1
|
Ye X, Chen S, Xiong W, Wang F, Chan HF, Lai H, Guo X, Yang T, Shen S, Chen H, Wang W, Liu GS, Guo Y, Chen J. Magnetic-Guided Delivery of Antisense Oligonucleotides for Targeted Transduction in Multiple Retinal Explant and Organoid Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417363. [PMID: 40278802 DOI: 10.1002/advs.202417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Antisense oligonucleotide (ASO) therapy holds promise in gene therapy but faces challenges due to poor delivery efficiency and limited evaluation models. This investigation employs magnetic nanoparticles (MNPs) to augment the delivery efficiency of ASOs. It assesses their distribution and therapeutic efficacy across various models, including retinal explants from mice and macaques or human retinal and inner ear organoids. Retinal explants from both mice and monkeys are methodically arranged to expose the ganglion cell layer (GCL) or the photoreceptor layer (PL). MNPs markedly enhanced the penetration and targeting of ASOs, resulting in a 60% accumulation in the GCL or 72% in the photoreceptors. Furthermore, an in vitro biomimetic model of the neuroretina-RPE/choroid-sclera complex is developed to examine ASO distribution under dynamic flow conditions. Moreover, the utilization of MNP-assisted ASO-Cy3 markedly enhanced transfection efficiency within human retinal and inner ear organoids, resulting in an increase in positively transfected cells to 60% and 70%, respectively. Here, for the first time, an MNP-explant-organoid platform is carried out for the promotion of ASO transfection efficiency, therapeutic screening and targeted delivery. This development paves the way for investigating novel gene therapy strategies targeting retinal diseases.
Collapse
Affiliation(s)
- Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Fan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Haocheng Lai
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510000, China
| | - Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Guei-Sheung Liu
- Aier Eye Institute, Aier Eye Hospital Group Co., Ltd., Changsha, 410000, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3010, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiansu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China
- Aier Eye Institute, Aier Eye Hospital Group Co., Ltd., Changsha, 410000, China
| |
Collapse
|
2
|
Alijanzadeh M, Griffiths MD, Abbasi M, Kakavand E, Khaleghi A, Mirfakhar SM, Karimi F, Amini B, Zolfali A, Vaydar R, Moradi H, Allahverdilo O, Jafari E, Alimoradi Z. Prevalence of Vision Problems Among School-Entering Children and Association with Socio-Demographic Characteristics: An Iranian Population-Based Cross-Sectional Study. Ophthalmic Epidemiol 2025:1-8. [PMID: 40183292 DOI: 10.1080/09286586.2025.2484757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE Early detection of visual disorders in children and related factors is important to minimize future problems in academic performance and social life. The present study aimed to determine the prevalence of vision problems among school-entering children, and their association with socio-demographic characteristics. METHODS A population-based cross-sectional study was conducted in Qazvin province between June and November 2023. The research participants were school-entering children and their parents recruited using random quota multi-stage sampling. Data were collected by interviewing parents including demographic characteristics, children's vision status, family history of vision problems, and daily hours of using the internet and/or playing videogames by children. Data were analyzed using multivariate multi-nominal logistic regression. RESULTS A total of 5141 parents of school-entering children participated. The prevalence of wearing glasses and suspected visual impairment was 2.2% and 6.7%, respectively. The odds of using eyeglasses among boys was 38% lower than among girls (p = 0.014). The odds of using eyeglasses was 3.5 times higher if there was a history of vision disorders in other children in the family (p < 0.001) and 90% more likely if there was a history of vision disorders among the parents (p = 0.002). The odds of using eyeglasses increased 5% with each unit increase in children's BMI. The odds of suspected vision problems increased by 39% and 3% with each year of age of the child and their mother (p = 0.001 and p = 0.034 respectively). The odds of suspected visual problems was 90% higher among urban vs. rural children (p < 0.001) and 58% higher if there was a history of vision disorders among other children in the family (p = 0.029). CONCLUSION The present study identified socio-demographic predictors of having vision disorder among school-entering children based on information provided by their parents. Although vision health screening is carried out as part of the health assessment program for children upon entering school in Iran, high-risk individuals should not to postpone their children's vision examinations until they enter school and should have eye examinations at a younger age.
Collapse
Affiliation(s)
- Mehran Alijanzadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mark D Griffiths
- International Gaming Research Unit, Psychology Department, Nottingham Trent University, Nottingham, UK
| | - Mojgan Abbasi
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Elham Kakavand
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Ameneh Khaleghi
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | | | - Fahimeh Karimi
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Baharh Amini
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Azar Zolfali
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Roghayeh Vaydar
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Hanieh Moradi
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Ozra Allahverdilo
- Deputy of Health, Qazvin University of Medical Science, Qazvin, Iran
| | - Elahe Jafari
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zainab Alimoradi
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
3
|
Hung JH, Jain T, Khatri A, Nguyen BT, Nguyen CDT, Yavari N, Mobasserian A, Karaca I, Saeed Mohammadi S, Gupta AS, Or CMC, Akhavanrezayat A, Yasar C, Saengsirinavin AO, Than NTT, Anover FA, Elaraby O, El Feky D, Yoo WS, Zhang X, Thng ZX, Do DV, Nguyen QD. Inherited retinal disease-associated uveitis. Surv Ophthalmol 2025:S0039-6257(25)00057-8. [PMID: 40157547 DOI: 10.1016/j.survophthal.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Inherited retinal diseases (IRDs) are genetic disorders characterized by progressive photoreceptor function loss, often leading to significant visual impairment. Uveitis has been increasingly recognized in the clinical course of some IRDs. Despite advances in understanding the genetic causes and pathophysiology of IRDs, gaps remain in understanding the roles of inflammation and autoimmunity in IRD and IRD-associated uveitis. This review discusses IRD-associated uveitis, including anterior, intermediate, posterior, and panuveitis, as well as complications such as cystoid macular edema and retinal vasculitis. In patients with IRD-associated uveitis, mutations affecting protein function in cilia or photoreceptor outer segments suggest a universal autoimmune mechanism triggered by the immunogenicity of shedding photoreceptor discs. Notably, in patients where uveitis is the initial sign, CRB1 mutations are often implicated, likely due to the compromised blood-retina barrier function or alterations in the external limiting membrane. Other mechanisms leading to uveitis preceding IRD diagnosis include ALPK1 mutations, which activate the proinflammatory NF-κB pathway, CAPN5 mutations, which lead to dysfunction of the innate and adaptive immune systems, and VCAN1 mutations, which elicit immunogenicity due to irregularities in vitreous modeling. Understanding these mechanisms could enhance the development of innovative treatments that target personalized inflammation pathways in IRDs.
Collapse
Affiliation(s)
- Jia-Horung Hung
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tanya Jain
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Anadi Khatri
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Birat Eye Hospital, Biratnagar, Nepal; Gautam Buddha Eye care centre, Lumbini, Nepal
| | - Ba Trung Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Ophthalmology, Viet Nam National Children's Hospital, Ha Noi, Viet Nam
| | | | - Negin Yavari
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Azadeh Mobasserian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Irmak Karaca
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, US
| | - S Saeed Mohammadi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ankur Sudhir Gupta
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chi Mong Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Akhavanrezayat
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cigdem Yasar
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aim-On Saengsirinavin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Police General Hospital, Bangkok, Thailand
| | - Ngoc Trong Tuong Than
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Frances Andrea Anover
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Batangas Medical Center, Batangas, Philippines
| | - Osama Elaraby
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dalia El Feky
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Woong-Sun Yoo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Ophthalmology, Gyeongsang National University College of Medicine, and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Xiaoyan Zhang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Zheng Xian Thng
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Diana V Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Levine ES, Shah ND, Salcone EM. Optic Nerve Coloboma in a Child With Compound Heterozygous USH2A Variants. Case Rep Genet 2025; 2025:4667935. [PMID: 40225234 PMCID: PMC11991843 DOI: 10.1155/crig/4667935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
We present a case of an optic nerve coloboma in a 10-month-old girl found to have compound heterozygous USH2A variants. There were no other dysmorphic features or ocular developmental anomalies. To our knowledge, this is the first report in literature of a concomitant optic nerve coloboma in a case of nonsyndromic retinitis pigmentosa related to USH2A variants.
Collapse
Affiliation(s)
- Emily S. Levine
- Section of Ophthalmology, Department of Surgery, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Nidhi D. Shah
- Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Erin M. Salcone
- Section of Ophthalmology, Department of Surgery, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
5
|
Heyang M, Warren JL, Ocieczek P, Duncan JL, Moosajee M, Del Priore LV, Shen LL. Long-term natural history of ellipsoid zone width in USH2A-retinopathy. Br J Ophthalmol 2025; 109:383-390. [PMID: 39103200 PMCID: PMC11866300 DOI: 10.1136/bjo-2024-325323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
AIMS To investigate the long-term natural history of ellipsoid zone (EZ) width in USH2A-retinopathy. METHODS EZ width measurements from optical coherence tomography were retrospectively obtained from 110 eyes of 55 participants with molecularly confirmed biallelic USH2A-retinopathy. We used a hierarchical Bayesian method to construct and compare different mathematical models describing the long-term decline of EZ width. RESULTS Compared with linear and quadratic models, exponential decline best represented the long-term loss of EZ width based on the deviance information criterion score. Log-transformed EZ width declined linearly over 30 years of inferred disease duration (median: 0.063 (IQR: 0.040-0.086) log (µm)/year). Compared with the raw EZ width decline rate, the log-transformed EZ width decline rate required 48% fewer patients to achieve an identically powered 1-year trial (38 vs 73 participants). Log EZ width decline rate was uncoupled from baseline EZ width (Spearman ρ=-0.18, p=0.06) and age (ρ=-0.10, p=0.31). Eyes with Usher syndrome exhibited earlier median onset ages of macular EZ width loss (18.8 (IQR: 13.1-24.7) vs 28.1 (IQR: 18.5-35.8) years, p<0.001) but comparable log EZ width decline rates (0.060 (IQR: 0.035-0.100) vs 0.065 (IQR: 0.050-0.079) log (µm)/year; p=0.42). CONCLUSIONS EZ width follows an exponential decline in USH2A-retinopathy. Compared with raw EZ width decline rate, log-transformed EZ width decline rate may be a superior endpoint for clinical trials. Syndromic eyes exhibit an earlier onset of macular EZ width loss but progress at comparable rates to non-syndromic eyes.
