i.e., rats, mice, rabbits, etc.) is also a crucial factor in the validity of the model and its potential for clinical translation, with each animal having its unique set of advantages and disadvantages. This review will also elaborate on other overlooked aspects, such as the anaesthetic(s) used during experiments, the gender of the animals, care after LSCD induction, and model validation. The review will conclude by providing future perspectives and suggestions for further developments in this rather important area of research.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | | | - Semih Ceylan
- Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | | | | | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
5
|
Le PM, Pal-Ghosh S, Menko AS, Stepp MA. Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice. Biomolecules 2023; 13:1059. [PMID: 37509096 PMCID: PMC10377654 DOI: 10.3390/biom13071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent epithelial erosions develop in the cornea due to prior injury or genetic predisposition. Studies of recurrent erosions in animal models allow us to gain insight into how erosions form and are resolved. While slowing corneal epithelial cell migration and reducing their proliferation following treatment with mitomycin C reduce erosion formation in mice after sterile debridement injury, additional factors have been identified related to cytokine expression and immune cell activation. The relationship between recruitment of immune cells to the region of the cornea where erosions form and their potential roles in erosion formation and/or erosion repair remains unexplored in the C57BL/6 mouse recurrent erosion model. Here, high resolution imaging of mouse corneas was performed at D1, D7, and D28 after dulled-blade debridement injury in C57BL/6 mice. Around 50% of these mice have frank corneal erosions at D28 after wounding. A detailed assessment of corneas revealed the involvement of M2 macrophages in both frank and developing erosions at early stages of their formation.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Ophthalmology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
6
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
7
|
Immune responses to injury and their links to eye disease. Transl Res 2021; 236:52-71. [PMID: 34051364 PMCID: PMC8380715 DOI: 10.1016/j.trsl.2021.05.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
The eye is regarded as an immune privileged site. Since the presence of a vasculature would impair vision, the vasculature of the eye is located outside of the central light path. As a result, many regions of the eye evolved mechanisms to deliver immune cells to sites of dysgenesis, injury, or in response to the many age-related pathologies. While the purpose of these immune responses is reparative or protective, cytokines released by immune cells compromise visual acuity by inducing inflammation and fibrosis. The response to traumatic or pathological injury is distinct in different regions of the eye. Age-related diseases impact both the anterior and posterior segment and lead to reduced quality of life and blindness. Here we focus attention on the role that inflammation and fibrosis play in the progression of age-related pathologies of the cornea and the lens as well as in glaucoma, the formation of epiretinal membranes, and in proliferative vitreoretinopathy.
Collapse
Key Words
- 2ryERM
- A T-helper cell that expresses high levels of IL-17 which can suppress T-regulatory cell function
- A cytokine expressed early during inflammation that attracts neutrophils
- A cytokine expressed early during inflammation that attracts neutrophils, sometimes referred to as monocyte chemoattractant protein-1 (MCP-1))
- A mouse model that lacks functional T and B cells and used to study the immune response
- A pigmented mouse strain used for research and known to mount a primarily Th1 response to infection
- A protein encoded by the ADGRE1 gene that, in mice, is expressed primarily on macrophages
- A strain of pigmented mice used in glaucoma research
- ACAID
- APCs
- ASC
- An albino mouse strain used for research and known to mount a primarily Th2 response to infection
- Antigen Presenting Cells, this class includes dendritic cells and monocytes
- BALB/c
- BM
- C57BL6
- CCL2
- CD45
- CNS
- CXCL1
- Central Nervous System
- Cluster of differentiation 45 antigen
- DAMPs
- DBA/2J
- EBM
- ECM
- EMT
- ERM
- Epithelial Basement Membrane
- F4/80
- FGF2
- HA =hyaluronic acid
- HSK
- HSP
- HSPGs
- HSV
- ICN
- IL-20
- IL6
- ILM
- IOP
- Inner (or internal) limiting membrane
- Interleukin 6
- Interleukin-20
- MAGP1
- MHC-II
- Major histocompatibility complex type II, a class of MHC proteins typically found only on APCs
- Microfibril-associated glycoprotein 1
- N-cad
- N-cadherin
- NEI
- NK
- National Eye Institute
- Natural killer T cells
- PCO
- PDGF
- PDR
- PVD
- PVR
- Platelet derived growth factor
- Posterior capsular opacification
- RGC
- RPE
- RRD
- Rag1-/-
- Retinal ganglion cells
- Retinal pigment epithelial cells
- SMAD
- Sons of Mothers Against Decapentaplegic, SMADs are a class of molecules that mediate TGF and bone morphogenetic protein signaling
- T-helper cell 1 response, proinflammatory adaptive response involving interferon gamma and associated with autoimmunity
- T-helper cell 2 response involving IgE and interleukins 4,5, and 13, also induces the anti-inflammatory interleukin 10 family cytokines
- T-regulatory cell
- TG
- TGF1
- TM
- TNF
- Th1
- Th17
- Th2
- Transforming growth factor 1
- Treg
- Tumor necrosis factor a cytokine produced during inflammation
- VEGF
- Vascular endothelial growth factor
- WHO
- World Health Organization
- anterior chamber immune deviation
- anterior subcapsular cataracts
- basement membrane
- damage-associated molecular patterns
- epiretinal membrane
- epiretinal membrane secondary to disease pathology
- epithelial-mesenchymal transition
- extracellular matrix
- fibroblast growth factor 2, also referred to as basic FGF
- heat shock protein
- heparan sulfate proteoglycans
- herpes simplex virus
- herpes stromal keratitis
- iERM
- idiopathic epiretinal membrane
- intraepithelial corneal nerves
- intraocular pressure
- mTOR
- mechanistic target of rapamycin, a protein kinase encoded by the MTOR genes that regulates a variety of signal transduction events including cell growth, autophagy and actin cytoskeleton
- posterior vitreous detachment
- proliferative diabetic retinopathy
- proliferative vitreoretinopathy
- rhegmatogenous (rupture, tear) retinal detachment
- trabecular meshwork
- trigeminal ganglion
- αSMA
- α−Smooth muscle actin, a class of actin expressed in mesenchymal cells
Collapse
|
8
|
