1
|
Detrez N, Burhan S, Rewerts K, Kren J, Buschschluter S, Theisen-Kunde D, Bonsanto MM, Huber R, Brinkmann R. Flow-Controlled Air-Jet for In Vivo Quasi Steady-State and Dynamic Elastography With MHz Optical Coherence Tomography. IEEE Trans Biomed Eng 2025; 72:1008-1020. [PMID: 39437292 DOI: 10.1109/tbme.2024.3484676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Optical coherence elastography (OCE) has been introduced for several medical applications to determine tissue mechanical parameters. However, in order to measure sensitive healthy tissue like brain in vivo, the excitation force needs to be carefully controlled and as low as possible (under 100 µN). Preferably, the excitation should be applied in a non-contact manner. METHODS In this work, an air-jet excitation source for this specific purpose has been developed and characterized. The design focus was set on the exact measurement and control of the generated excitation force to better comply with in vivo medical safety requirements during surgery. RESULTS Therefore, an excitation force control and measurement system based on the applied gas flow was developed. CONCLUSION This system can generate short, high dynamic air-puffs lasting fewer than 5 ms, as well as quasi-static excitation forces lasting 700 ms. The force range covers 1µN to 40 mN with a force error margin between 0.1% and 16% in the relevant range. The excitation source, in conjunction with a 3.2 MHz optical coherence system, enables phase-based, dynamic, and quasi steady-state elastography, as well as robust non-contact classical indentation measurements. SIGNIFICANCE The presented system is a preliminary prototype intended for further development into a clinical version to be used in situ during brain tumor surgery.
Collapse
|
2
|
Andrade de Carvalho K, Esporcatte LPG, Gomes RLR, Ambrósio R. Multimodal corneal imaging before refractive cataract surgery. Curr Opin Ophthalmol 2025; 36:25-34. [PMID: 39470459 DOI: 10.1097/icu.0000000000001102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW To prospectively review the advances in diagnostics for refractive cataract surgery, focusing on multimodal corneal analysis. RECENT FINDINGS The article explores the considerations related to planning refractive cataract surgery, emphasizing its potential to enhance patients' vision performance and quality of life. This review explores preoperative analysis in cataract surgery, focusing on assessing the cornea and ocular surface using multimodal diagnostics, including Placido disk-based corneal topography, Scheimpflug tomography OCT (optical coherence tomography), and biomechanical assessment. Wavefront technology, gene therapy, and artificial intelligence are also relevant in enhancing surgical precision and outcomes. It highlights the importance of preoperative thorough evaluations and technological advancements in ophthalmology. SUMMARY The rapid evolution and advancement of technology enable excellent refractive outcomes in most cases following cataract surgery. Consideration of appropriate preoperative factors is essential for achieving the desired postoperative outcome.
Collapse
Affiliation(s)
| | - Louise Pellegrino G Esporcatte
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group
- Instituto de Olhos Renato Ambrósio
- Rio Vision Hospital, Rio de Janeiro
- Department of Ophthalmology, Federal University of São Paulo, São Paulo
| | - Rachel L R Gomes
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group
- Rio Vision Hospital, Rio de Janeiro
| | - Renato Ambrósio
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group
- Instituto de Olhos Renato Ambrósio
- Rio Vision Hospital, Rio de Janeiro
- Department of Ophthalmology, Federal University of São Paulo, São Paulo
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Elagamy A, Alnasser HK, Alghamdi WS, Berika M, Aldisi D. Relationship of Corneal Biomechanics Measured by Corvis ST and Optic Nerve Head Parameters in Healthy Saudi Females. Clin Ophthalmol 2024; 18:2851-2863. [PMID: 39398470 PMCID: PMC11471078 DOI: 10.2147/opth.s469150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Aim This study assessed the correlation between corneal biomechanical properties measured with Corvis ST (CST) and retinal nerve fiber layer thickness profile, anterior lamina cribrosa surface depth, and other optic nerve head parameters in healthy Saudi females. Methods This study included 62 eyes (only right eyes) of 62 healthy Saudi females aged from 20 to 39 yrs. A complete ophthalmologic assessment was performed for all participants. In addition, corneal biomechanical parameters were measured using CST, and optic nerve head parameters were evaluated using spectral domain optical coherence tomography. Results This study demonstrated a significant weak positive correlation between circumpapillary retinal nerve fiber layer (cpRNFL) peak angle and only second applanation (A2) length (mm) (r = 0.293, P = 0.021). Also, this study reported a significant moderate negative association between the C/D ratio and radius (r = -.513, P = 0.015). However, there was no significant correlation between corneal biomechanics and ALCSD in this study. Conclusion This study reported a significant positive correlation between cpRNFL peak angle and A2-length. In addition, the current study documented a significant moderate negative association between C/D ratio and radius. However, there was no significant correlation between ALCSD and the corneal biomechanical properties in this study. Further research is needed to verify the impact of corneal biomechanics on optic nerve head parameters and further investigate its role in the pathophysiology of glaucoma.