Collapse
Affiliation(s)
- Michael Heyang
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | | | - Jacque L Duncan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut, USA
| | - Liangbo Linus Shen
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Livingston CA, Weng CY, Chancellor JR. Retinitis Pigmentosa and Therapeutic Candidates. Int Ophthalmol Clin 2025; 65:17-21. [PMID: 39710900 DOI: 10.1097/iio.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Retinitis pigmentosa (RP) is a class of inherited retinal dystrophies (IRDs) that involves the degeneration of retinal photoreceptor cells and results in progressive vision loss. It was identified and named in 1857. For over 100 years, treatment of RP was generally limited to modifications in diet, management of cystoid macular edema, and supportive care for low vision. Over the last several decades, advances in technology and our understanding of the human genome have led to a host of new therapeutic candidates for the treatment of RP. This includes gene and cell therapy, optogenetics, neuroprotective agents, and electronic retinal implants. In this article, we summarize both the traditional and novel therapeutic modalities for the treatment of retinitis pigmentosa.
Collapse
|
7
|
Wei SC, Cantor AJ, Walleshauser J, Mepani R, Melton K, Bans A, Khekare P, Gupta S, Wang J, Soares C, Kiwan R, Lee J, McCawley S, Jani V, Leong WI, Shahi PK, Chan J, Boivin P, Otoupal P, Pattnaik BR, Gamm DM, Saha K, Gowen BG, Haak-Frendscho M, Janatpour MJ, Silverman AP. Evaluation of subretinally delivered Cas9 ribonucleoproteins in murine and porcine animal models highlights key considerations for therapeutic translation of genetic medicines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630799. [PMID: 39803585 PMCID: PMC11722268 DOI: 10.1101/2024.12.30.630799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species. Editing occurs in retinal pigmented epithelium (RPE) and photoreceptor cells, with favorable tolerability in both species. Using transgenic reporter strains, we determine that editing primarily occurs close to the site of administration, within the bleb region associated with subretinal injection. Our results show that subretinal administration of eRNPs in mice mediates base editing of up to 12% of the total neural retina, with an average rate of 7% observed at the highest dose tested. In contrast, a substantially lower editing efficiency was observed in minipigs; even with direct quantification of only the treated region, a maximum base editing rate of 1.5%, with an average rate of <1%, was observed. Our data highlight the importance of species consideration in translational studies for genetic medicines targeting the eye and provide an example of a lack of translation between small and larger animal models in the context of subretinal administration of Cas9 eRNPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashil Bans
- Spotlight Therapeutics, Hayward, CA, USA
| | | | | | | | | | | | - Jieun Lee
- Spotlight Therapeutics, Hayward, CA, USA
| | | | | | | | - Pawan K. Shahi
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jean Chan
- Spotlight Therapeutics, Hayward, CA, USA
| | | | | | - Bikash R. Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - David M. Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
8
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
García-Bohórquez B, Barberán-Martínez P, Aller E, Jaijo T, Mínguez P, Rodilla C, Fernández-Caballero L, Blanco-Kelly F, Ayuso C, Sanchis-Juan A, Broekman S, de Vrieze E, van Wijk E, García-García G, Millán JM. Exploring non-coding variants and evaluation of antisense oligonucleotides for splicing redirection in Usher syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102374. [PMID: 39629117 PMCID: PMC11612772 DOI: 10.1016/j.omtn.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Exploring non-coding regions is increasingly gaining importance in the diagnosis of inherited retinal dystrophies. Deep-intronic variants causing aberrant splicing have been identified, prompting the development of antisense oligonucleotides (ASOs) to modulate splicing. We performed a screening of five previously described USH2A deep-intronic variants among USH2A monoallelic patients with Usher syndrome (USH) or isolated retinitis pigmentosa. Sequencing of entire USH2A or USH genes was then conducted in unresolved or newly monoallelic cases. The splicing impact of identified variants was assessed using minigene assays, and ASOs were designed to correct splicing. The screening allowed to diagnose 30.95% of the studied patients. The sequencing of USH genes revealed 16 new variants predicted to affect splicing, with four confirmed to affect splicing through minigene assays. Two of them were unreported deep-intronic variants and predicted to include a pseudoexon in the pre-mRNA, and the other two could alter a regulatory cis-element. ASOs designed for three USH2A deep-intronic variants successfully redirected splicing in vitro. Our study demonstrates the improvement in genetic characterization of IRDs when analyzing non-coding regions, highlighting that deep-intronic variants significantly contribute to USH2A pathogenicity. Furthermore, successful splicing modulation through ASOs highlights their therapeutic potential for patients carrying deep-intronic variants.
Collapse
Affiliation(s)
- Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Pilar Barberán-Martínez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Pablo Mínguez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Cristina Rodilla
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lidia Fernández-Caballero
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| |
Collapse
|
10
|
Moreker MR. Authors' Response: The disastrous triple hit-taxane-induced retinal toxicity in a patient with breast cancer and a pathogenic USH2A variant. Indian J Ophthalmol 2024; 72:1835-1836. [PMID: 39620689 PMCID: PMC11727962 DOI: 10.4103/ijo.ijo_2079_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Mayur R Moreker
- Department of Ophthalmology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Watanabe R, Miura N, Kurata M, Kitazawa R, Kikugawa T, Saika T. Genetic Analysis of Intraductal Carcinoma of the Prostate Detected in High-Grade Prostatic Intraepithelial Neoplasia Cases. Cureus 2024; 16:e76165. [PMID: 39840193 PMCID: PMC11747056 DOI: 10.7759/cureus.76165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/23/2025] Open
Abstract
Background The accurate diagnosis of intraductal carcinoma of the prostate (IDC-P) is occasionally challenging due to the similarity in pathological morphology between IDC-P and high-grade prostatic intraepithelial neoplasia (HGPIN). In this report, we reviewed the pathology of cases previously diagnosed as HGPIN to search for IDC-P cases effectively. In addition, we examined whether those cases had genetic abnormalities. Methods We reviewed 98 patients with HGPIN who underwent prostatectomy at our hospital between 2011 and 2021. They were reviewed by three pathologists to search for IDC-P findings by adding immunostaining for basement membrane markers. Genetic testing of prostatectomy specimens was performed to identify the presence of gene mutations. Results The typical IDC-P was diagnosed in two of the 98 patients. The Gleason score of background prostate cancer (PCa) was 4+5 and 4+4. Genetic testing revealed several mutations in DNA repair-related genes, such as CHEK2, FANCC, TOE1, RECQL, USG2A, and PRPF31. The pathological significance of these mutations has conflicting interpretations, as referenced in the ClinVar. Conclusions IDC-P cases can be identified from past HGPIN cases, and cases with genetic abnormalities of conflicting pathological significance can be efficiently detected. Accurate diagnosis of IDC-P enables early intervention with precision medicine for PCa. It is useful to pay attention to HGPIN cases to avoid missing true IDC-P.
Collapse
Affiliation(s)
- Ryuta Watanabe
- Department of Urology, Ehime University Graduate School of Medicine, Toon, JPN
| | - Noriyoshi Miura
- Department of Urology, Ehime University Graduate School of Medicine, Toon, JPN
| | - Mie Kurata
- Department of Analytical Pathology, Ehime University Graduate School of Medicine, Toon, JPN
| | - Riko Kitazawa
- Department of Diagnostic Pathology, Ehime University Hospital, Toon, JPN
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, JPN
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, JPN
| |
Collapse
|
12
|
Bhat R, Nallamothu B, Shethia F, Chhaya V, Khambholja K. Key challenges in developing a gene therapy for Usher syndrome: machine-assisted scoping review. J Community Genet 2024; 15:735-747. [PMID: 39549230 PMCID: PMC11645336 DOI: 10.1007/s12687-024-00749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Despite compelling empirical evidence demonstrating its efficacy, gene therapies for usher syndrome (USH) are not yet available for the patient's usage. This scoping review assessed the current scenario and analysed the challenges in implementing gene therapies for USH. A literature search was conducted using PubMed and Google Scholar through an artificial intelligence (AI) tool, MaiA, focusing on relevant publications from the last 10 years. We followed the methodological guidance of the Joanna Briggs Institute (JBI) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) checklist. Of 517 records, 51 reports were considered for final analysis. It identified and categorized challenges across four key areas: preclinical, clinical, economic, and regulatory. Of all, many reports (30) highlighted the preclinical challenges where the USH gene development process encountered roadblocks. Specifically, preclinical challenges included the lack of suitable in-vivo models and effective delivery methods. Clinical challenges focused on establishing clear endpoints and long-term safety and efficacy. Economic challenges addressed diagnostic issues and manufacturing hurdles, while regulatory challenges focused on expedited evaluation processes and guidance for clinical development. Our analysis uncovered key barriers to clinical translation of USH gene therapy and strategies to address them. Researchers are employing innovative approaches, including novel delivery methods such as minigenes and nanoparticles, inventive clinical trial designs, cohesive regulatory frameworks, strategic market assessments, and collaborative research initiatives. These efforts hold promise for impactful disease-cure and modifying interventions ultimately enhancing the quality of life for USH patients.