Mohan RR, Balne PK, Muayad MS, Tripathi R, Sinha NR, Gupta S, An JA, Sinha PR, Hesemann NP. Six-Month In Vivo Safety Profiling of Topical Ocular AVV5-Decorin Gene Transfer. Transl Vis Sci Technol 2021; 10:5. [PMID: 34383877 PMCID: PMC8362634 DOI: 10.1167/tvst.10.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A significant remission of corneal fibrosis and neovascularization in rabbit eye in vivo was observed from a tissue-selective localized adeno-associated virus (AAV)5–Decorin (Dcn) gene therapy. This study sought to investigate 6-month toxicity profiling of this gene therapy for the eye in vivo using a rabbit model. Methods A small epithelial scrape followed by corneal drying was performed unilaterally in 12 rabbit eyes and either AAV5–Dcn (n = 6) or naked vector (n = 6) was delivered topically using a cloning cylinder technique. Contralateral eyes served as naïve control (n = 6). Safety and tolerability measurements in live rabbits were performed periodically until month 6 using multimodel clinical ophthalmic imaging tools—a slit lamp, stereomicroscope, and HRT3-RCM in vivo confocal microscope. Thereafter, corneas were excised and subjected to hematoxylin and eosin staining, Mason trichome staining, propidium iodide nuclear staining, and quantitative real-time polymerase chain reaction analyses. Results Clinical eye examinations based on the modified Hackett–McDonald ocular scoring system, and in vivo confocal imaging of the cornea showed no signs of ocular toxicity in rabbit eyes given AAV5–Dcn gene transfer vs control eyes (P > 0.05) through 6 months after treatment. The histologic and molecular analyses showed no significant differences in AAV5–Dcn vs AAV naked or naïve control groups (P > 0.05) and were in accordance with the masked clinical ophthalmic observations showing no abnormalities. Conclusions Topical tissue-targeted localized AAV5–Dcn gene therapy seems to be safe and nontoxic to the rabbit eye in vivo. Translational Relevance AAV5–Dcn gene therapy has the potential to treat corneal fibrosis and neovascularization in vivo safely without significant ocular toxicity.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Maryam S Muayad
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jella A An
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Tuck H, Park M, Carnell M, Machet J, Richardson A, Jukic M, Di Girolamo N. Neuronal-epithelial cell alignment: A determinant of health and disease status of the cornea. Ocul Surf 2021; 21:257-270. [PMID: 33766739 DOI: 10.1016/j.jtos.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE How sensory neurons and epithelial cells interact with one another, and whether this association can be considered an indicator of health or disease is yet to be elucidated. METHODS Herein, we used the cornea, Confetti mice, a novel image segmentation algorithm for intraepithelial corneal nerves which was compared to and validated against several other analytical platforms, and three mouse models to delineate this paradigm. For aging, eyes were collected from 2 to 52 week-old normal C57BL/6 mice (n ≥ 4/time-point). For wound-healing and limbal stem cell deficiency, 7 week-old mice received a limbal-sparing or limbal-to-limbal epithelial debridement to their right cornea, respectively. Eyes were collected 2-16 weeks post-injury (n=4/group/time-point), corneas procured, immunolabelled with βIII-tubulin, flat-mounted, imaged by scanning confocal microscopy and analyzed for nerve and epithelial-specific parameters. RESULTS Our data indicate that nerve features are dynamic during aging and their curvilinear arrangement align with corneal epithelial migratory tracks. Moderate corneal injury prompted axonal regeneration and recovery of nerve fiber features. Limbal stem cell deficient corneas displayed abnormal nerve morphology, and fibers no longer aligned with corneal epithelial migratory tracks. Mechanistically, we discovered that nerve pattern restoration relies on the number and distribution of stromal-epithelial nerve penetration sites. CONCLUSIONS Microstructural changes to innervation may explain corneal complications related to aging and/or disease and facilitate development of new assays for diagnosis and/or classification of ocular and systemic diseases.
Collapse
Affiliation(s)
- Hugh Tuck
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mijeong Park
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Joshua Machet
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Alexander Richardson
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Marijan Jukic
- Melbourne School of Population and Global Health, Centre for Health Policy, University of Melbourne, Melbourne, Victoria, 3053, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
10
|
Lyons VN, Townsend WM, Moore GE, Liang S. Commercial amniotic membrane extract for treatment of corneal ulcers in adult horses. Equine Vet J 2020; 53:1268-1276. [PMID: 33320369 DOI: 10.1111/evj.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amniotic membrane extract enhances the rate of epithelialisation after corneal ulceration in several species but has not been studied in the equine cornea. OBJECTIVES To evaluate the effect of amniotic membrane extract on re-epithelialisation of equine corneal ulcers compared with ulcers treated with antibiotic, antifungal and mydriatic medical therapy alone, and to evaluate equine corneal healing after experimentally induced superficial ulceration. STUDY DESIGN Masked, randomised, controlled experimental trial. METHODS Superficial, 8 mm corneal ulcers were created bilaterally in each horse. One eye was treated with amniotic membrane extract and the opposite was control. Both eyes were treated with medical therapy. Treatment eyes received amniotic membrane extract, and control eyes received the amniotic membrane extract vehicle. Ulcers were stained with fluorescein and photographed in 12-hour increments until completely healed. Ulcer surface area was determined by analysing photographs with ImageJ. A mixed linear model was used to compare ulcer surface area and hours until healing between treatment groups. A regression model was also used to calculate corneal re-epithelialisation rate over time. RESULTS Regardless of therapy, healing occurred in two phases: an initial rapid phase of 0.88 mm2 /hr (95% CI: 0.81-0.94 mm2 /hr) for approximately 48-54 hours followed by a second, slow phase of 0.07 mm2 /hr (95% CI: 0.04-0.09 mm2 /hr). Most eyes healed within 135.5 ± 48.5 hours. Treatment (amniotic membrane extract vs. control) was not significantly associated with size of ulcers over time (P = .984). Discomfort was minimal to absent in all horses. MAIN LIMITATIONS Results achieved experimental studies may differ from outcomes in the clinical setting. CONCLUSIONS There was no significant difference in healing rate with addition of amniotic membrane extract to medical therapy for equine superficial corneal ulcers. A biphasic corneal healing process was observed, with an initial rapid phase followed by a slow phase. Further study will be needed to determine whether amniotic membrane extract will be helpful for infected or malacic equine corneal ulcers.
