1
|
Beard H, Winner L, Shoubridge A, Parkinson‐Lawrence E, Lau AA, Mubarokah SN, Lance T, King B, Scott W, Snel MF, Trim PJ, Hemsley KM. Evaluation of neuroretina following i.v. or intra-CSF AAV9 gene replacement in mice with MPS IIIA, a childhood dementia. CNS Neurosci Ther 2024; 30:e14919. [PMID: 39123298 PMCID: PMC11315678 DOI: 10.1111/cns.14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Sanfilippo syndrome (mucopolysaccharidosis type IIIA; MPS IIIA) is a childhood dementia caused by inherited mutations in the sulfamidase gene. At present, there is no treatment and children with classical disease generally die in their late teens. Intravenous or intra-cerebrospinal fluid (CSF) injection of AAV9-gene replacement is being examined in human clinical trials; evaluation of the impact on brain disease is an intense focus; however, MPS IIIA patients also experience profound, progressive photoreceptor loss, leading to night blindness. AIM To compare the relative efficacy of the two therapeutic approaches on retinal degeneration in MPS IIIA mice. METHODS Neonatal mice received i.v. or intra-CSF AAV9-sulfamidase or vehicle and after 20 weeks, biochemical and histological evaluation of neuroretina integrity was carried out. RESULTS Both treatments improved central retinal thickness; however, in peripheral retina, outer nuclear layer thickness and photoreceptor cell length were only significantly improved by i.v. gene replacement. Further, normalization of endo-lysosomal compartment size and microglial morphology was only observed following intravenous gene delivery. CONCLUSIONS Confirmatory studies are needed in adult mice; however, these data indicate that i.v. AAV9-sulfamidase infusion leads to superior outcomes in neuroretina, and cerebrospinal fluid-delivered AAV9 may need to be supplemented with another therapeutic approach for optimal patient quality of life.
Collapse
Affiliation(s)
- Helen Beard
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Leanne Winner
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Andrew Shoubridge
- Healthy Microbiome and Chronic Disease, Lifelong Health ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Emma Parkinson‐Lawrence
- Mechanisms in Cell Biology and Disease Research Group, Clinical Health SciencesUniSAAdelaideSouth AustraliaAustralia
| | - Adeline A. Lau
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Siti N. Mubarokah
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Tabitha‐Rose Lance
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Barbara King
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - William Scott
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Marten F. Snel
- Proteomics, Metabolomics and MS‐Imaging FacilitySouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Paul J. Trim
- Proteomics, Metabolomics and MS‐Imaging FacilitySouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Kim M. Hemsley
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
2
|
Katz ML, Cook J, Vite CH, Campbell RS, Coghill LM, Lyons LA. Beta-mannosidosis in a domestic cat associated with a missense variant in MANBA. Gene 2024; 893:147941. [PMID: 37913889 PMCID: PMC10841995 DOI: 10.1016/j.gene.2023.147941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
A 6-month-old cat of unknown ancestry presented for a neurologic evaluation due to progressive motor impairment. Complete physical and neurologic examinations suggested the disorder was likely to be hereditary, although the signs were not consistent with any previously described inherited disorders in cats. Due to the progression of disease signs including severely impaired motor function and cognitive decline, the cat was euthanized at approximately 10.5 months of age. Whole genome sequence analysis identified a homozygous missense variant c.2506G > A in MANBA that predicts a p.Gly836Arg alteration in the encoded lysosomal enzyme β -mannosidase. This variant was not present in the whole genome or whole exome sequences of any of the 424 cats represented in the 99 Lives Cat Genome dataset. β -Mannosidase enzyme activity was undetectable in brain tissue homogenates from the affected cat, whereas α-mannosidase enzyme activities were elevated compared to an unaffected cat. Postmortem examination of brain and retinal tissues revealed massive accumulations of vacuolar inclusions in most cells, similar to those reported in animals of other species with hereditary β -mannosidosis. Based on these findings, the cat likely suffered from β -mannosidosis due to the abolition of β -mannosidase activity associated with the p.Gly836Arg amino acid substitution. p.Gly836 is located in the C-terminal region of the protein and was not previously known to be involved in modulating enzyme activity. In addition to the vacuolar inclusions, some cells in the brain of the affected cat contained inclusions that exhibited lipofuscin-like autofluorescence. Electron microscopic examinations suggested these inclusions formed via an autophagy-like process.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO 65212, USA.