Collapse
Affiliation(s)
| | | | - Foram Shethia
- Catalyst Clinical Research, Vadodara, Gujarat, India
| | - Vatsal Chhaya
- Catalyst Clinical Research, Vadodara, Gujarat, India
| | | |
Collapse
|
13
|
Ogorodova N, Stepanova A, Kadyshev V, Kuznetsova S, Ismagilova O, Chukhrova A, Polyakov A, Kutsev S, Shchagina O. A Comparative Evaluation of the Genetic Variant Spectrum in the USH2A Gene in Russian Patients with Isolated and Syndromic Forms of Retinitis Pigmentosa. Int J Mol Sci 2024; 25:12169. [PMID: 39596236 PMCID: PMC11595071 DOI: 10.3390/ijms252212169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Pathogenic variants in the USH2A gene are the primary cause of both non-syndromic autosomal recessive inherited retinitis pigmentosa (RP) and the syndromic form, characterized by retinal degeneration and sensorineural hearing loss. This study presents a comparative assessment of the genetic variant spectrum in the USH2A gene among Russian patients in two clinical groups. A retrospective analysis was conducted on massive parallel panel sequencing data from 2415 blood samples of unrelated patients suspected of having hereditary retinal diseases. The copy number of USH2A exons was determined using the quantitative MLPA method with the MRC-Holland SALSA MLPA kit. Biallelic pathogenic and likely pathogenic variants in the USH2A gene were identified in 69 patients (8.7%). In the group of patients with isolated hereditary RP (55 patients), the most frequent pathogenic variants were p.(Glu4445_Ser4449delinsAspLeu) (20.9%), p.(Trp3955*) (15.5%), and p.(Cys934Trp) (5.5%). In patients with the syndromic form (14 patients), the most frequent variants were p.(Trp3955*) (35.7%) and c.8682-9A>G (17.9%). It was found that patients with isolated vision impairment rarely had two "null" variants (17.8%), whereas this was common among patients with both hearing and vision impairment (71.4%) (p ≤ 0.05), explaining the severity of the disease and the earlier onset of clinical symptoms in the syndromic form of RP. Ten previously undescribed loss-of-function variants were identified. The estimated prevalence of USH2A-associated retinal dystrophy in Russia was 1.9 per 100,000 individuals. The obtained data on the differences in the spectra of genetic variants in the USH2A gene in the two studied groups highlight the importance of establishing genotype-phenotype correlations and predicting disease severity, aiming at potential early cochlear implantation and selection of target therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Olga Shchagina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (N.O.)
| |
Collapse
|
14
|
Li S, Jiang Y, Zhang L, Yan W, Wei D, Zhang M, Zhu B, Chen T, Wang X, Zhang Z, Su Y. A New Mouse Model for Usher Syndrome Crossing Kunming Mice with CBA/J Mice. Gene 2024; 922:148562. [PMID: 38754567 DOI: 10.1016/j.gene.2024.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.
Collapse
Affiliation(s)
- Shaoheng Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Weiming Yan
- The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350000, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Bin Zhu
- Outpatient Department, General Hospital of Xizang Military Region, Lhasa 850007, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Nair PP, Keskar MP, Borghare PT, Dzoagbe HY, Kumar T. The New Era of Therapeutic Strategies for the Management of Retinitis Pigmentosa: A Narrative Review of the Pathomolecular Mechanism for Gene Therapies. Cureus 2024; 16:e66814. [PMID: 39280562 PMCID: PMC11393205 DOI: 10.7759/cureus.66814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/18/2024] Open
Abstract
Retinitis pigmentosa, or RP, is a group of inherited retinal degenerations involving progressive loss of photoreceptor cells- rods and cones- ultimately causing severe vision loss and blindness. RP, although a very common ailment, continues to be an incurable disease with little to be done medically. However, with the breakthroughs in gene therapy and stem cell transplantation in recent years, a new door has been opened to the treatment of RP. This narrative review summarizes the pathomolecular mechanisms of RP, focusing on the genetic and molecular abnormalities that lead to the process of retinal degeneration. In this section, we talk about the current theories of how RP develops, gene mutations, oxidative stress, and inflammation. We also delve into new therapeutic approaches such as gene therapy, stem cell transplantation and genome surgery, which are designed to either replace or repair the damaged photoreceptors to restore vision and ultimately enhance the life of the RP patient. Another topic covered is the obstacles and research frontiers of these revolutionary treatments. This article is intended to give a complete overview of the molecular processes of RP and the promising treatment strategies that could change the way this devastating disease is treated.
Collapse
Affiliation(s)
- Praveena P Nair
- Otolaryngology, Mandsaur Institute of Ayurved Education and Research, Bhunyakhedi, IND
- Otolaryngology, Parul Institute of Ayurved, Parul University, Limda, IND
| | - Manjiri P Keskar
- Otolaryngology, Parul institute of Ayurved, Parul University, Limda, IND
| | - Pramod T Borghare
- Otolaryngology, Mahatma Gandhi Ayurved College Hospital and Research, Wardha, IND
| | - Hellen Y Dzoagbe
- Anatomy, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanish Kumar
- Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
17
|
Zhuri D, Guler HS, Yalcintepe S, Demir S, Atli E, Atli EI, Gurkan H. Investigation of Targeted Genes and Identification of Novel Variants with Next Generation Sequencing Method in Hearing Loss. J Int Adv Otol 2024; 20:312-324. [PMID: 39161163 PMCID: PMC11363168 DOI: 10.5152/iao.2024.22919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/10/2024] [Indexed: 08/21/2024] Open
Abstract
Hearing loss is a widespread condition throughout the world. It may affect patients from newborns to the elderly. There are too many reasons for hearing loss, including congenital hearing loss, virus infections, age-related situations, and traumatic situations, which may be related to the immune-mediated system. Fifty percent of hearing loss is related to genetic mutations and defects; genetic causes are highly heterogeneous, so the analysis of new variants are important for diagnosis. We aimed to describe the importance of detected gene variations by using targeted gene panels in the Next-Generation-Sequencing (NGS) platform. Eighty-one hearing loss targeted genes were investigated using Illumina NextSeq550 technology in 100 participants with hearing loss between 2017 and 2022 in our Genetic Diseases Evaluation Center. Targeted genes were performed on 100 patients with hearing loss diagnosis. The total number of detected variants was 77. Forty-seven cases have likely pathogenic/pathogenic variants. Thirty of them have uncertain clinical significance variants, and from the detected variants, 8 are novel. In this research, we highlighted that earlier detection of hearing loss using molecular genetic methods may help us understand the etiology and orient for a better prognosis. Results detected by using the NGS platform can assist and improve the diagnosis. In this study, the diagnostic rate with targeted genes was detected as 35.29%. It has an important role in clinical practice as the recommendation of cochlear implants. Clarifying the genotype and phenotype correlation helps us figure out the etiology of hearing loss and also the worth of genetic counseling in hereditary hearing loss.
Collapse
Affiliation(s)
- Drenushe Zhuri
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Hazal Sezginer Guler
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Sinem Yalcintepe
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Selma Demir
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Engin Atli
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Emine Ikbal Atli
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Hakan Gurkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Türkiye
| |
Collapse
|
18
|
Chandrasekhar S, Lin S, Jurkute N, Oprych K, Estramiana Elorrieta L, Schiff E, Malka S, Wright G, Michaelides M, Mahroo OA, Webster AR, Arno G. Investigating Splice Defects in USH2A Using Targeted Long-Read Sequencing. Cells 2024; 13:1261. [PMID: 39120292 PMCID: PMC11311777 DOI: 10.3390/cells13151261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription-polymerase chain reaction (RT-PCR)-Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants.
Collapse
Affiliation(s)
| | - Siying Lin
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Neringa Jurkute
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Neuro-Ophthalmology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kathryn Oprych
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Clinical Genetics, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Leire Estramiana Elorrieta
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London W2 1NY, UK
| | - Elena Schiff
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Samantha Malka
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Genevieve Wright
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Omar A. Mahroo
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Andrew R. Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
19
|
Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules 2024; 14:903. [PMID: 39199291 PMCID: PMC11352491 DOI: 10.3390/biom14080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Retinitis pigmentosa (RP) poses a significant threat to eye health worldwide, with prevalence rates of 1 in 5000 worldwide. This genetically diverse retinopathy is characterized by the loss of photoreceptor cells and atrophy of the retinal pigment epithelium. Despite the involvement of more than 3000 mutations across approximately 90 genes in its onset, finding an effective treatment has been challenging for a considerable time. However, advancements in scientific research, especially in gene therapy, are significantly expanding treatment options for this most prevalent inherited eye disease, with the discovery of new compounds, gene-editing techniques, and gene loci offering hope for more effective treatments. Gene therapy, a promising technology, utilizes viral or non-viral vectors to correct genetic defects by either replacing or silencing disease-causing genes, potentially leading to complete recovery. In this review, we primarily focus on the latest applications of gene editing research in RP. We delve into the most prevalent genes associated with RP and discuss advancements in genome-editing strategies currently employed to correct various disease-causing mutations.