Collapse
Affiliation(s)
- Victoria N Lyons
- Department of Veterinary Clinical Sciences, Purdue University, Indiana, USA
| | - Wendy M Townsend
- Department of Veterinary Clinical Sciences, Purdue University, Indiana, USA
| | - George E Moore
- Department of Comparative Pathobiology, Purdue University, Indiana, USA
| | - Siqi Liang
- Department of Statistics, College of Science, Purdue University, Indiana, USA
| |
Collapse
|
11
|
Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf 2020; 19:290-306. [PMID: 33127599 DOI: 10.1016/j.jtos.2020.10.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Corneal stromal wound healing is a complex event that occurs to restore the transparency of an injured cornea. It involves immediate apoptosis of keratocytes followed by their activation, proliferation, migration, and trans-differentiation to myofibroblasts. Myofibroblasts contract to close the wound and secrete extracellular matrix and proteinases to remodel it. Released proteinases may degenerate the basement membrane allowing an influx of cytokines from overlying epithelium. Immune cells infiltrate the wound to clear cellular debris and prevent infections. Gradually basement membrane regenerates, myofibroblasts and immune cells disappear, abnormal matrix is resorbed, and transparency of the cornea is restored. Often this cascade deregulates and corneal opacity results. Factors that prevent corneal opacity after an injury have always intrigued the researchers. They hold clinical relevance as they can guide the outcomes of corneal surgeries. Studies in the past have shed light on the role of various factors in stromal healing. TGFβ (transforming growth factor-beta) signaling is the central player guiding stromal responses. Other major regulators include myofibroblasts, basement membrane, collagen fibrils, small leucine-rich proteoglycans, biophysical cues, proteins derived from extracellular matrix, and membrane channels. The knowledge about their roles helped to develop novel therapies to prevent corneal opacity. This article reviews the role of major regulators that determine the outcome of stromal healing. It also discusses emerging therapies that modulate the role of these regulators to prevent stromal opacity.
Collapse
Affiliation(s)
- Sabeeh Kamil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
McKay TB, Schlötzer-Schrehardt U, Pal-Ghosh S, Stepp MA. Integrin: Basement membrane adhesion by corneal epithelial and endothelial cells. Exp Eye Res 2020; 198:108138. [PMID: 32712184 DOI: 10.1016/j.exer.2020.108138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Integrins mediate adhesion of cells to substrates and maintain tissue integrity by facilitating mechanotransduction between cells, the extracellular matrix, and gene expression in the nucleus. Changes in integrin expression in corneal epithelial cells and corneal endothelial cells impacts their adhesion to the epithelial basement membrane (EpBM) and Descemet's membrane, respectively. Integrins also play roles in assembly of basement membranes by both activating TGFβ1 and other growth factors. Over the past two decades, this knowledge has been translated into methods to grow corneal epithelial and endothelial cells in vitro for transplantation in the clinic thereby transforming clinical practice and quality of life for patients. Current knowledge on the expression and function of the integrins that mediate adhesion to the basement membrane expressed by corneal epithelial and endothelial cells in health and disease is summarized. This is the first review to discuss similarities and differences in the integrins expressed by both cell types.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Ophthalmology, Schepens Eye Research Institute / Mass Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA; Department of Ophthalmology, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
13
|
AbuSamra DB, Mauris J, Argüeso P. Galectin-3 initiates epithelial-stromal paracrine signaling to shape the proteolytic microenvironment during corneal repair. Sci Signal 2019; 12:12/590/eaaw7095. [PMID: 31311846 DOI: 10.1126/scisignal.aaw7095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Paracrine interactions between epithelial cells and stromal fibroblasts occur during tissue repair, development, and cancer. Crucial to these processes is the production of matrix metalloproteinases (MMPs) that modify the microenvironment. Here, we demonstrated that the carbohydrate-binding protein galectin-3 stimulated microenvironment remodeling in the cornea by promoting the paracrine action of secreted interleukin-1β (IL-1β). Through live cell imaging in vitro, we observed rapid activation of the MMP9 promoter in clusters of cultured human epithelial cells after direct heterotypic contact with single primary human fibroblasts. Soluble recombinant galectin-3 and endogenous galectin-3 of epithelial origin both stimulated MMP9 activity through the induction of IL-1β secretion by fibroblasts. In vivo, mechanical disruption of the basement membrane in wounded corneas prompted an increase in the abundance of IL-1β in the stroma and increased the amount of gelatinase activity in the epithelium. Moreover, corneas of galectin-3-deficient mice failed to stimulate IL-1β after wounding. This mechanism of paracrine control has broad importance for our understanding of how the proteolytic microenvironment is modified in epithelial-stromal interactions.