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Rebecca S Campbell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lyndon M Coghill
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Leslie A Lyons
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Dulz S, Schwering C, Wildner J, Spartalis C, Schuettauf F, Bartsch U, Wibbeler E, Nickel M, Spitzer MS, Atiskova Y, Schulz A. Ongoing retinal degeneration despite intraventricular enzyme replacement therapy with cerliponase alfa in late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2 disease). Br J Ophthalmol 2023; 107:1478-1483. [PMID: 35772852 DOI: 10.1136/bjo-2022-321260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) is a neurodegenerative, blinding lysosomal storage disorder. The purpose of the current study was to characterise the progression of CLN2-associated retinal degeneration in patients under intraventricular enzyme replacement therapy (ERT) with cerliponase alfa. METHODS We analysed visual function, retinal morphology and neuropaediatric data using preferential looking test (PLT), Weill Cornell Batten Scale (WCBS), optical coherence tomography (OCT) imaging and the Hamburg Motor-Language late-infantile neuronal ceroid lipofuscinosis (LINCL) Scale (M-L scale). RESULTS Fifty-six eyes of 28 patients had baseline PLT, WCBS and OCT. 15 patients underwent serial examinations, resulting in a total of 132 OCT scans and WCBS results, 66 Hamburg M-L scores and 49 PLT results during a mean follow-up time of 18.2 months (range 5-40). A negative correlation (r=-0.69, p<0.001) was found between central retinal thickness (CRT) values and age at examination with a maximal annual decrease of 23 µm between 56 and 80 months of age. A significant correlation was observed between PLT results and the age at examination (r=0.46, p=0.001), the WCBS scores (r=0.62; p<0.001) and CRT values (r=-0.64; p<0.001). The M-L score correlated with the ocular measurements (CRT: r=0.58, p<0.001; WCBS r=-0.64, p<0.001; PLT score: r=-0.57, p<0.001). CONCLUSION Despite intraventricular ERT, retinal degeneration progressed in patients with CLN2 and was particularly pronounced between 56 and 80 months of age. Retina-directed therapies should therefore be initiated before or as early as possible during the phase of rapid retinal degeneration. PLT and WCBS were identified as valuable outcome measures to monitor disease progression. TRIAL REGISTRATION NUMBER NCT04613089.
Collapse
Affiliation(s)
- Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Schwering
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Wildner
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Spartalis
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Schuettauf
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Wibbeler
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
El-Hage N, Haney MJ, Zhao Y, Rodriguez M, Wu Z, Liu M, Swain CJ, Yuan H, Batrakova EV. Extracellular Vesicles Released by Genetically Modified Macrophages Activate Autophagy and Produce Potent Neuroprotection in Mouse Model of Lysosomal Storage Disorder, Batten Disease. Cells 2023; 12:1497. [PMID: 37296618 PMCID: PMC10252192 DOI: 10.3390/cells12111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Over the recent decades, the use of extracellular vesicles (EVs) has attracted considerable attention. Herein, we report the development of a novel EV-based drug delivery system for the transport of the lysosomal enzyme tripeptidyl peptidase-1 (TPP1) to treat Batten disease (BD). Endogenous loading of macrophage-derived EVs was achieved through transfection of parent cells with TPP1-encoding pDNA. More than 20% ID/g was detected in the brain following a single intrathecal injection of EVs in a mouse model of BD, ceroid lipofuscinosis neuronal type 2 (CLN2) mice. Furthermore, the cumulative effect of EVs repetitive administrations in the brain was demonstrated. TPP1-loaded EVs (EV-TPP1) produced potent therapeutic effects, resulting in efficient elimination of lipofuscin aggregates in lysosomes, decreased inflammation, and improved neuronal survival in CLN2 mice. In terms of mechanism, EV-TPP1 treatments caused significant activation of the autophagy pathway, including altered expression of the autophagy-related proteins LC3 and P62, in the CLN2 mouse brain. We hypothesized that along with TPP1 delivery to the brain, EV-based formulations can enhance host cellular homeostasis, causing degradation of lipofuscin aggregates through the autophagy-lysosomal pathway. Overall, continued research into new and effective therapies for BD is crucial for improving the lives of those affected by this condition.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Mori Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Carson J. Swain
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| |
Collapse
|
6
|
Munesue Y, Ageyama N, Kimura N, Takahashi I, Nakayama S, Okabayashi S, Katakai Y, Koie H, Yagami KI, Ishii K, Tamaoka A, Yasutomi Y, Shimozawa N. Cynomolgus macaque model of neuronal ceroid lipofuscinosis type 2 disease. Exp Neurol 2023; 363:114381. [PMID: 36918063 DOI: 10.1016/j.expneurol.2023.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal-recessive fatal neurodegenerative diseases that occur in children and young adults, with symptoms including ataxia, seizures and visual impairment. We report the discovery of cynomolgus macaques carrying the CLN2/TPP1 variant and our analysis of whether the macaques could be a new non-human primate model for NCL type 2 (CLN2) disease. Three cynomolgus macaques presented progressive neuronal clinical symptoms such as limb tremors and gait disturbance after about 2 years of age. Morphological analyses using brain MRI at the endpoint of approximately 3 years of age revealed marked cerebellar and cerebral atrophy of the gray matter, with sulcus dilation, gyrus thinning, and ventricular enlargement. Histopathological analyses of three affected macaques revealed severe neuronal loss and degeneration in the cerebellar and cerebral cortices, accompanied by glial activation and/or changes in axonal morphology. Neurons observed throughout the central nervous system contained autofluorescent cytoplasmic pigments, which were identified as ceroid-lipofuscin based on staining properties, and the cerebral cortex examined by transmission electron microscopy had curvilinear profiles, the typical ultrastructural pattern of CLN2. These findings are commonly observed in all forms of NCL. DNA sequencing analysis identified a homozygous single-base deletion (c.42delC) of the CLN2/TPP1 gene, resulting in a frameshifted premature stop codon. Immunohistochemical analysis showed that tissue from the affected macaques lacked a detectable signal against TPP1, the product of the CLN2/TPP1 gene. Analysis for transmission of the CLN2/TPP1 mutated gene revealed that 47 (49.5%) and 48 (50.5%) of the 95 individuals genotyped in the CLN2-affected macaque family were heterozygous carriers and homozygous wild-type individuals, respectively. Thus, we identified cynomolgus macaques as a non-human primate model of CLN2 disease. The CLN2 macaques reported here could become a useful resource for research and the development of drugs and methods for treating CLN2 disease, which involves severe symptoms in humans.