Collapse
Affiliation(s)
| | | | | | | | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| |
Collapse
|
20
|
Lin YW, Huang YS, Lin CY, Lin CW, Wu CC, Yang CH, Yang CM, Chen PL, Chen TC. High prevalence of exon-13 variants in USH2A-related retinal dystrophies in Taiwanese population. Orphanet J Rare Dis 2024; 19:238. [PMID: 38879497 PMCID: PMC11179209 DOI: 10.1186/s13023-024-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in USH2A lead to Usher syndrome or non-syndromic retinitis pigmentosa, and shown to have geographical and ethnical distribution in previous studies. This study provided a deeper understanding of the detailed clinical features using multimodal imaging, genetic spectrum, and genotype-phenotype correlations of USH2A-related retinal dystrophies in Taiwan. RESULTS In our cohort, the mean age at first visit was 47.66 ± 13.54 years, and the mean age at symptom onset, which was referred to the onset of nyctalopia and/or visual field constriction, was 31.21 ± 15.24 years. Among the variants identified, 23 (50%) were missense, 10 (22%) were splicing variants, 8 (17%) were nonsense, and 5 (11%) were frameshift mutations. The most predominant variant was c.2802T>G, which accounted for 21% of patients, and was located in exon 13. Patients with truncated alleles had significantly earlier symptom onset and seemly poorer disease progression regarding visual acuity, ellipsoid zone line length, and hypofluorescent lesions in the macula than those who had the complete gene. However, the clinical presentation revealed similar progression between patients with and without the c.2802T>G variant. During long-term follow-up, the patients had different ellipsoid zone line progression rates and were almost evenly distributed in the fast, moderate, and slow progression subgroups. Although a younger onset age and a smaller baseline intact macular area was observed in the fast progression subgroup, the results showed no significant difference. CONCLUSIONS This is the first cohort study to provide detailed genetic and longitudinal clinical analyses of patients with USH2A-related retinal dystrophies in Taiwan. The mutated allele frequency in exon 13 was high in Taiwan due to the predominant c.2802T>G variant. Moreover, truncated variants greatly impacted disease progression and determined the length of therapeutic windows. These findings provide insight into the characteristics of candidates for future gene therapies.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Shu Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, Medical College, National Taiwan University, No. 2, Xuzhou Road, 5F., Taipei, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan.
- Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Parekh B, Duncan JL, Samarakoon L, Melia M, Abalem MF, Andrews CA, Audo I, Ayala AR, Bradley C, Cheetham JK, Dagnelie G, Durham TA, Huckfeldt RM, Lacy GD, Malbin B, Michaelides M, Musch DC, Peck-Dimit N, Stingl K, Weng CY, Zmejkoski AZ, Jayasundera KT. Self-Reported Functional Vision in USH2A-Associated Retinal Degeneration as Measured by the Michigan Retinal Degeneration Questionnaire. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 38833260 PMCID: PMC11156206 DOI: 10.1167/iovs.65.6.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose The purpose of this study was to evaluate self-reported functional vision (FV) and the impact of vision loss in patients with USH2A-associated retinal degeneration using a patient-reported outcome (PRO) measure, the Michigan Retinal Degeneration Questionnaire (MRDQ), to correlate MRDQ scores with well-established visual function measurements. Design An observational cross-sectional study (n = 93) of participants who had Usher Syndrome Type 2 (USH2, n = 55) or autosomal recessive non-syndromic retinitis pigmentosa (ARRP; n = 38) associated with biallelic variants in the USH2A gene. Methods The study protocol was approved by all ethics boards and informed consent was obtained from each participant. Participants completed the MRDQ at the 48-month study follow-up visit. Disease duration was self-reported by participants. One-way ANOVA was used to compare subgroups (clinical diagnosis, age, disease duration, and full-field stimulus threshold [FST] Blue-Red mediation) on mean scores per domain. Spearman correlation coefficients were used to assess associations between MRDQ domains and visual/retinal function assessments. Results Of the study sample, 58% were female participants and the median disease duration was 13 years. MRDQ domains were sensitive to differences between subgroups of clinical diagnosis, age, disease duration, and FST Blue-Red mediation. MRDQ domains correlated with static perimetry, microperimetry, full-field stimulus testing, and best-corrected visual acuity (BCVA). Conclusions Self-reported FV measured by the MRDQ, when applied to USH2 and ARRP participants, had good distributional characteristics and correlated well with visual function tests. MRDQ adds a new dimension of understanding on vision-related functioning and establishes this PRO tool as an informative measure in evaluating USH2A outcomes.
Collapse
Affiliation(s)
- Bela Parekh
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
- University of Michigan, Medical School, Ann Arbor, Michigan, United States
| | - Jacque L Duncan
- University of California, San Francisco, San Francisco, California, United States
| | | | - Michele Melia
- Jaeb Center for Health Research, Tampa, Florida, United States
| | - Maria Fernanda Abalem
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Chris A Andrews
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Isabelle Audo
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC1423, Paris, France
| | - Allison R Ayala
- Jaeb Center for Health Research, Tampa, Florida, United States
| | - Chris Bradley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Janet K Cheetham
- Foundation Fighting Blindness, Columbia, Maryland, United States
| | - Gislin Dagnelie
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Todd A Durham
- Foundation Fighting Blindness, Columbia, Maryland, United States
| | - Rachel M Huckfeldt
- Massachusetts Eye and Ear Institute, Boston, Massachusetts, United States
| | - Gabrielle D Lacy
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Brett Malbin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
- Department of Ophthalmology, Kresge Eye Institute, Detroit, Michigan, United States
| | - Michel Michaelides
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas Peck-Dimit
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | | | - Alex Z Zmejkoski
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
22
|
Ashworth KE, Weisbrod J, Ballios BG. Inherited Retinal Diseases and Retinal Organoids as Preclinical Cell Models for Inherited Retinal Disease Research. Genes (Basel) 2024; 15:705. [PMID: 38927641 PMCID: PMC11203130 DOI: 10.3390/genes15060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been made in recent years. To accelerate treatment discovery, retinal organoids provide an ideal human IRD model. This review aims to give background on the development and importance of retinal organoids for the human-based in vitro study of the retina and human retinogenesis and retinal pathologies. From there, we explore retinal pathologies in the context of IRDs and the current landscape of IRD treatment discovery. We discuss the usefulness of retinal organoids in this context (as a patient-derived cell model for IRDs) to precisely understand the pathogenesis and potential mechanisms behind a specific IRD-causing variant of interest. Finally, we discuss the importance and promise of retinal organoids in treatment discovery for IRDs, now and in the future.
Collapse
Affiliation(s)
- Kristen E. Ashworth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Jessica Weisbrod
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Brian G. Ballios
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
23
|
Bai D, Guo R, Huang D, Ji J, Liu W. Compound heterozygous mutations in GRM6 causing complete Schubert-Bornschein type congenital stationary night blindness. Heliyon 2024; 10:e27039. [PMID: 38434377 PMCID: PMC10907788 DOI: 10.1016/j.heliyon.2024.e27039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Background To explore the genetic defects of a Chinese family with complete Schubert-Bornschein type congenital stationary night blindness (CSNB). Methods A Chinese family with complete Schubert-Bornschein type CSNB was enrolled in this study. The detailed ocular presentations of the patient were recorded. Targeted gene sequencing including 156 genes related to retinal diseases was used to detect the gene mutation. Sanger sequencing was performed to validate the potential pathogenic variants, and segregation analysis was performed on all available family members. Bioinformatics analysis was performed to predict the impact of the mutations. Results By targeted gene sequencing and Sanger sequencing, we identified compound heterozygous mutations in GRM6: c.152G>T (p.Gly51Val) and c.727delG (p.Val243SerfsX21). Segregation analysis demonstrated that the mother of the proband carried the missense mutation (c.152G>T) while her father carried the frameshift mutation (c.727delG), indicating CSNB was autosomal recessively inherited in this family. Several bioinformatics prediction programs revealed the mutations were "Damaging" or "Disease Causing" and conservation analysis showed both the codons Gly51 and Val243 were highly conserved among species, suggesting the changes were pathogenic. Conclusion By targeted gene sequencing and Sanger sequencing, we detected compound heterozygous mutations (c.152G>T, p.Gly51Val and c.727delG, p.Val243SerfsX21) in GRM6. The mutations co-segregated with the phenotype of the family members and are considered to be responsible for complete Schubert-Bornschein type CSNB. However, functional experiments in the future are needed to confirm the pathogenicity of the variants and to elucidate their exact molecular mechanisms causing CSNB.
Collapse
Affiliation(s)
- Dong'e Bai
- Department of Ophthalmology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Dandan Huang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| |
Collapse
|
24
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
25
|
Ye X, Yang S, Tu J, Xu L, Wang Y, Chen H, Yu R, Huang P. Leveraging baseline transcriptional features and information from single-cell data to power the prediction of influenza vaccine response. Front Cell Infect Microbiol 2024; 14:1243586. [PMID: 38384303 PMCID: PMC10879619 DOI: 10.3389/fcimb.2024.1243586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Vaccination is still the primary means for preventing influenza virus infection, but the protective effects vary greatly among individuals. Identifying individuals at risk of low response to influenza vaccination is important. This study aimed to explore improved strategies for constructing predictive models of influenza vaccine response using gene expression data. Methods We first used gene expression and immune response data from the Immune Signatures Data Resource (IS2) to define influenza vaccine response-related transcriptional expression and alteration features at different time points across vaccination via differential expression analysis. Then, we mapped these features to single-cell resolution using additional published single-cell data to investigate the possible mechanism. Finally, we explored the potential of these identified transcriptional features in predicting influenza vaccine response. We used several modeling strategies and also attempted to leverage the information from single-cell RNA sequencing (scRNA-seq) data to optimize the predictive models. Results The results showed that models based on genes showing differential expression (DEGs) or fold change (DFGs) at day 7 post-vaccination performed the best in internal validation, while models based on DFGs had a better performance in external validation than those based on DEGs. In addition, incorporating baseline predictors could improve the performance of models based on days 1-3, while the model based on the expression profile of plasma cells deconvoluted from the model that used DEGs at day 7 as predictors showed an improved performance in external validation. Conclusion Our study emphasizes the value of using combination modeling strategy and leveraging information from single-cell levels in constructing influenza vaccine response predictive models.