Collapse
Affiliation(s)
- Dina B AbuSamra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Jérôme Mauris
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams AR, Pflugfelder SC, de Paiva CS. Reduced Corneal Innervation in the CD25 Null Model of Sjögren Syndrome. Int J Mol Sci 2018; 19:ijms19123821. [PMID: 30513621 PMCID: PMC6320862 DOI: 10.3390/ijms19123821] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Decreased corneal innervation is frequent in patients with Sjögren Syndrome (SS). To investigate the density and morphology of the intraepithelial corneal nerves (ICNs), corneal sensitivity, epithelial cell proliferation, and changes in mRNA expression of genes that are involved in autophagy and axon targeting and extension were assessed using the IL-2 receptor alpha chain (CD25 null) model of SS. ICN density and thickness in male and female wt and CD25 null corneas were assessed at 4, 6, 8, and 10/11 wk of age. Cell proliferation was assessed using ki67. Mechanical corneal sensitivity was measured. Quantitative PCR was performed to quantify expression of beclin 1, LC3, Lamp-1, Lamp-2, CXCL-1, BDNF, NTN1, DCC, Unc5b1, Efna4, Efna5, Rgma, and p21 in corneal epithelial mRNA. A significant reduction in corneal axon density and mechanical sensitivity were observed, which negatively correlate with epithelial cell proliferation. CD25 null mice have increased expression of genes regulating autophagy (beclin-1, LC3, LAMP-1, LAMP-2, CXCL1, and BDNF) and no change was observed in genes that were related to axonal targeting and extension. Decreased anatomic corneal innervation in the CD25 null SS model is accompanied by reduced corneal sensitivity, increased corneal epithelial cell proliferation, and increased expression of genes regulating phagocytosis and autophagy.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Alexa R Williams
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Barrera V, Troughton LD, Iorio V, Liu S, Oyewole O, Sheridan CM, Hamill KJ. Differential Distribution of Laminin N-Terminus α31 Across the Ocular Surface: Implications for Corneal Wound Repair. Invest Ophthalmol Vis Sci 2018; 59:4082-4093. [PMID: 30098195 PMCID: PMC6735649 DOI: 10.1167/iovs.18-24037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose Laminin N-terminus (LaNt) α31 is a relatively unstudied protein derived from the laminin α3 gene but structurally similar to netrins. LaNt α31 has, to date, been investigated only in two-dimensional (2D) keratinocyte culture where it influences cell migration and adhesion, processes integral to wound repair. Here we investigated LaNt α31 distribution in ocular surface epithelium, during limbal stem cell activation, and corneal wound healing. Methods Human, mouse, and pig eyes, ex vivo limbal explant cultures, and alkali burn wounds were processed for immunohistochemistry with antibodies against LaNt α31 along with progenitor cell-associated proteins. LaNt α31 expression was induced via adenoviral transduction into primary epithelial cells isolated from limbal explants, and cell spreading and migration were analyzed using live imaging. Results LaNt α31 localized to the basal layer of the conjunctival, limbal, and corneal epithelial cells. However, staining was nonuniform with apparent subpopulation enrichment, and some suprabasal reactivity was also noted. This LaNt α31 distribution largely matched that of keratin 15, epidermal growth factor receptor, and transformation-related protein 63α (p63α), and displayed similar increases in expression in activated limbal explants. During active alkali burn wound repair, LaNt α31 displayed increased expression in limbal regions and loss of basal restriction within the cornea. Distribution returned to predominately basal cell restricted once the wounded epithelium matured. Cultured corneal epithelial cells expressing LaNt α31 displayed increased 2D area and reduced migration, suggesting a functional link between this protein and key wound repair activities. Conclusions These data place LaNt α31 in position to influence laminin-dependent processes including wound repair and stem cell activation.
Collapse
Affiliation(s)
- Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Lee D. Troughton
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Valentina Iorio
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Siyin Liu
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Olutobi Oyewole
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Kevin J. Hamill
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Kalha S, Kuony A, Michon F. Corneal Epithelial Abrasion with Ocular Burr As a Model for Cornea Wound Healing. J Vis Exp 2018. [PMID: 30059040 DOI: 10.3791/58071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The murine cornea provides an excellent model to study wound healing. The cornea is the outermost layer of the eye, and thus is the first defense to injury. In fact, the most common type of eye injury found in clinic is a corneal abrasion. Here, we utilize an ocular burr to induce an abrasion resulting in removal of the corneal epithelium in vivo on anesthetized mice. This method allows for targeted and reproducible epithelial disruption, leaving other areas intact. In addition, we describe the visualization of the abraded epithelium with fluorescein staining and provide concrete advice on how to visualize the abraded cornea. Then, we follow the timeline of wound healing 0, 18, and 72 h after abrasion, until the wound is re-epithelialized. The epithelial abrasion model of corneal injury is ideal for studies on epithelial cell proliferation, migration and re-epithelialization of the corneal layers. However, this method is not optimal to study stromal activation during wound healing, because the ocular burr does not penetrate to the stromal cell layers. This method is also suitable for clinical applications, for example, pre-clinical test of drug effectiveness.