Collapse
Affiliation(s)
- Yoshiko Munesue
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuyuki Kimura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Ichiro Takahashi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Shunya Nakayama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Sachi Okabayashi
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuhiro Ishii
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Tamaoka
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.
| |
Collapse
|
7
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
8
|
Kick GR, Whiting REH, Ota-Kuroki J, Castaner LJ, Morgan-Jack B, Sabol JC, Meiman EJ, Ortiz F, Katz ML. Intravitreal gene therapy preserves retinal function in a canine model of CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2023; 226:109344. [PMID: 36509165 PMCID: PMC9839638 DOI: 10.1016/j.exer.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a rare hereditary neurodegenerative disorder characterized by deleterious sequence variants in TPP1 that result in reduced or abolished function of the lysosomal enzyme tripeptidyl peptidase 1 (TPP1). Children with this disorder experience progressive neurological decline and vision loss starting around 2-4 years of age. Ocular disease is characterized by progressive retinal degeneration and impaired retinal function culminating in total loss of vision. Similar retinal pathology occurs in a canine model of CLN2 disease with a null variant in TPP1. A study using the dog model was performed to evaluate the efficacy of ocular gene therapy to provide a continuous, long-term source of human TPP1 (hTPP1) to the retina, inhibit retinal degeneration and preserve retinal function. TPP1-/- dogs received an intravitreal injection of 1 x 1012 viral genomes of AAV2.CAG.hTPP1 in one eye and AAV2.CAG.GFP in the contralateral eye at 4 months of age. Ophthalmic exams, in vivo ocular imaging and electroretinography were repeated monthly to assess retinal structure and function. Retinal morphology, hTPP1 and GFP expression in the retina, optic nerve and lateral geniculate nucleus, and hTPP1 concentrations in the vitreous were evaluated after the dogs were euthanized at end stage neurological disease at approximately 10 months of age. Intravitreal administration of AAV2.CAG.hTPP1 resulted in stable, widespread expression of hTPP1 throughout the inner retina, prevented disease-related declines in retinal function and inhibited disease-related cell loss and storage body accumulation in the retina for at least 6 months. Uveitis occurred in eyes treated with the hTPP1 vector, but this did not prevent therapeutic efficacy. The severity of the uveitis was ameliorated with anti-inflammatory treatments. These results indicate that a single intravitreal injection of AAV2.CAG.hTPP1 is an effective treatment to inhibit ocular disease progression in canine CLN2 disease.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rebecca E H Whiting
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Brandie Morgan-Jack
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francheska Ortiz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
9
|
Bartsch U, Storch S. Experimental Therapeutic Approaches for the Treatment of Retinal Pathology in Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:866983. [PMID: 35509995 PMCID: PMC9058077 DOI: 10.3389/fneur.2022.866983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset neurodegenerative lysosomal storage disorders mainly affecting the brain and the retina. In the NCLs, disease-causing mutations in 13 different ceroid lipofuscinoses genes (CLN) have been identified. The clinical symptoms include seizures, progressive neurological decline, deterioration of motor and language skills, and dementia resulting in premature death. In addition, the deterioration and loss of vision caused by progressive retinal degeneration is another major hallmark of NCLs. To date, there is no curative therapy for the treatment of retinal degeneration and vision loss in patients with NCL. In this review, the key findings of different experimental approaches in NCL animal models aimed at attenuating progressive retinal degeneration and the decline in retinal function are discussed. Different approaches, including experimental enzyme replacement therapy, gene therapy, cell-based therapy, and immunomodulation therapy were evaluated and showed encouraging therapeutic benefits. Recent experimental ocular gene therapies in NCL animal models with soluble lysosomal enzyme deficiencies and transmembrane protein deficiencies have shown the strong potential of gene-based approaches to treat retinal dystrophies in NCLs. In CLN3 and CLN6 mouse models, an adeno-associated virus (AAV) vector-mediated delivery of CLN3 and CLN6 to bipolar cells has been shown to attenuate the retinal dysfunction. Therapeutic benefits of ocular enzyme replacement therapies were evaluated in CLN2 and CLN10 animal models. Since brain-targeted gene or enzyme replacement therapies will most likely not attenuate retinal neurodegeneration, there is an unmet need for treatment options additionally targeting the retina in patients with NCL. The long-term benefits of these therapeutic interventions aimed at attenuating retinal degeneration and vision loss in patients with NCL remain to be investigated in future clinical studies.