Collapse
Affiliation(s)
- Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junlan Tu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Hongbo Chen
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Rongbin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Liu X, Hu F, Zhang D, Li Z, He J, Zhang S, Wang Z, Zhao Y, Wu J, Liu C, Li C, Li X, Wu J. Whole genome sequencing enables new genetic diagnosis for inherited retinal diseases by identifying pathogenic variants. NPJ Genom Med 2024; 9:6. [PMID: 38245557 PMCID: PMC10799956 DOI: 10.1038/s41525-024-00391-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a group of common primary retinal degenerative disorders. Conventional genetic testing strategies, such as panel-based sequencing and whole exome sequencing (WES), can only elucidate the genetic etiology in approximately 60% of IRD patients. Studies have suggested that unsolved IRD cases could be attributed to previously undetected structural variants (SVs) and intronic variants in IRD-related genes. The aim of our study was to obtain a definitive genetic diagnosis by employing whole genome sequencing (WGS) in IRD cases where the causative genes were inconclusive following an initial screening by panel sequencing. A total of 271 unresolved IRD patients and their available family members (n = 646) were screened using WGS to identify pathogenic SVs and intronic variants in 792 known ocular disease genes. Overall, 13% (34/271) of IRD patients received a confirmed genetic diagnosis, among which 7% were exclusively attributed to SVs, 4% to a combination of single nucleotide variants (SNVs) and SVs while another 2% were linked to intronic variants. 22 SVs, 3 deep-intronic variants, and 2 non-canonical splice-site variants across 14 IRD genes were identified in the entire cohort. Notably, all of these detected SVs and intronic variants were novel pathogenic variants. Among those, 74% (20/27) of variants were found in genes causally linked to Retinitis Pigmentosa (RP), with the gene EYS being the most frequently affected by SVs. The identification of SVs and intronic variants through WGS enhances the genetic diagnostic yield of IRDs and broadens the mutational spectrum of known IRD-associated genes.
Collapse
Affiliation(s)
- Xubing Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fangyuan Hu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Daowei Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhe Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianquan He
- Computer Center, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhenguo Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingke Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiawen Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenchen Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xin Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
27
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
28
|
Nguyen VP, Hu J, Zhe J, Chen EY, Yang D, Paulus YM. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging of USH2A knockout rabbits. Sci Rep 2023; 13:22071. [PMID: 38086867 PMCID: PMC10716268 DOI: 10.1038/s41598-023-48872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Usher syndrome type 2A (USH2A) is a genetic disorder characterized by retinal degeneration and hearing loss. To better understand the pathogenesis and progression of this syndrome, animal models such as USH2A knockout (USH2AKO) rabbits have been developed. In this study, we employed multimodal imaging techniques, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), fundus autofluorescence (FAF), fluorescein angiography (FA), and indocyanine green angiography (ICGA) imaging to evaluate the retinal changes in the USH2AKO rabbit model. Twelve New Zealand White rabbits including USH2AKO and wild type (WT) were used for the experiments. Multimodal imaging was implemented at different time points over a period of 12 months to visualize the progression of retinal changes in USH2AKO rabbits. The results demonstrate that ellipsoid zone (EZ) disruption and degeneration, key features of Usher syndrome, began at the age of 4 months old and persisted up to 12 months. The EZ degeneration areas were clearly observed on the FAF and OCT images. The FAF images revealed retinal pigment epithelium (RPE) degeneration, confirming the presence of the disease phenotype in the USH2AKO rabbits. In addition, PAM images provided high-resolution and high image contrast of the optic nerve and the retinal microvasculature, including retinal vessels, choroidal vessels, and capillaries in three-dimensions. The quantification of EZ fluorescent intensity using FAF and EZ thickness using OCT provided comprehensive quantitative data on the progression of degenerative changes over time. This multimodal imaging approach allowed for a comprehensive and non-invasive assessment of retinal structure, microvasculature, and degenerative changes in the USH2AKO rabbit model. The combination of PAM, OCT, and fluorescent imaging facilitated longitudinal monitoring of disease progression and provided valuable insights into the pathophysiology of USH2A syndrome. These findings contribute to the understanding of USH2A syndrome and may have implications for the development of diagnostic and therapeutic strategies for affected individuals. The multimodal imaging techniques employed in this study offer a promising platform for preclinical evaluation of potential treatments and may pave the way for future clinical applications in patients with Usher syndrome.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eugene Y Chen
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA
| | - Dongshan Yang
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
29
|
Daich Varela M, Wong SW, Kiray G, Schlottmann PG, Arno G, Shams ANA, Mahroo OA, Webster AR, AlTalbishi A, Michaelides M. Detailed Clinical, Ophthalmic, and Genetic Characterization of ADGRV1-Associated Usher Syndrome. Am J Ophthalmol 2023; 256:186-195. [PMID: 37422204 PMCID: PMC11139646 DOI: 10.1016/j.ajo.2023.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE To present the clinical characteristics, retinal features, natural history, and genetics of ADGRV1-Usher syndrome (USH). DESIGN Multicenter international retrospective cohort study. METHODS Clinical notes, hearing loss history, multimodal retinal imaging, and molecular diagnosis were reviewed. Thirty patients (28 families) with USH type 2 and disease-causing variants in ADGRV1 were identified. Visual function, retinal imaging, and genetics were evaluated and correlated, with retinal features also compared with those of the commonest cause of USH type 2, USH2A-USH. RESULTS The mean age at the first visit was 38.6 ± 12.0 years (range: 19-74 years), and the mean follow-up time was 9.0 ± 7.7 years. Hearing loss was reported in the first decade of life by all patients, 3 (10%) described progressive loss, and 93% had moderate-severe impairment. Visual symptom onset was at 17.0 ± 7.7 years of age (range: 6-32 years), with 13 patients noticing problems before the age of 16. At baseline, 90% of patients had no or mild visual impairment. The most frequent retinal features were a hyperautofluorescent ring at the posterior pole (70%), perimacular patches of decreased autofluorescence (59%), and mild-moderate peripheral bone-spicule-like deposits (63%). Twenty-six (53%) variants were previously unreported, 19 families (68%) had double-null genotypes, and 9 were not-double-null. Longitudinal analysis showed significant differences between baseline and follow-up central macular thickness (-1.25 µm/y), outer nuclear layer thickness (-1.19 µm/y), and ellipsoid zone width (-40.9 µm/y). The rate of visual acuity decline was 0.02 LogMAR (1 letter)/y, and the rate of constriction of the hyperautofluorescent ring was 0.23 mm2/y. CONCLUSIONS ADGRV1-USH is characterized by early-onset, usually non-progressive, mild-to-severe hearing loss and generally good central vision until late adulthood. Perimacular atrophic patches and relatively retained ellipsoid zone and central macular thickness in later adulthood are more often seen in ADGRV1-USH than in USH2A-USH.
Collapse
Affiliation(s)
- Malena Daich Varela
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Shiao Wei Wong
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Gulunay Kiray
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK
| | | | - Gavin Arno
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Amjaad N Abu Shams
- St John of Jerusalem Eye Hospital Group, Jerusalem, Palestine (A.N.A.S., A.A.T.)
| | - Omar A Mahroo
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Andrew R Webster
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital Group, Jerusalem, Palestine (A.N.A.S., A.A.T.)
| | - Michel Michaelides
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK.
| |
Collapse
|
30
|
Bigini F, Lee SH, Sun YJ, Sun Y, Mahajan VB. Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases. Vision Res 2023; 213:108317. [PMID: 37722240 PMCID: PMC10685911 DOI: 10.1016/j.visres.2023.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Gene therapy is a flourishing field with the potential to revolutionize the treatment of genetic diseases. The emergence of CRISPR-Cas9 has significantly advanced targeted and efficient genome editing. Although CRISPR-Cas9 has demonstrated promising potential applications in various genetic disorders, it faces limitations in simultaneously targeting multiple genes. Novel CRISPR systems, such as Cas12 and Cas13, have been developed to overcome these challenges, enabling multiplexing and providing unique advantages. Cas13, in particular, targets mRNA instead of genomic DNA, permitting precise gene expression control and mitigating off-target effects. This review investigates the potential of Cas12 and Cas13 in ocular gene therapy applications, such as suppression of inflammation and cell death. In addition, the capabilities of Cas12 and Cas13 are explored in addressing potential targets related with disease mechanisms such as aberrant isoforms, mitochondrial genes, cis-regulatory sequences, modifier genes, and long non-coding RNAs. Anatomical accessibility and relative immune privilege of the eye provide an ideal organ system for evaluating these novel techniques' efficacy and safety. By targeting multiple genes concurrently, CRISPR-Cas12 and Cas13 systems hold promise for treating a range of ocular disorders, including glaucoma, retinal dystrophies, and age-related macular degeneration. Nonetheless, additional refinement is required to ascertain the safety and efficacy of these approaches in ocular disease treatments. Thus, the development of Cas12 and Cas13 systems marks a significant advancement in gene therapy, offering the potential to devise effective treatments for ocular disorders.