Collapse
Affiliation(s)
- Solja Kalha
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki
| | - Alison Kuony
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki
| | - Frederic Michon
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki; School of Medicine and Institute for Science and Technology in Medicine, Keele University;
| |
Collapse
|
17
|
Afsharkhamseh N, Ghahari E, Eslani M, Djalilian AR. A Simple Mechanical Procedure to Create Limbal Stem Cell Deficiency in Mouse. J Vis Exp 2016. [PMID: 27911382 DOI: 10.3791/54658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a state of malfunction or loss of limbal epithelial stem cells, after which the corneal epithelium is replaced with conjunctiva. Patients suffer from recurrent corneal defects, pain, inflammation, and loss of vision. Previously, a murine model of LSCD was described and compared to two other models. The goal was to produce a consistent mouse model of LSCD that both mimics the phenotype in humans and lasts long enough to make it possible to study the disease pathophysiology and to evaluate new treatments. Here, the technique is described in more detail. A motorized tool with a rotating burr has been designed to remove the rust rings from the corneal surface or to smooth the pterygium bed in patients. It is a suitable device to create the desired LSCD model. It is a readily available, easy-to-use tool with a fine tip that makes it appropriate for working on small eyes, as in mice. Its application prevents unnecessary trauma to the eye and it does not result in unwanted injuries, as often is the case with chemical injury models. As opposed to a blunt scraper, it removes the epithelium with the basement membrane. In this protocol, the limbal area was abraded two times, and then the whole corneal epithelium was shaved from limbus to limbus. To avoid stroma injury, care was taken not to brush the corneal surface once the epithelium was already removed.
Collapse
Affiliation(s)
- Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago
| | - Elham Ghahari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago;
| |
Collapse
|
18
|
Ferrari G, Giacomini C, Bignami F, Moi D, Ranghetti A, Doglioni C, Naldini L, Rama P, Mazzieri R. Angiopoietin 2 expression in the cornea and its control of corneal neovascularisation. Br J Ophthalmol 2016; 100:1005-1010. [PMID: 27146154 DOI: 10.1136/bjophthalmol-2015-307901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/18/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To define proangiogenic angiopoietin 2 (ANG2) expression and role(s) in human and mouse vascularised corneas. Further, to evaluate the effect of ANG2 inhibition on corneal neovascularisation (CNV). METHODS CNV was induced in FVB mice by means of intrastromal suture placement. One group of animals was sacrificed 10 days later; corneas were immunostained for ANG2 and compared with (i) mouse non-vascularised corneas and (ii) human vascularised and non-vascularised corneas. A second group of CNV animals was treated systemically with an anti-ANG2 antibody. After 10 days, the corneas were whole-mounted, stained for CD31 and LYVE1 and lymphatic/blood vessels quantified. In another set of experiments, the corneal basal Bowman membrane was either (i) removed or (ii) left in place. After 2 or 10 days the corneas were removed and immunostained for collagen IV, ANG2, CD31, LYVE1, CD11b and MRC1 markers. RESULTS In human beings and mice, ANG2 is expressed only in the epithelium, and, mildly, in the endothelium, of the avascular cornea. Instead, it is expressed in the epithelium, endothelium and stroma of vascularised corneas. Disruption of the Bowman membrane is associated with a significant increase of (i) ANG2 stromal expression and (ii) proangiogenic macrophage infiltration in the corneal stroma. Finally, blocking ANG2 significantly reduced hemangiogenesis, lymphangiogenesis and macrophage infiltration. CONCLUSIONS Balancing proper healing and good vision is crucial in the cornea, constantly exposed to potential injuries. In this paper, we suggest the existence of a mechanism regulating the onset of inflammation (and associated CNV) depending on injury severity.
Collapse
Affiliation(s)
- Giulio Ferrari
- Eye Repair Laboratory, Department of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Cornea and Ocular Surface Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Giacomini
- Eye Repair Laboratory, Department of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Bignami
- Eye Repair Laboratory, Department of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Moi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anna Ranghetti
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Luigi Naldini
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Paolo Rama
- Eye Repair Laboratory, Department of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Cornea and Ocular Surface Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Mazzieri
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Bian F, Pelegrino FSA, Henriksson JT, Pflugfelder SC, Volpe EA, Li DQ, de Paiva CS. Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf 2016; 14:242-54. [PMID: 26772899 DOI: 10.1016/j.jtos.2015.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023]
Abstract
Alkali burns to the cornea are among the most devastating injuries to the eye. The purpose of this study was to evaluate the effects of dexamethasone (Dex) or doxycycline (Doxy) on protease activity and corneal complications in a combined model (CM) of alkali burn and dry eye. C57BL/6 mice were subjected to the CM for 2 or 5 days (D). Mice were topically treated either with Dex (0.1%), Dox (0.025%) or vehicle QID and observed daily for appearance of corneal perforation. Quantitative real time PCR was performed to measure expression of inflammation cytokines and matrix metalloproteinases (MMPs) in whole cornea lysates. No perforations were observed in the Dex-treated corneas. All wounds in Doxy-treated corneas were closed 2D post-injury, and they had significantly lower corneal opacity scores at days 4 and 5 post-injury compared to BSS treatment. Dex-treated corneas had the lowest corneal opacity scores. Dex treatment significantly decreased expression of IL-1β, IL-6, MMPs -1, -9, -13, and TIMP-1 after 2 days but increased levels of MMP-8, while Doxy treatment significantly decreased IL-1β, IL-6, MMP-8, and -9, compared to vehicle. Decreased MMP-1, -9 and -13 immunoreactivity and gelatinolytic activity were seen in corneas treated with Doxy and Dex compared to vehicle. Increased neutrophil infiltration and myeloperoxidase activity was noted in the vehicle group compared to Dex 2 days post-injury. These findings demonstrate that early initiation of anti-inflammatory therapy is very efficacious in preserving corneal clarity and facilitating wound healing, while modulating MMP production and suppressing neutrophil infiltration.