Collapse
Affiliation(s)
- Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Stephan Storch
| |
Collapse
|
10
|
Meiman EJ, Kick GR, Jensen CA, Coates JR, Katz ML. Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis. Dev Neurobiol 2022; 82:326-344. [PMID: 35427439 PMCID: PMC9119968 DOI: 10.1002/dneu.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane‐like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.
Collapse
Affiliation(s)
- Elizabeth J. Meiman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| |
Collapse
|
11
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
12
|
Kick GR, Meiman EJ, Sabol JC, Whiting REH, Ota-Kuroki J, Castaner LJ, Jensen CA, Katz ML. Visual system pathology in a canine model of CLN5 neuronal ceroid lipofuscinosis. Exp Eye Res 2021; 210:108686. [PMID: 34216614 PMCID: PMC8429270 DOI: 10.1016/j.exer.2021.108686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
CLN5 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disease characterized by progressive neurological decline, vision loss and seizures. Visual impairment in children with CLN5 disease is attributed to a progressive decline in retinal function accompanied by retinal degeneration as well as impaired central nervous system function associated with global brain atrophy. We studied visual system pathology in five Golden Retriever littermates homozygous for the CLN5 disease allele previously identified in the breed. The dogs exhibited signs of pronounced visual impairment by 21-22 months of age. Electroretinogram recordings showed a progressive decline in retinal function primarily affecting cone neural pathways. Altered visual evoked potential recordings indicated that disease progression affected visual signal processing in the brain. Aside from several small retinal detachment lesions, no gross retinal abnormalities were observed with in vivo ocular imaging and histologically the retinas did not exhibit apparent abnormalities by 23 months of age. However, there was extensive accumulation of autofluorescent membrane-bound lysosomal storage bodies in almost all retinal layers, as well as in the occipital cortex, by 20 months of age. In the retina, storage was particularly pronounced in retinal ganglion cells, the retinal pigment epithelium and in photoreceptor cells just interior to the outer limiting membrane. The visual system pathology of CLN5-affected Golden Retrievers is similar to that seen early in the human disease. It was not possible to follow the dogs to an advanced stage of disease progression due to the severity of behavioral and motor disease signs by 23 months of age. The findings reported here indicate that canine CLN5 disease will be a useful model of visual system disease in CLN5 neuronal ceroid lipofuscinosis. The baseline data obtained in this investigation will be useful in future therapeutic intervention studies. The findings indicate that there is a fairly broad time frame after disease onset within which treatments could be effective in preserving vision.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | | | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Cheryl A Jensen
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
13
|
Murray SJ, Russell KN, Melzer TR, Gray SJ, Heap SJ, Palmer DN, Mitchell NL. Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease. Exp Eye Res 2021; 207:108600. [PMID: 33930398 DOI: 10.1016/j.exer.2021.108600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases primarily affecting children. A common feature across most NCLs is the progressive loss of vision. We performed intravitreal injections of self-complementary AAV9 vectors packaged with either ovine CLN5 or CLN6 into one eye of 3-month-old CLN5-/- or CLN6-/- animals, respectively. Electroretinography (ERG) was performed every month following treatment, and retinal histology was assessed post-mortem in the treated compared to untreated eye. In CLN5-/- animals, ERG amplitudes were normalised in the treated eye whilst the untreated eye declined in a similar manner to CLN5 affected controls. In CLN6-/- animals, ERG amplitudes in both eyes declined over time although the treated eye showed a slower decline. Post-mortem examination revealed significant attenuation of retinal atrophy and lysosomal storage body accumulation in the treated eye compared with the untreated eye in CLN5-/- animals. This proof-of-concept study provides the first observation of efficacious intravitreal gene therapy in a large animal model of NCL. In particular, the single administration of AAV9-mediated intravitreal gene therapy can successfully ameliorate retinal deficits in CLN5-/- sheep. Combining ocular gene therapy with brain-directed therapy presents a promising treatment strategy to be used in future sheep trials aiming to halt neurological and retinal disease in CLN5 Batten disease.
Collapse
Affiliation(s)
- Samantha J Murray
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Katharina N Russell
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch and the New Zealand Brain Research Institute, Christchurch, 8011, New Zealand
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stephen J Heap
- McMaster & Heap Veterinary Practice, Christchurch, 8025, New Zealand
| | - David N Palmer
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand; Department of Radiology, University of Otago, Christchurch, 8140, New Zealand
| | - Nadia L Mitchell
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand; Department of Radiology, University of Otago, Christchurch, 8140, New Zealand.