Collapse
Affiliation(s)
- Fabio Bigini
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Yang Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Stanford Maternal & Child Health Research Institute, Palo Alto, CA 94304, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
31
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
32
|
Nam DW, Song YK, Kim JH, Lee EK, Park KH, Cha J, Choi BY, Lee JH, Oh SH, Jo DH, Lee SY. Allelic hierarchy for USH2A influences auditory and visual phenotypes in South Korean patients. Sci Rep 2023; 13:20239. [PMID: 37981655 PMCID: PMC10658080 DOI: 10.1038/s41598-023-47166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
When medical genetic syndromes are influenced by allelic hierarchies, mutant alleles have distinct effects on clinical phenotypes. Genotype-phenotype correlations for Usher syndrome type 2 (USH2) suggest that the USH2A gene exhibits an allelic hierarchy. Here, we analyzed the phenotypes and genotypes of 16 South Korean patients with USH2A biallelic variants to investigate an allelic hierarchy from audiological and ophthalmological perspectives. Using whole exome and genome sequencing, 18 mutant alleles, including 4 novel alleles, were identified and implicated in USH2A-related disorders. Truncated alleles were linked to earlier onset of subjective hearing loss and more severe thresholds; biallelic truncated alleles had more severe effects. Truncated alleles were also associated with retinal structure degeneration and severe functional deterioration. However, younger patients (aged < 16 years) did not exhibit overt retinitis pigmentosa even when they had biallelic truncated alleles, suggesting that USH2A-related USH2 can mimic nonsyndromic hearing loss. For truncated alleles, there was a clear correlation between mean hearing threshold and 30-Hz flicker electroretinography implicit time. This study provides the first evidence of an USH2A-related allelic hierarchy among South Korean patients; our data yield valuable insights concerning the natural courses of clinical phenotypes and how genotype-based therapies may be used.
Collapse
Affiliation(s)
- Dong Woo Nam
- Department of Otorhinolaryngology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Yong Keun Song
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - JuHyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Crane R, Tebbe L, Mwoyosvi ML, Al-Ubaidi MR, Naash MI. Expression of the human usherin c.2299delG mutation leads to early-onset auditory loss and stereocilia disorganization. Commun Biol 2023; 6:933. [PMID: 37700068 PMCID: PMC10497539 DOI: 10.1038/s42003-023-05296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.2290delG mutation in usherin equivalent to human frameshift mutation c.2299delG. Previously we described how this model reproduces patient's retinal phenotypes. Here, we present the cochlear phenotype, showing that the mutant usherin, is expressed during early postnatal stages. The c.2290delG mutation results in a truncated protein that is mislocalized within the cell body of the hair cells. The knock-in model also exhibits congenital hearing loss that remains consistent throughout the animal's lifespan. Structurally, the stereocilia bundles, particularly in regions associated with functional hearing loss, are disorganized. Our findings shed light on the role of usherin in maintaining structural support, specifically in longer inner hair cell stereocilia, during development, which is crucial for proper bundle organization and hair cell function. Overall, we present a genetic mouse model with cochlear defects associated with the c.2290delG mutation, providing insights into the etiology of hearing loss and offering potential avenues for the development of effective therapeutic treatments for USH2A patients.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
34
|
Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther 2023; 31:2755-2766. [PMID: 37337429 PMCID: PMC10491995 DOI: 10.1016/j.ymthe.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Lyes Toualbi
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick V Almeida
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mariya Moosajee
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK.
| |
Collapse
|
35
|
Borrajo J, Javanmardi K, Griffin J, St. Martin SJ, Yao D, Hill K, Blainey PC, Al-Shayeb B. Programmable multi-kilobase RNA editing using CRISPR-mediated trans-splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553620. [PMID: 37645763 PMCID: PMC10462116 DOI: 10.1101/2023.08.18.553620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Current gene editing approaches in eukaryotic cells are limited to single base edits or small DNA insertions and deletions, and remain encumbered by unintended permanent effects and significant challenges in the delivery of large DNA cargo. Here we describe Splice Editing, a generalizable platform to correct gene transcripts in situ by programmable insertion or replacement of large RNA segments. By combining CRISPR-mediated RNA targeting with endogenous cellular RNA-splicing machinery, Splice Editing enables efficient, precise, and programmable large-scale editing of gene targets without DNA cleavage or mutagenesis. RNA sequencing and measurement of spliced protein products confirm that Splice Editing achieves efficient and specific targeted RNA and protein correction. We show that Splice Editors based on novel miniature RNA-targeting CRISPR-Cas systems discovered and characterized in this work can be packaged for effective delivery to human cells and affect different types of edits across multiple targets and cell lines. By editing thousands of bases simultaneously in a single reversible step, Splice Editing could expand the treatable disease population for monogenic diseases with large allelic diversity without the permanent unintended effects of DNA editing.
Collapse
Affiliation(s)
- Jacob Borrajo
- Amber Bio, Inc., South San Francisco, CA 94080
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - David Yao
- Amber Bio, Inc., South San Francisco, CA 94080
| | - Kaisle Hill
- Amber Bio, Inc., South San Francisco, CA 94080
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02141
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | | |
Collapse
|
36
|
Ordoñez-Labastida V, Chacon-Camacho OF, Lopez-Rodriguez VR, Zenteno JC. USH2A mutational spectrum causing syndromic and non-syndromic retinal dystrophies in a large cohort of Mexican patients. Mol Vis 2023; 29:31-38. [PMID: 37287646 PMCID: PMC10243674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background Mutations in the USH2A gene are the leading cause of both non-syndromic autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, a syndromic form of RP characterized by retinal dystrophy and sensorineural hearing loss. To contribute to the expansion of the USH2A-related molecular spectrum, the results of genetic screening in a large cohort of Mexican patients are presented. Methods The study population comprised 61 patients with a clinical diagnosis of either non-syndromic RP (n = 30) or Usher syndrome type 2 (USH2; n = 31) who were demonstrated to carry biallelic pathogenic variants in USH2A in a three-year period. Genetic screening was performed either by gene panel sequencing or by exome sequencing. A total of 72 available first- or second-degree relatives were also genotyped for familial segregation of the identified variants. Results The USH2A mutational spectrum in RP patients included 39 distinct pathogenic variants, most of them of the missense type. The most common RP-causing variants were p.Cys759Phe (c.2276G>T), p.Glu767Serfs*21 (c.2299delG), and p.Cys319Tyr (c.956G>A), which together accounted for 25% of all RP variants. Novel USH2A mutations included three nonsense, two missense, two frameshift, and one intragenic deletion. The USH2A mutational spectrum in USH2 patients included 26 distinct pathogenic variants, most of them of the nonsense and frameshift types. The most common Usher syndrome-causing variants were p.Glu767Serfs*21 (c.2299delG), p.Arg334Trp (c.1000C>T), and c.12067-2A>G), which together accounted for 42% of all USH2-related variants. Novel Usher syndrome USH2A mutations included six nonsense, four frameshift, and two missense mutations. The c.2299delG mutation was associated with a common haplotype for SNPs located in exons 2-21 of USH2A, indicating a founder mutation effect. Conclusions Our work expands the USH2A mutational profile by identifying 20 novel pathogenic variants causing syndromic and non-syndromic retinal dystrophy. The prevalent c.2299delG allele is shown to arise from a founder effect. Our results emphasize the usefulness of molecular screening in underrepresented populations for a better characterization of the molecular spectrum of common monogenic diseases.
Collapse
Affiliation(s)
- Vianey Ordoñez-Labastida
- Rare Disease Diagnostic Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana,” Mexico City, Mexico
- Faculty of Medicine, Autonomous University of the State of Morelos (UAEM), Morelos, Mexico
| | - Oscar F. Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana,” Mexico City, Mexico
- Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | | | - Juan C. Zenteno
- Rare Disease Diagnostic Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana,” Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| |
Collapse
|
37
|
Major L, McClements ME, MacLaren RE. A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, and In Vivo Delivery. Int J Mol Sci 2023; 24:ijms24087603. [PMID: 37108761 PMCID: PMC10146473 DOI: 10.3390/ijms24087603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This review considers research into the treatment of Usher syndrome, a deaf-blindness syndrome inherited in an autosomal recessive manner. Usher syndrome mutations are markedly heterogeneous, involving many different genes, and research grants are limited due to minimal patient populations. Furthermore, gene augmentation therapies are impossible in all but three Usher syndromes as the cDNA sequence exceeds the 4.7 kb AAV packaging limit. It is, therefore, vital to focus research efforts on alternative tools with the broadest applicability. The CRISPR field took off in recent years following the discovery of the DNA editing activity of Cas9 in 2012. New generations of CRISPR tools have succeeded the original CRISPR/Cas9 model to enable more sophisticated genomic amendments such as epigenetic modification and precise sequence alterations. This review will evaluate the most popular CRISPR tools to date: CRISPR/Cas9, base editing, and prime editing. It will consider these tools in terms of applicability (in relation to the ten most prevalent USH2A mutations), safety, efficiency, and in vivo delivery potential with the intention of guiding future research investment.
Collapse
Affiliation(s)
- Lauren Major
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
38
|
Ukaji T, Takahashi-Shibata M, Arai D, Tsutsumi H, Tajima S, Akamatsu W, Matsumoto F, Ikeda K, Usami SI, Kamiya K. Generation and characterization of a human iPSC line (JUFMDOi007-A) from a patient with Usher syndrome due to mutation in USH2A. Stem Cell Res 2023; 69:103100. [PMID: 37099934 DOI: 10.1016/j.scr.2023.103100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Usher syndrome type 2A (USH2A) gene mutations have been identified as the most frequent genetic causes of hereditary deafness in Usher syndrome, and an effective treatment has yet to be established. The encoded protein, Usherin, is essential for the ankle link associated with extracellular connections between the stereocilia of inner ear hair cells. We report the generation of a patient-derived USH2A iPSC line with compound mutations c.1907_1912ATGTTT > TCACAG (p.D636V + V637T + C638G) and c.8328_8329delAA (p.L2276fs*12). The iPSC showed the expression of pluripotency markers, the ability to differentiate into three germ layers in vitro, and USH2A mutations with normal karyotype.