Collapse
Affiliation(s)
- Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Flavia S A Pelegrino
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Johanna Tukler Henriksson
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - De-Quan Li
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
20
|
Afsharkhamseh N, Movahedan A, Gidfar S, Huvard M, Wasielewski L, Milani BY, Eslani M, Djalilian AR. Stability of limbal stem cell deficiency after mechanical and thermal injuries in mice. Exp Eye Res 2015; 145:88-92. [PMID: 26607808 DOI: 10.1016/j.exer.2015.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
We studied the reproducibility and stability of limbal stem cell deficiency (LSCD) in mice following controlled injuries to the corneal and limbal epithelia. In one method, corneal and limbal epithelia were entirely removed with a 0.5 mm metal burr. In the other, limbus to limbus epithelial removal with the burr was followed by thermal injury to the limbus. These two methods were compared with a previously published one. Unwounded corneas were used as control. The corneas were examined monthly for three months by slit lamp with fluorescein staining. Immunofluorescence staining for cytokeratin 12 and 8 on corneal wholemount and cross sections were performed to determine the phenotype of the epithelium. Mechanical shaving of the epithelium, with or without thermal injury, resulted in a reproducible state of LSCD marked by superficial neovascularization, reduce of keratin 12 expression and presence of goblet cells on the cornea. The phenotype was stable in 100% of the eyes up to at least three months. Thermal injury produced a more severe phenotype with more significant stromal opacification. These corneal injury models may be useful for studying the mechanisms leading to limbal stem cell deficiency.
Collapse
Affiliation(s)
- Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Sanaz Gidfar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Michael Huvard
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Lisa Wasielewski
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Behrad Y Milani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA.
| |
Collapse
|
21
|
Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. J Transl Med 2015; 95:1305-18. [PMID: 26280222 PMCID: PMC4626298 DOI: 10.1038/labinvest.2015.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 01/09/2023] Open
Abstract
Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14 days after corneal debridement may destabilize newly reinnervated sub-basal axons and lead to their retraction toward the periphery.
Collapse
|
22
|
Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp Eye Res 2015; 146:361-369. [PMID: 26332224 DOI: 10.1016/j.exer.2015.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023]
Abstract
Corneal epithelial basement membrane dystrophies and superficial injuries caused by scratches can lead to recurrent corneal erosion syndrome (RCES). Patients and animals with reduced corneal sensory nerve innervation can also develop recurrent erosions. Multiple wild-type mouse strains will spontaneously develop recurrent corneal erosions after single 1.5 mm debridement wounds. Here we show that this wound is accompanied by an increase in corneal epithelial cell proliferation after wound closure but without a commensurate increase in corneal epithelial thickness. We investigated whether excess corneal epithelial cell proliferation contributes to erosion formation. We found that topical application of Mitomycin C (MMC), a drug used clinically to improve healing after glaucoma and refractive surgery, reduces erosion frequency, enhances subbasal axon density to levels seen in unwounded corneas, and prevents excess epithelial cell proliferation after debridement wounding. These results suggest that topically applied MMC, which successfully reduces corneal haze and scarring after PRK, may also function to enhance subbasal nerve regeneration and epithelial adhesion when used to treat RCES.
Collapse
|
23
|
Suárez AC, Suárez MF, Crim N, Monti R, Urrets-Zavalía JA, Serra HM. Effects produced by different types of laser in cornea of Guinea pigs: Identification of a laser capable of producing superficial lesions without leaving scars. ACTA ACUST UNITED AC 2015; 90:458-66. [PMID: 26188624 DOI: 10.1016/j.oftal.2015.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/13/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Climatic droplets keratopathy (CDK) is closely associated with superficial corneal erosions and lack of protective mechanisms against the harmful effects of ultraviolet radiation (UVR) during a prolonged period of time. One of the difficulties in studying the pathogenic mechanisms involved in this human disease is the lack of an experimental animal model. In this paper, a study is conducted on the effects of 4 types of lasers at various powers and time conditions on the normal guinea pig corneas in order to select only one laser condition that reversibly injures the epithelium and superficial stroma, without leaving scarring. METHODS Damage was induced in the cornea of Guinea pigs using different powers and exposure times of 4 types of laser: argon, CO2, diode and Nd-Yag, and any injuries were evaluated by biomicroscopy (BM) and optical microscopy. Corneas from other normal animals were exposed to argon laser (350 mW, 0.3s, 50 μm of diameter), and the induced alterations were studied at different times using BM, optical coherence tomography (OCT) and transmission electron microscopy (TEM). RESULTS Only argon laser at 350 mW, 0.3s, 50 μm of diameter produced epithelium and superficial stroma lesions. Some leukomas were observed by BM, and they disappeared by day 15. Corneal thickness measured by OCT decreased in the eyes treated with argon laser during the first week. Using TEM, different ultra structural alterations in corneal epithelium and stroma were observed during the early days, which disappeared by day 15. CONCLUSIONS It was possible to develop reproducible corneal epithelium and anterior stroma injuries using Argon laser at 350 mW, 0.3s, 50 μm of diameter. In vivo and in vitro studies showed that injured corneas with these laser conditions did not leave irreversible microscopic or ultra structural alterations. This protocol of corneal erosion combined with exposure to UVR and partial deficiency of ascorbate in the diets of the animals for an extended period of time has been used in order to try to develop an experimental model of CDK.
Collapse
Affiliation(s)
- A C Suárez
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - M F Suárez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - N Crim
- Servicio de Oftalmología, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - R Monti
- Servicio de Oftalmología, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - J A Urrets-Zavalía
- Servicio de Oftalmología, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - H M Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
24
|
Abstract
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
Collapse
Affiliation(s)
- Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
25
|
Walker JL, Bleaken BM, Wolff IM, Menko AS. Establishment of a Clinically Relevant Ex Vivo Mock Cataract Surgery Model for Investigating Epithelial Wound Repair in a Native Microenvironment. J Vis Exp 2015:e52886. [PMID: 26132117 DOI: 10.3791/52886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells' native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.