| |
Collapse
|
14
|
Rigaudière F, Nasser H, Pichard-Oumlil S, Delouvrier E, Lopez-Hernandez E, Milani P, Auvin S, Delanoë C. Evolution of the retinal function by flash-ERG in one child suffering from neuronal ceroid lipofuscinosis CLN2 treated with cerliponase alpha: case report. Doc Ophthalmol 2021; 143:99-106. [PMID: 33956290 DOI: 10.1007/s10633-021-09825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/25/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Neuronal ceroid lipofuscinoses (CLN) are neurodegenerative disorders among the most frequent, inherited as an autosomal recessive trait. Affected patients can present with progressive decline in cognitive and motor functions, seizures, a shortened life span and visual deficiency. CLN2 is one of the rare CLN that benefits from treatment by cerliponase alpha an enzyme replacement therapy. Preliminary results on treated animal models have shown delayed neurological signs and prolonged life span. However, cerliponase alpha did not prevent vision loss or retinal degeneration in those animal models. Cerliponase alpha has currently been delivered to a few CLN2-affected patients. We report the case of one patient suffering from CLN2 treated with intracerebroventricular infusions of cerliponase alpha 300 mg every two weeks. Evolution of his retinal function was assessed by three successive flash-ERG and flash-VEP recordings throughout his treatment over a 4-year period. RESULTS Before treatment at the age of 4 years 5 months, patient's retinas were normal (normal fundi and normal flash-ERG). After 29 infusions at the age of 6 years 10 months, a-wave combined response was absent, while cone and flicker responses were normal. After 80 infusions at the age of 8 years 9 months, a-wave cone response was absent with b-wave peak time increased, and no combined response. COMMENTS Despite treatment, our patient's retinas showed a progressive abnormal and inhomogeneous function. Rods function was altered first, then the scotopic system and afterward, the cones. This result differs from those recorded in animal models. The relative preservation of cone functioning for a while could not be unequivocally attributed to enzyme replacement therapy as we lack comparison with the evolution of flash-ERGs recorded in untreated subjects.
Collapse
Affiliation(s)
- Florence Rigaudière
- Service de Physiologie Clinique. Explorations Fonctionnelles, Hôpital Lariboisière, AP-HP, Paris, France. .,Faculté de Médecine Paris-Diderot, Université de Paris, Paris, France. .,Service des Explorations Fonctionnelles, Hôpital Robert Debré, AP-HP, Paris, France.
| | - Hala Nasser
- Service des Explorations Fonctionnelles, Hôpital Robert Debré, AP-HP, Paris, France.,Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France
| | | | - Eliane Delouvrier
- Service d'Ophtalmologie Pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France
| | | | - Paolo Milani
- Service de Physiologie Clinique. Explorations Fonctionnelles, Hôpital Lariboisière, AP-HP, Paris, France
| | - Stéphane Auvin
- Faculté de Médecine Paris-Diderot, Université de Paris, Paris, France.,Neurologie Pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Catherine Delanoë
- Service des Explorations Fonctionnelles, Hôpital Robert Debré, AP-HP, Paris, France
| |
Collapse
|
15
|
Intravitreal enzyme replacement inhibits progression of retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2020; 198:108135. [PMID: 32634395 DOI: 10.1016/j.exer.2020.108135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/13/2023]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a rare recessive hereditary retinal and neurodegenerative disease resulting from deleterious sequence variants in TPP1 that encodes the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Children with this disorder develop normally, but starting at 2-4 years of age begin to exhibit neurological signs and visual deficits. Vision loss that progresses to blindness is associated with progressive retinal degeneration and impairment of retinal function. Similar progressive loss of retinal function and retinal degeneration occur in a dog CLN2 disease model with a TPP1 null sequence variant. Studies using the dog model were conducted to determine whether intravitreal injection of recombinant human TPP1 (rhTPP1) administered starting after onset of retinal functional impairment could slow or halt the progression of retinal functional decline and degeneration. TPP1-null dogs received intravitreal injections of rhTPP1 in one eye and vehicle in the other eye beginning at 23.5-25 weeks of age followed by second injections at 34-40 weeks in 3 out of 4 dogs. Ophthalmic exams, in vivo ocular imaging, and electroretinography (ERG) were repeated regularly to monitor retinal structure and function. Retinal histology was evaluated in eyes collected from these dogs when they were euthanized at end-stage neurological disease (40-45 weeks of age). Intravitreal rhTPP1 injections were effective in preserving retinal function (as measured with the electroretinogram) and retinal morphology for as long as 4 months after a single treatment. These findings indicate that intravitreal injection of rhTPP1 administered after partial loss of retinal function is an effective treatment for preserving retinal structure and function in canine CLN2 disease.