Collapse
Affiliation(s)
- Takao Ukaji
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan; Division of Experimental Chemotherapy, The Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Daisuke Arai
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Harumi Tsutsumi
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shori Tajima
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumihiko Matsumoto
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Nagano, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Reurink J, Weisschuh N, Garanto A, Dockery A, van den Born LI, Fajardy I, Haer-Wigman L, Kohl S, Wissinger B, Farrar GJ, Ben-Yosef T, Pfiffner FK, Berger W, Weener ME, Dudakova L, Liskova P, Sharon D, Salameh M, Offenheim A, Heon E, Girotto G, Gasparini P, Morgan A, Bergen AA, ten Brink JB, Klaver CC, Tranebjærg L, Rendtorff ND, Vermeer S, Smits JJ, Pennings RJ, Aben M, Oostrik J, Astuti GD, Corominas Galbany J, Kroes HY, Phan M, van Zelst-Stams WA, Thiadens AA, Verheij JB, van Schooneveld MJ, de Bruijn SE, Li CH, Hoyng CB, Gilissen C, Vissers LE, Cremers FP, Kremer H, van Wijk E, Roosing S. Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction. HGG ADVANCES 2023; 4:100181. [PMID: 36785559 PMCID: PMC9918427 DOI: 10.1016/j.xhgg.2023.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.
Collapse
Affiliation(s)
- Janine Reurink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Amalia’s Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adrian Dockery
- The School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Isabelle Fajardy
- Centre de Biologie Pathologie Génétique, CHU de Lille, Lille, France
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - G. Jane Farrar
- The School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Tamar Ben-Yosef
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dror Sharon
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manar Salameh
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ashley Offenheim
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elise Heon
- Departments of Ophthalmology and Vision Sciences, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Giorgia Girotto
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, The Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, The Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Sascha Vermeer
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen J. Smits
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, Utrecht, the Netherlands
| | - Ronald J.E. Pennings
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marco Aben
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Oostrik
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, Utrecht, the Netherlands
| | - Milan Phan
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Joke B.G.M. Verheij
- Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mary J. van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Catherina H.Z. Li
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B. Hoyng
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P.M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erwin van Wijk
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Jung S, Park YC, Lee D, Kim S, Kim SM, Kim Y, Lee D, Hyun J, Koh I, Lee JY. Exome sequencing identified five novel USH2A variants in Korean patients with retinitis pigmentosa. Ophthalmic Genet 2023; 44:163-170. [PMID: 36314366 DOI: 10.1080/13816810.2022.2138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited disorder that causes progressive loss of vision. This study aimed to describe the possible causative variants of the USH2A gene in Korean RP families and their associated phenotypes. MATERIALS AND METHODS We recruited 94 RP families (220 subjects, including 94 probands and 126 family members) in a Korean cohort, and analyzed USH2A gene variants through whole-exome sequencing. The pathogenicity of the variants was classified according to American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines. RESULTS We found 14 USH2A disease-causing variants, including 5 novel variants. Disease causing variants were identified in 10 probands with RP, accounting for 10.6% (10/94) of the Korean RPs in the cohort. To visually represent the structural changes induced by novel variants, we modeled the three-dimensional structures of the wild-type and mutant proteins. CONCLUSIONS This study expands the spectrum of USH2A variants and provides information for future therapeutic strategies for RP.
Collapse
Affiliation(s)
- SeungHee Jung
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | - Young Chan Park
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - DongHee Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - SiYeon Kim
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | | | | | | | | - InSong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | |
Collapse
|
41
|
Natural Disease Course in Usher Syndrome Patients Harboring USH2A Variant p.Cys870* in Exon 13, Amenable to Exon Skipping Therapy. Genes (Basel) 2023; 14:genes14030652. [PMID: 36980924 PMCID: PMC10048357 DOI: 10.3390/genes14030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The aim of the study was to determine the rate of retinal degeneration in patients with c.2610C>A (p.Cys870*) in USH2A exon 13, amenable to exon skipping therapy. There were nine patients from seven families, three of whom were male (two were homozygous). Seven patients had follow-up data (median of 11 years). Analysis included best corrected visual acuity (BCVA, decimal Snellen), visual field (Goldmann perimetry target II/4), fundus autofluorescence (FAF), optical coherence tomography (OCT), and microperimetry (MP). The median age at the onset of nyctalopia was 20 years (range, 8–35 years of age). At the first exam, at a median age of 42 years, the median BCVA was 0.5 (0.2–1.0), and the median visual field diameter was 23° (5°–114°). Imaging showed a hyperautofluorescent ring delineating preserved foveal photoreceptors in 78% (7/9) of patients, while 22% (2/9) had a hyperautofluorescent patch or atrophy, reflecting advanced disease. Survival analysis predicted that 50% of patients reach legal blindness based on a visual field diameter < 20° at the age of 52 (95% CI, 45–59) and legal blindness based on a BCVA ≤ 0. 1 (20/200) at the age of 55 (95% CI, 46–66). Visual field constriction occurred at the median rate of radial 1.5 deg/year, and hyperautofluorescent ring constriction occurred at the median rate of 34 μm/year. A non-null second allele was found in two patients: p.Thr4315Pro and p.Arg303His; the patient with p.Arg303His had a milder disease. The rates of progression will be useful in the design and execution of clinical trials.
Collapse
|
42
|
Perini F, Cendron F, Wu Z, Sevane N, Li Z, Huang C, Smith J, Lasagna E, Cassandro M, Penasa M. Genomics of Dwarfism in Italian Local Chicken Breeds. Genes (Basel) 2023; 14:genes14030633. [PMID: 36980905 PMCID: PMC10047989 DOI: 10.3390/genes14030633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The identification of the dwarf phenotype in chicken is based on body weight, height, and shank length, leaving the differentiation between dwarf and small breeds ambiguous. The aims of the present study were to characterize the sequence variations associated with the dwarf phenotype in three Italian chicken breeds and to investigate the genes associated with their phenotype. Five hundred and forty-one chickens from 23 local breeds (from 20 to 24 animals per breed) were sampled. All animals were genotyped with the 600 K chicken SNP array. Three breeds were described as “dwarf”, namely, Mericanel della Brianza (MERI), Mugellese (MUG), and Pepoi (PPP). We compared MERI, MUG, and PPP with the four heaviest breeds in the dataset by performing genome-wide association studies. Results showed significant SNPs associated with dwarfism in the MERI and MUG breeds, which shared a candidate genomic region on chromosome 1. Due to this similarity, MERI and MUG were analyzed together as a meta-population, observing significant SNPs in the LEMD3 and HMGA2 genes, which were previously reported as being responsible for dwarfism in different species. In conclusion, MERI and MUG breeds seem to share a genetic basis of dwarfism, which differentiates them from the small PPP breed.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Universidad Complutense de Madrid, Avenida Puerta de Hierro, 28040 Madrid, Spain
| | - Zhiqiang Li
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- College of Animal Science and Technology, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- College of Animal Science and Technology, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- Correspondence: ; Tel.: +39-075-58517102
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
- Federazione delle Associazioni Nazionali di Razza e Specie, 00187 Roma, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
43
|
Tebbe L, Mwoyosvi ML, Crane R, Makia MS, Kakakhel M, Cosgrove D, Al-Ubaidi MR, Naash MI. The usherin mutation c.2299delG leads to its mislocalization and disrupts interactions with whirlin and VLGR1. Nat Commun 2023; 14:972. [PMID: 36810733 PMCID: PMC9944904 DOI: 10.1038/s41467-023-36431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a-/- model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.2299delG. This mouse exhibits retinal degeneration and expresses a truncated, glycosylated protein which is mislocalized to the photoreceptor inner segment. The degeneration is associated with a decline in retinal function, structural abnormalities in connecting cilium and outer segment and mislocaliztion of the usherin interactors very long G-protein receptor 1 and whirlin. The onset of symptoms is significantly earlier compared to Ush2a-/-, proving expression of mutated protein is required to recapitulate the patients' retinal phenotype.
Collapse
Affiliation(s)
- Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
44
|
Genetic characteristics of suspected retinitis pigmentosa in a cohort of Chinese patients. Gene 2023; 853:147087. [PMID: 36464167 DOI: 10.1016/j.gene.2022.147087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The study aimed to screen for the causative variants in Chinese patients with suspected retinitis pigmentosa (RP). A cohort of 75 unrelated Chinese patients with a clinical diagnosis of RP and their available family members were enrolled in this study. Genomic DNA of all subjects was extracted and whole-exome sequencing (WES) was applied. Candidate variants were identified, and minigene assays were conducted to evaluate the pathogenicity of novel splicing variants. Totally, the diagnostic yield was 44 % (33/75) and 16 novel variants that had not been reported previously were found. Among the genetically solved 33 cases, 31 patients were identified as carrying causative variants of RP and 2 patients carried pathogenic variants implicated in other retinal diseases. USH2A, CYP4V2, and RPGR were the most common causative genes, accounting for about half of the genetically solved cases. Moreover, minigene assays validated that the novel splicing variants were detrimental. Additionally, 9 patients carried a single deleterious heterozygous variant in 6 genes with autosomal recessive hereditary patterns, and no corresponding copy number variants (CNVs) was detected. The findings of this study revealed the genetic landscape of RP in China and provided guidance for clinicians.