Collapse
Affiliation(s)
- Janice L Walker
- Pathology, Anatomy and Cell Biology, Thomas Jefferson University;
| | - Brigid M Bleaken
- Pathology, Anatomy and Cell Biology, Thomas Jefferson University
| | - Iris M Wolff
- Pathology, Anatomy and Cell Biology, Thomas Jefferson University
| | - A Sue Menko
- Pathology, Anatomy and Cell Biology, Thomas Jefferson University
| |
Collapse
|
26
|
Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the Cornea: Structure, Function, and Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:7-23. [PMID: 26310146 DOI: 10.1016/bs.pmbts.2015.04.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cornea is a transparent tissue with significant refractive and barrier functions. The epithelium serves as the principal barrier to fluid and pathogens, a function performed through production of tight junctions, and constant repopulation through differentiation and maturation of dividing cells in its basal cell layer. It is supported posteriorly by basement membrane and Bowman's layer and assists in maintenance of stromal dehydration. The stroma composes the majority of corneal volume, provides support and clarity, and assists in ocular immunity. The posterior cornea, composed of Descemet membrane and endothelium, is essential for stromal dehydration, maintained through tight junctions and endothelial pumps. Corneal development begins with primitive formation of epithelium and lens, followed by waves of migration from cells of neural crest origin between these two structures to produce the stroma and endothelium. Descemet membrane is secreted by the latter and gradually thickens.
Collapse
Affiliation(s)
- Allen O Eghrari
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Amer Riazuddin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John D Gottsch
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Pal-Ghosh S, Pajoohesh-Ganji A, Menko AS, Oh HY, Tadvalkar G, Saban DR, Stepp MA. Cytokine deposition alters leukocyte morphology and initial recruitment of monocytes and γδT cells after corneal injury. Invest Ophthalmol Vis Sci 2014; 55:2757-65. [PMID: 24677104 DOI: 10.1167/iovs.13-13557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE An in vivo mouse model reproducibly induces recurrent epithelial erosions in wild-type mice spontaneously 2 weeks after a single 1.5-mm corneal debridement wound made with a dulled blade. When 1.5-mm wounds are made by a rotating burr so that the corneal epithelial basement membrane is removed, corneas heal without developing erosions. Here, we characterize differences in cytokine deposition and changes in leukocytes between 0 and 6 hours after dulled-blade and rotating-burr wounding. METHODS BALB/c mice were used to study 1.5-mm corneal wounds made using a dulled blade or a rotating burr. Mice were studied immediately after wounding (0 hour) and at 6 hours in vivo and in vitro in organ culture. Corneas, corneal extracts, and collagenase digests from naïve and wounded mice were used for three-dimensional (3D) confocal imaging, cytokine arrays, and flow cytometry. RESULTS Confocal imaging showed CD45, a protein derived from leukocytes, accumulates at the wound edge by 3 and 6 hours after wounding in vivo but not in vitro with more CD45 accumulating after dulled-blade compared with rotating-burr wounds. Morphologic changes occurred in CD45+ leukocytes and higher levels for several cytokines were detected in the stromal wound bed within minutes following dulled-blade wounds. Flow cytometry showed significantly more monocytes (CD45+/CD11b+/Ly6C+) and γδT cells (CD45+/GL3+) recruited into the corneas of mice with dulled-blade wounds by 6 hours. CONCLUSIONS Differences in cytokine-driven leukocyte responses are seen after dulled-blade debridement compared with rotating-burr injury.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology and Department of Ophthalmology, The George Washington University Medical School, Washington, DC, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Wounding the cornea to learn how it heals. Exp Eye Res 2014; 121:178-93. [PMID: 24607489 DOI: 10.1016/j.exer.2014.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Abstract
Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA; Department of Ophthalmology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | - James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114-2500, USA
| | - Vickery Trinkaus-Randall
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Briana M Kyne
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
29
|
Bron AJ, Tomlinson A, Foulks GN, Pepose JS, Baudouin C, Geerling G, Nichols KK, Lemp MA. Rethinking dry eye disease: a perspective on clinical implications. Ocul Surf 2014; 12:S1-31. [PMID: 24725379 DOI: 10.1016/j.jtos.2014.02.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/07/2014] [Accepted: 02/01/2014] [Indexed: 01/18/2023]
Abstract
Publication of the DEWS report in 2007 established the state of the science of dry eye disease (DED). Since that time, new evidence suggests that a rethinking of traditional concepts of dry eye disease is in order. Specifically, new evidence on the epidemiology of the disease, as well as strategies for diagnosis, have changed the understanding of DED, which is a heterogeneous disease associated with considerable variability in presentation. These advances, along with implications for clinical care, are summarized herein. The most widely used signs of DED are poorly correlated with each other and with symptoms. While symptoms are thought to be characteristic of DED, recent studies have shown that less than 60% of subjects with other objective evidence of DED are symptomatic. Thus the use of symptoms alone in diagnosis will likely result in missing a significant percentage of DED patients, particularly with early/mild disease. This could have considerable impact in patients undergoing cataract or refractive surgery as patients with DED have less than optimal visual results. The most widely used objective signs for diagnosing DED all show greater variability between eyes and in the same eye over time compared with normal subjects. This variability is thought to be a manifestation of tear film instability which results in rapid breakup of the tearfilm between blinks and is an identifier of patients with DED. This feature emphasizes the bilateral nature of the disease in most subjects not suffering from unilateral lid or other unilateral destabilizing surface disorders. Instability of the composition of the tears also occurs in dry eye disease and shows the same variance between eyes. Finally, elevated tear osmolarity has been reported to be a global marker (present in both subtypes of the disease- aqueous-deficient dry eye and evaporative dry eye). Clinically, osmolarity has been shown to be the best single metric for diagnosis of DED and is directly related to increasing severity of disease. Clinical examination and other assessments differentiate which subtype of disease is present. With effective treatment, the tear osmolarity returns to normal, and its variability between eyes and with time disappears. Other promising markers include objective measures of visual deficits, proinflammatory molecular markers and other molecular markers, specific to each disease subtype, and panels of tear proteins. As yet, however, no single protein or panel of markers has been shown to discriminate between the major forms of DED. With the advent of new tests and technology, improved endpoints for clinical trials may be established, which in turn may allow new therapeutic agents to emerge in the foreseeable future. Accurate recognition of disease is now possible and successful management of DED appears to be within our grasp, for a majority of our patients.