Collapse
|
16
|
Whiting REH, Pearce JW, Vansteenkiste DP, Bibi K, Lim S, Robinson Kick G, Castaner LJ, Sinclair J, Chandra S, Nguyen A, O'Neill CA, Katz ML. Intravitreal enzyme replacement preserves retinal structure and function in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2020; 197:108130. [PMID: 32622066 DOI: 10.1016/j.exer.2020.108130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disorder characterized by progressive vision loss, neurological decline, and seizures. CLN2 disease results from mutations in TPP1 that encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Children with CLN2 neuronal ceroid lipofuscinosis experience ocular disease, characterized by progressive retinal degeneration associated with impaired retinal function and gradual vision loss culminating in total blindness. A similar progressive loss of retinal function is also observed in a dog CLN2 model with a TPP1 null mutation. A study was conducted to evaluate the efficacy of periodic intravitreal injections of recombinant human (rh) TPP1 in inhibiting retinal degeneration and preserving retinal function in the canine model. TPP1 null dogs received periodic intravitreal injections of rhTPP1 in one eye and vehicle in the other eye beginning at approximately 12 weeks of age. Ophthalmic exams, in vivo ocular imaging, and electroretinography (ERG) were repeated regularly to monitor retinal structure and function. Retinal histology was evaluated in eyes collected from these dogs when they were euthanized at end-stage neurological disease (43-46 weeks of age). Intravitreal rhTPP1 dosing prevented disease-related declines in ERG amplitudes in the TPP1-treated eyes. At end-stage neurologic disease, TPP1-treated eyes retained normal morphology while the contralateral vehicle-treated eyes exhibited loss of inner retinal neurons and photoreceptor disorganization typical of CLN2 disease. The treatment also prevented the development of disease-related focal retinal detachments observed in the control eyes. Uveitis occurred secondary to the administration of the rhTPP1 but did not hinder the therapeutic benefits. These findings demonstrate that periodic intravitreal injection of rhTPP1 preserves retinal structure and function in canine CLN2 disease.
Collapse
Affiliation(s)
- Rebecca E H Whiting
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, USA
| | - Jacqueline W Pearce
- Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, USA
| | - Daniella P Vansteenkiste
- Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, USA
| | - Katherine Bibi
- Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, USA
| | - Stefanie Lim
- Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, USA
| | - Grace Robinson Kick
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, USA
| | | | | | | | | | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, USA.
| |
Collapse
|
17
|
Haney MJ, Zhao Y, Jin YS, Batrakova EV. Extracellular Vesicles as Drug Carriers for Enzyme Replacement Therapy to Treat CLN2 Batten Disease: Optimization of Drug Administration Routes. Cells 2020; 9:cells9051273. [PMID: 32443895 PMCID: PMC7290714 DOI: 10.3390/cells9051273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs). Herein, we incorporated TPP1 into EVs released by immune cells, macrophages, and examined biodistribution and therapeutic efficacy of EV-TPP1 in BD mouse model, using various routes of administration. Administration through intrathecal and intranasal routes resulted in high TPP1 accumulation in the brain, decreased neurodegeneration and neuroinflammation, and reduced aggregation of lysosomal storage material in BD mouse model, CLN2 knock-out mice. Parenteral intravenous and intraperitoneal administrations led to TPP1 delivery to peripheral organs: liver, kidney, spleen, and lungs. A combination of intrathecal and intraperitoneal EV-TPP1 injections significantly prolonged lifespan in BD mice. Overall, the optimization of treatment strategies is crucial for successful applications of EVs-based therapeutics for BD.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yeon S. Jin
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: ; Tel.: +919-537-3712
| |
Collapse
|
18
|
Liu W, Kleine-Holthaus SM, Herranz-Martin S, Aristorena M, Mole SE, Smith AJ, Ali RR, Rahim AA. Experimental gene therapies for the NCLs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165772. [PMID: 32220628 DOI: 10.1016/j.bbadis.2020.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.
Collapse
Affiliation(s)
- Wenfei Liu
- UCL School of Pharmacy, University College London, UK
| | | | - Saul Herranz-Martin
- UCL School of Pharmacy, University College London, UK; Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular,Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK.
| |
Collapse
|
19
|
Riva A, Guglielmo A, Balagura G, Marchese F, Amadori E, Iacomino M, Minassian BA, Zara F, Striano P. Emerging treatments for progressive myoclonus epilepsies. Expert Rev Neurother 2020; 20:341-350. [PMID: 32153206 DOI: 10.1080/14737175.2020.1741350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Progressive myoclonus epilepsies (PMEs) are a group of neurodegenerative diseases, invariably leading to severe disability or fatal outcome in a few years or decades. Nowadays, PMEs treatment remains challenging with a significant burden of disability for patients. Pharmacotherapy is primarily used to treat seizures, which impact patients' quality of life. However, new approaches have emerged in the last few years, which try to curb the neurological deterioration of PMEs through a better knowledge of the pathogenetic process. This is a review on the newest therapeutic options for the treatment of PMEs.Areas covered: Experimental and clinical results on novel therapeutic approaches for the different forms of PME are reviewed and discussed. Special attention is primarily focused on the efficacy and tolerability outcomes, trying to infer the role novel approaches may have in the future.Expert opinion: The large heterogeneity of disease-causing mechanisms prevents researchers from identifying a single approach to treat PMEs. Understanding of pathophysiologic processes is leading the way to targeted therapies, which, through enzyme replacement or underlying gene defect correction have already proved to potentially strike on neurodegeneration.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Alberto Guglielmo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Marchese
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Berge Arakel Minassian
- Pediatric Neurology, University of Texas Southwestern and Dallas Children's Medical Center, Dallas, TX, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Medical Genetics, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
21
|
Mice deficient in the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) display a complex retinal phenotype. Sci Rep 2019; 9:14185. [PMID: 31578378 PMCID: PMC6775149 DOI: 10.1038/s41598-019-50726-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) type 1 (CLN1) is a neurodegenerative storage disorder caused by mutations in the gene encoding the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients suffer from brain atrophy, mental and motor retardation, seizures, and retinal degeneration ultimately resulting in blindness. Here, we performed an in-depth analysis of the retinal phenotype of a PPT1-deficient mouse, an animal model of this condition. Reactive astrogliosis and microgliosis were evident in mutant retinas prior to the onset of retinal cell loss. Progressive accumulation of storage material, a pronounced dysregulation of various lysosomal proteins, and accumulation of sequestosome/p62-positive aggregates in the inner nuclear layer also preceded retinal degeneration. At advanced stages of the disease, the mutant retina was characterized by a significant loss of ganglion cells, rod and cone photoreceptor cells, and rod and cone bipolar cells. Results demonstrate that PPT1 dysfunction results in early-onset pathological alterations in the mutant retina, followed by a progressive degeneration of various retinal cell types at relatively late stages of the disease. Data will serve as a reference for future work aimed at developing therapeutic strategies for the treatment of retinal degeneration in CLN1 disease.