Collapse
|
45
|
Xing D, Yu R, Wang L, Hu L, Yang Y, Li C, Li Z, Li X. Novel mutations of the USH2A gene cause Usher syndrome in five Chinese families. BMC Ophthalmol 2022; 22:317. [PMID: 35870892 PMCID: PMC9308926 DOI: 10.1186/s12886-022-02532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Usher syndrome (USH) is a leading disorder of deaf–blindness. The phenotypic and genetic heterogeneity of USH makes the diagnosis of this disorder difficult. However, diagnosis can be facilitated by employing molecular approaches, especially for diseases without pronounced pathognomonic symptoms. Therefore, this study aimed to reveal the genetic defects in five USH patients using clinical targeted exome sequencing (TES). Methods USH patients and their family members from five unrelated Chinese USH families were recruited and subjected to TES. Ophthalmic information was obtained for all patients to ensure a meaningful interpretation. The TES data were analysed using an established bioinformatics pipeline to identify causative mutations. Further verification by Sanger sequencing and cosegregation analysis were performed on available family members. Results We identified genetic mutations in five USH patients using TES. Seven mutations, four of which were novel, were identified in the USH2A gene. One proband (F1-II-3) was found to have a homozygous mutation inherited from nonconsanguineous parents, and another proband (F5-III-1) was found to carry three USH2A gene mutations. Conclusion In conclusion, the study revealed the importance of TES in the clinical diagnosis of USH patients with variable phenotypes. The correlation between USH2A gene mutations and clinical phenotypes will help to refine the clinical diagnosis of USH. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02532-6.
Collapse
|
46
|
Whole-Exome Sequencing Revealed New Candidate Genes for Human Dilated Cardiomyopathy. Diagnostics (Basel) 2022; 12:diagnostics12102411. [PMID: 36292100 PMCID: PMC9600457 DOI: 10.3390/diagnostics12102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a complex disease affecting young adults. It is a pathological condition impairing myocardium activity that leads to heart failure and, in the most severe cases, transplantation, which is currently the only possible therapy for the disease. DCM can be attributed to many genetic determinants interacting with environmental factors, resulting in a highly variable phenotype. Due to this complexity, the early identification of causative gene mutations is an important goal to provide a genetic diagnosis, implement pre-symptomatic interventions, and predict prognosis. The advent of next-generation sequencing (NGS) has opened a new path for mutation screening, and exome sequencing provides a promising approach for identifying causal variants in known genes and novel disease-associated candidates. We analyzed the whole-exome sequencing (WES) of 15 patients affected by DCM without overloading (hypertension, valvular, or congenital heart disease) or chronic ischemic conditions. We identified 70 pathogenic or likely pathogenic variants and 1240 variants of uncertain clinical significance. Gene ontology enrichment analysis was performed to assess the potential connections between affected genes and biological or molecular function, identifying genes directly related to extracellular matrix organization, transcellular movement through the solute carrier and ATP-binding cassette transporter, and vitamin B12 metabolism. We found variants in genes implicated to a different extent in cardiac function that may represent new players in the complex genetic scenario of DCM.
Collapse
|
47
|
Major L, McClements ME, MacLaren RE. New CRISPR Tools to Correct Pathogenic Mutations in Usher Syndrome. Int J Mol Sci 2022; 23:ijms231911669. [PMID: 36232969 PMCID: PMC9569511 DOI: 10.3390/ijms231911669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal degenerations are a leading cause of blindness in the UK. Significant advances have been made to tackle this issue in recent years, with a pioneering FDA approved gene therapy treatment (Luxturna®), which targets a loss of function mutation in the RPE65 gene. However, there remain notable shortcomings to this form of gene replacement therapy. In particular, the lack of viability for gene sequences exceeding the 4.7 kb adeno-associated virus (AAV) packaging limit or for toxic gain of function mutations. The USH2A gene at ~15.7 kb for instance is too large for AAV delivery: a safe and effective vehicle capable of transducing photoreceptor cells for gene replacement therapy. Usher Syndrome is a clinically and genetically heterogenous deaf-blindness syndrome with autosomal recessive inheritance. The USH2A gene encodes the protein usherin, which localises to the photoreceptor cilium and cochlear hair cells. Mutations in the USH2A gene cause Usher Syndrome type II (USH2), which is the most common subtype of Usher Syndrome and the focus of this review. To date, researchers have been unable to create an efficient, safe editing tool that is small enough to fit inside a single AAV vector for delivery into human cells. This article reviews the potential of CRISPR technology, derived from bacterial defence mechanisms, to overcome these challenges; delivering tools to precisely edit and correct small insertions, deletions and base transitions in USH2A without the need to deliver the full-length gene. Such an ultra-compact therapy could make strides in combating a significant cause of blindness in young people.
Collapse
Affiliation(s)
- Lauren Major
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| | - Michelle E. McClements
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
48
|
Su T, Liang L, Zhang L, Wang J, Chen L, Su C, Cao J, Yu Q, Deng S, Chan HF, Tang S, Guo Y, Chen J. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol 2022; 10:939774. [PMID: 36185441 PMCID: PMC9524156 DOI: 10.3389/fbioe.2022.939774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.
Collapse
Affiliation(s)
- Ting Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liying Liang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lan Zhang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jianing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Luyin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Caiying Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jixing Cao
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | - Yonglong Guo
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Aier Eye Institute, Changsha, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| |
Collapse
|
49
|
Li W, Jiang XS, Han DM, Gao JY, Yang ZT, Jiang L, Zhang Q, Zhang SH, Gao Y, Wu JH, Li JK. Genetic Characteristics and Variation Spectrum of USH2A-Related Retinitis Pigmentosa and Usher Syndrome. Front Genet 2022; 13:900548. [PMID: 36110214 PMCID: PMC9468824 DOI: 10.3389/fgene.2022.900548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes: We aimed to characterize the USH2A genotypic spectrum in a Chinese cohort and provide a detailed genetic profile for Chinese patients with USH2A-IRD.Methods: We designed a retrospective study wherein a total of 1,334 patients diagnosed with IRD were included as a study cohort, namely 1,278 RP and 56 USH patients, as well as other types of IEDs patients and healthy family members as a control cohort. The genotype-phenotype correlation of all participants with USH2A variant was evaluated.Results: Etiological mutations in USH2A, the most common cause of RP and USH, were found in 16.34% (n = 218) genetically solved IRD patients, with prevalences of 14.87% (190/1,278) and 50% (28/56). After bioinformatics and QC processing, 768 distinct USH2A variants were detected in all participants, including 136 disease-causing mutations present in 665 alleles, distributed in 5.81% of all participants. Of these 136 mutations, 43 were novel, nine were founder mutations, and two hot spot mutations with allele count ≥10. Furthermore, 38.5% (84/218) of genetically solved USH2A-IRD patients were caused by at least one of both c.2802T>G and c.8559–2 A>G mutations, and 36.9% and 69.6% of the alleles in the RP and USH groups were truncating, respectively.Conclusion: USH2A-related East Asian-specific founder and hot spot mutations were the major causes for Chinese RP and USH patients. Our study systematically delineated the genotype spectrum of USH2A-IRD, enabled accurate genetic diagnosis, and provided East Asian and other ethnicities with baseline data of a Chinese origin, which would better serve genetic counseling and therapeutic targets selection.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People’s Hospital, Yantai, China
| | - Qian Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| |
Collapse
|
50
|
Santos DF, Molina Thurin LJ, Gustavo Vargas J, Izquierdo NJ, Oliver A. A Genotype-Phenotype Analysis of Usher Syndrome in Puerto Rico: A Case Series. Cureus 2022; 14:e28213. [PMID: 36003347 PMCID: PMC9392863 DOI: 10.7759/cureus.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Patients with Usher syndrome (USH) have retinitis pigmentosa (RP) and hearing loss inherited as an autosomal recessive (ar) trait. Mutations in the USH2A gene are the most common cause of Usher syndrome. We report the genotype-phenotype correlation in 10 patients with Usher syndrome from Puerto Rico (PR). This is the first genotype-phenotype analysis of patients with the syndrome in PR. Methods We conducted a chart review of patients who carried an Usher syndrome diagnosis. They underwent a comprehensive ophthalmic evaluation by at least one of the authors. This included best corrected visual acuity (BCVA), visual field mean deviation (VF MD), pattern standard deviation (PSD), and macular optical coherence tomography (mOCT) average volume and thickness. Genotyping was done using the Invitae Inherited Retinal Disease (IRD) Panel. Results Three patients had a logMAR BCVA of 1.0 or worse. The median VF MD was -29.7 dB and -29.2 dB in the OD and OS, respectively. The median PSD was 5.5 dB and 5.7 dB in the OD and OS, respectively. Upon macular OCT, patients had a median volume of 8.4 μm3 and 8 μm3 in the OD and OS, respectively. The median thickness was 235 μm and 223 μm in the OD and OS, respectively. All patients had pathogenic USH2A variants, and eight of these were compound heterozygotes. The most common variants were p.Cys575Tyr and p.Glu767Serfs*21, each present in four patients. Patients with the p.Cys759Phe variant had the worst phenotype with the worst BCVA, largest VF MD, and slimmer macular thickness. Conclusion Our findings are compatible with previously reported pathogenic mutations in the USH2A gene. However, the p.Cys759Phe variant has previously been correlated with a mild phenotype. In our study, the p.Cys759Phe variant correlated with the most severe phenotype. This variant has a high prevalence in the Spanish population, and PR was a Spanish colony for 400 years. The presence of this variant could be traced back to Spain. Genotyping patients with Usher syndrome is of utmost importance. Further studies to evaluate the common founder effect of patients with the syndrome in PR are warranted.
Collapse
|