Collapse
Affiliation(s)
- Anthony J Bron
- Professor emeritus - University of Oxford, Nuffield Laboratory of Ophthalmology, Nuffield Dept of Clinical Neurosciences, UK.
| | - Alan Tomlinson
- Professor of Vision Sciences, Glasgow Caledonian University, Scotland
| | - Gary N Foulks
- Emeritus Professor of Ophthalmology, University of Louisville; Editor-in-Chief, The Ocular Surface, USA
| | - Jay S Pepose
- Professor of Clinical Ophthalmology and Visual Sciences, Washington University School of Medicine, Director, Pepose Vision Institute, St. Louis, Missouri, USA
| | - Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, and Vision Institute, University Paris 6, Paris, France
| | - Gerd Geerling
- Professor and Chair, Department of Ophthalmology, Heinrich-Heine-University Moorenstr. 5 40225 Düsseldorf, Germany
| | - Kelly K Nichols
- FERV Professor (Foundation for Education and Research in Vision), The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, USA
| | - Michael A Lemp
- Clinical Professor of Ophthalmology, Georgetown University, Washington DC and George Washington University, Washington DC, USA
| |
Collapse
|
30
|
Torricelli AAM, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci 2013; 54:6390-400. [PMID: 24078382 DOI: 10.1167/iovs.13-12547] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The corneal epithelial basement membrane (BM) is positioned between basal epithelial cells and the stroma. This highly specialized extracellular matrix functions not only to anchor epithelial cells to the stroma and provide scaffolding during embryonic development but also during migration, differentiation, and maintenance of the differentiated epithelial phenotype. Basement membranes are composed of a diverse assemblage of extracellular molecules, some of which are likely specific to the tissue where they function; but in general they are composed of four primary components--collagens, laminins, heparan sulfate proteoglycans, and nidogens--in addition to other components such as thrombospondin-1, matrilin-2, and matrilin-4 and even fibronectin in some BM. Many studies have focused on characterizing BM due to their potential roles in normal tissue function and disease, and these structures have been well characterized in many tissues. Comparatively few studies, however, have focused on the function of the epithelial BM in corneal physiology. Since the normal corneal stroma is avascular and has relatively low keratocyte density, it is expected that the corneal BM would be different from the BM in other tissues. One function that appears critical in homeostasis and wound healing is the barrier function to penetration of cytokines from the epithelium to stroma (such as transforming growth factor β-1), and possibly from stroma to epithelium (such as keratinocyte growth factor). The corneal epithelial BM is also involved in many inherited and acquired corneal diseases. This review examines this structure in detail and discusses the importance of corneal epithelial BM in homeostasis, wound healing, and disease.
Collapse
|
31
|
Luo H, Lu Y, Wu T, Zhang M, Zhang Y, Jin Y. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Biomaterials 2013; 34:6748-59. [DOI: 10.1016/j.biomaterials.2013.05.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/23/2013] [Indexed: 01/03/2023]
|
32
|
Pajoohesh-Ganji A, Pal-Ghosh S, Tadvalkar G, Stepp MA. Corneal goblet cells and their niche: implications for corneal stem cell deficiency. Stem Cells 2013; 30:2032-43. [PMID: 22821715 DOI: 10.1002/stem.1176] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Goblet cells are terminally differentiated cells secreting mucins and antibacterial peptides that play an important role in maintaining the health of the cornea. In corneal stem cell deficiency, the progenitor cells giving rise to goblet cells on the cornea are presumed to arise from differentiation of cells that migrate onto the cornea from the neighboring conjunctiva. This occurs in response to the inability of corneal epithelial progenitor cells at the limbus to maintain an intact corneal epithelium. This study characterizes clusters of cells we refer to as compound niches at the limbal:corneal border in the unwounded mouse. Compound niches are identified by high expression of simple epithelial keratin 8 (K8) and 19 (K19). They contain variable numbers of cells in one of several differentiation states: slow-cycling corneal progenitor cells, proliferating cells, nonproliferating cells, and postmitotic differentiated K12+Muc5ac+ goblet cells. Expression of K12 differentiates these goblet cells from those in the conjunctival epithelium and suggests that corneal epithelial progenitor cells give rise to both corneal epithelial and goblet cells. After wounds that remove corneal epithelial cells near the limbus, compound niches migrate from the limbal:corneal border onto the cornea where K8+ cells proliferate and goblet cells increase in number. By contrast, no migration of goblet cells from the bulbar conjunctiva onto the cornea is observed. This study is the first description of compound niches and corneal goblet cells and demonstration of a role for these cells in the pathology typically associated with corneal stem cell deficiency.
Collapse
Affiliation(s)
- Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, The George Washington University Medical School, Washington, District of Columbia 20037, USA
| | | | | | | |
Collapse
|