Collapse
|
22
|
Haney MJ, Klyachko NL, Harrison EB, Zhao Y, Kabanov AV, Batrakova EV. TPP1 Delivery to Lysosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease. Adv Healthc Mater 2019; 8:e1801271. [PMID: 30997751 PMCID: PMC6584948 DOI: 10.1002/adhm.201801271] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are promising natural nanocarriers for delivery of various types of therapeutics. Earlier engineered EV-based formulations for neurodegenerative diseases and cancer are reported. Herein, the use of macrophage-derived EVs for brain delivery of a soluble lysosomal enzyme tripeptidyl peptidase-1, TPP1, to treat a lysosomal storage disorder, Neuronal Ceroid Lipofuscinoses 2 (CLN2) or Batten disease, is investigated. TPP1 is loaded into EVs using two methods: i) transfection of parental EV-producing macrophages with TPP1-encoding plasmid DNA (pDNA) or ii) incorporation therapeutic protein TPP1 into naive empty EVs. For the former approach, EVs released by pretransfected macrophages contain the active enzyme and TPP1-encoding pDNA. To achieve high loading efficiency by the latter approach, sonication or permeabilization of EV membranes with saponin is utilized. Both methods provide proficient incorporation of functional TPP1 into EVs (EV-TPP1). EVs significantly increase stability of TPP1 against protease degradation and provide efficient TPP1 delivery to target cells in in vitro model of CLN2. The majority of EV-TPP1 (≈70%) is delivered to target organelles, lysosomes. Finally, a robust brain accumulation of EV carriers and increased lifespan is recorded in late-infantile neuronal ceroid lipofuscinosis (LINCL) mouse model following intraperitoneal administration of EV-TPP1.
Collapse
Affiliation(s)
- Matthew J Haney
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalia L Klyachko
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Deparment of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Emily B Harrison
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Deparment of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
23
|
Nagree MS, Scalia S, McKillop WM, Medin JA. An update on gene therapy for lysosomal storage disorders. Expert Opin Biol Ther 2019; 19:655-670. [DOI: 10.1080/14712598.2019.1607837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Murtaza S. Nagree
- Department of Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
| | - Simone Scalia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
| | | | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee,
WI, USA
| |
Collapse
|
24
|
Villani NA, Bullock G, Michaels JR, Yamato O, O'Brien DP, Mhlanga-Mutangadura T, Johnson GS, Katz ML. A mixed breed dog with neuronal ceroid lipofuscinosis is homozygous for a CLN5 nonsense mutation previously identified in Border Collies and Australian Cattle Dogs. Mol Genet Metab 2019; 127:107-115. [PMID: 31101435 PMCID: PMC6555421 DOI: 10.1016/j.ymgme.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by progressive declines in neurological functions following normal development. The NCLs are distinguished from similar disorders by the accumulation of autofluorescent lysosomal storage bodies in neurons and many other cell types, and are classified as lysosomal storage diseases. At least 13 genes contain pathogenic sequence variants that underlie different forms of NCL. Naturally occurring canine NCLs can serve as models to develop better understanding of the disease pathologies and for preclinical evaluation of therapeutic interventions for these disorders. To date 14 sequence variants in 8 canine orthologs of human NCL genes have been found to cause progressive neurological disorders similar to human NCLs in 12 different dog breeds. A mixed breed dog with parents of uncertain breed background developed progressive neurological signs consistent with NCL starting at approximately 11 to 12 months of age, and when evaluated with magnetic resonance imaging at 21 months of age exhibited diffuse brain atrophy. Due to the severity of neurological decline the dog was euthanized at 23 months of age. Cerebellar and cerebral cortical neurons contained massive accumulations of autofluorescent storage bodies the contents of which had the appearance of tightly packed membranes. A whole genome sequence, generated with DNA from the affected dog contained a homozygous C-to-T transition at position 30,574,637 on chromosome 22 which is reflected in the mature CLN5 transcript (CLN5: c.619C > T) and converts a glutamine codon to a termination codon (p.Gln207Ter). The identical nonsense mutation has been previously associated with NCL in Border Collies, Australian Cattle Dogs, and a German Shepherd-Australian Cattle Dog mix. The current whole genome sequence and a previously generated whole genome sequence for an Australian Cattle Dog with NCL share a rare homozygous haplotype that extends for 87 kb surrounding 22: 30, 574, 637 and includes 21 polymorphic sites. When genotyped at 7 of these polymorphic sites, DNA samples from the German Shepherd-Australian Cattle Dog mix and from 5 Border Collies with NCL that were homozygous for the CLN5: c.619 T allele also shared this homozygous haplotype, suggesting that the NCL in all of these dogs stems from the same founding mutation event that may have predated the establishment of the modern dog breeds. If so, the CLN5 nonsence allele is probably segregating in other, as yet unidentified, breeds. Thus, dogs exhibiting similar NCL-like signs should be screened for this CLN5 nonsense allele regardless of breed.
Collapse
Affiliation(s)
- Natalie A Villani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Garrett Bullock
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Osamu Yamato
- Laboratory of Clinical Pathology, Kagoshima University, Kagoshima, Japan
| | - Dennis P O'Brien
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Gary S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Martin L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
25
|
Donsante A, Boulis NM. Progress in gene and cell therapies for the neuronal ceroid lipofuscinoses. Expert Opin Biol Ther 2018; 18:755-764. [PMID: 29936867 DOI: 10.1080/14712598.2018.1492544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The neuronal ceroid lipofuscinoses (NCLs) are a subset of lysosomal storage diseases (LSDs) that cause myoclonic epilepsy, loss of cognitive and motor function, degeneration of the retina leading to blindness, and early death. Most are caused by loss-of-function mutations in either lysosomal proteins or transmembrane proteins. Current therapies are supportive in nature. NCLs involving lysosomal enzymes are amenable to therapies that provide an exogenous source of protein, as has been used for other LSDs. Those that involve transmembrane proteins, however, require new approaches. AREAS COVERED This review will discuss potential gene and cell therapy approaches that have been, are, or may be in development for these disorders and those that have entered clinical trials. EXPERT OPINION In animal models, gene therapy approaches have produced remarkable improvements in neurological function and lifespan. However, a complete cure has not been reached for any NCL, and a better understanding of the limits of the current crop of vectors is needed to more fully address these diseases. The prospects for gene therapy, particularly those that can be delivered systemically and treat both the brain and peripheral tissue, are high. The future is beginning to look bright for NCL patients and their families.
Collapse
Affiliation(s)
- Anthony Donsante
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Nicholas M Boulis
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
26
|
CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017; 37:417-423. [PMID: 27753762 DOI: 10.1097/iae.0000000000001341] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Collapse
|
27
|
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K. Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 2017; 108:277-287. [PMID: 28860089 DOI: 10.1016/j.nbd.2017.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Eline Rustad
- Blue Star Animal Hospital, Göteborg 417 07, Sweden
| | - Grace O Robinson
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca E H Whiting
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jeffrey T Student
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristina Narfstrom
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
28
|
Magrinelli F, Pezzini F, Moro F, Santorelli FM, Simonati A. Diagnostic methods and emerging treatments for adult neuronal ceroid lipofuscinoses (Kufs disease). Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1325359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Moro
- Molecular Medicine and Neurogenetics Unit, IRCCS Stella Maris, Pisa, Italy
| | | | - Alessandro Simonati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression. Gene Ther 2017; 24:215-223. [PMID: 28079862 PMCID: PMC5398942 DOI: 10.1038/gt.2017.4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a hereditary lysosomal storage disease with primarily neurological signs that results from mutations in TPP1, which encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Studies using a canine model for this disorder demonstrated that delivery of TPP1 enzyme to the cerebrospinal fluid (CSF) by intracerebroventricular administration of an AAV-TPP1 vector resulted in substantial delays in the onset and progression of neurological signs and prolongation of life span. We hypothesized that the treatment may not deliver therapeutic levels of this protein to tissues outside the central nervous system that also require TPP1 for normal lysosomal function. To test this hypothesis, dogs treated with CSF administration of AAV-TPP1 were evaluated for the development of non-neuronal pathology. Affected treated dogs exhibited progressive cardiac pathology reflected by elevated plasma cardiac troponin-1, impaired cardiac function and development of histopathological myocardial lesions. Progressive increases in the plasma activity levels of alanine aminotransferase and creatine kinase indicated development of pathology in the liver and muscles. The treatment also did not prevent disease-related accumulation of lysosomal storage bodies in the heart or liver. These studies indicate that optimal treatment outcomes for CLN2 disease may require delivery of TPP1 systemically as well as directly to the central nervous system.
Collapse
|
30
|
Gonzalez EA, Baldo G. Gene Therapy for Lysosomal Storage Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409816689786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Genetic and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Genetic and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2016; 152:77-87. [DOI: 10.1016/j.exer.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
32
|
Phillips JE, Gomer RH. A canine model for neuronal ceroid lipofuscinosis highlights the promise of gene therapy for lysosomal storage diseases. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S20. [PMID: 27867988 PMCID: PMC5104632 DOI: 10.21037/atm.2016.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 07/28/2023]
Affiliation(s)
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|