Collapse
Affiliation(s)
- Amira Elagamy
- Department of Optometry and Vision Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Mansoura Ophthalmic Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Wafa Saeed Alghamdi
- College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Berika
- Rehabilitation Science Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dara Aldisi
- Community Health Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Hu X, Kong B, Wang Y, Zhao Y, Li M, Zhou X. Responsive porous microneedles with riboflavin ocular microinjection capability for facilitating corneal crosslinking. J Nanobiotechnology 2024; 22:588. [PMID: 39342257 PMCID: PMC11438091 DOI: 10.1186/s12951-024-02851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Riboflavin-5-phosphate (riboflavin) is the most commonly used photosensitizer in corneal crosslinking (CXL); while its efficient delivery into the stroma through the corneal epithelial barrier is challenging. In this paper, we presented novel responsive porous microneedles with ocular microinjection capability to deliver riboflavin controllably inside the cornea to facilitate CXL. The microneedle patch was composed of Poly (N-isopropyl acrylamide) (PNIPAM), graphene oxide (GO), and riboflavin-loaded gelatin. After penetrating the cornea by the stiff and porous gelatin needle tip, the photothermal-responsive characteristic of the PNIPAM/GO hydrogel middle layer could realize the contraction of the gel under the stimulation of near-infrared light, which subsequently could control the release of riboflavin from the backing layer into the cornea stromal site both in vitro and in vivo. Based on the microneedles system, we have demonstrated that this microinjection technique exhibited superior riboflavin delivery capacity and treatment efficacy to the conventional epithelial-on protocol in a rabbit keratoconus model, with benefits including minimal invasiveness and precise administering. Thus, we believe the responsive porous microneedles with riboflavin ocular microinjection capability are promising for clinical corneal crosslinking without epithelial debridement.
Collapse
Affiliation(s)
- Xiaojun Hu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bin Kong
- Department of Rheumatology and Immunology, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Nanjing Drum Tower Hospital, Southeast University, Nanjing, 210096, China
| | - Yunzhe Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yuanjin Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Department of Rheumatology and Immunology, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Nanjing Drum Tower Hospital, Southeast University, Nanjing, 210096, China.
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
5
|
Shu N, He Y, Zhang Y. Research progress on measurement methods and clinical applications of corneal elastic modulus. Exp Eye Res 2024; 245:109974. [PMID: 38897271 DOI: 10.1016/j.exer.2024.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Various corneal diseases are strongly associated with corneal biomechanical characteristics, and early measurement of patients' corneal biomechanics can be utilized in their diagnosis and treatment. Measurement methods for corneal biomechanical characteristics are classified into ex vivo and in vivo. Some of these methods can directly measure certain corneal biomechanical parameters, while others require indirect calculation through alternative methods. However, due to diversities in measurement techniques and environmental conditions, significant differences may exist in the corneal mechanical properties measured by these two methods. Therefore, comprehensive research on current measurement methods and the exploration of novel measurement techniques may have great clinical significance. The corneal elastic modulus, a critical indicator in corneal biomechanics, reflects the cornea's ability to return to its initial shape after undergoing stress. This review aims to provide a comprehensive summary of the corneal elastic modulus, which is a critical biomechanical parameter, and discuss its direct, indirect, and potential measurement methods and clinical applications.
Collapse
Affiliation(s)
- Nanqi Shu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
6
|
Aydin Eroglu S, Akyuz Unsal AI, Verdi F, Kurt Omurlu I, Unuvar T, Anik A. The Effect of Childhood Obesity on Intraocular Pressure, Corneal Biomechanics, Retinal Nerve Fiber Layer, and Central Macular Thickness. J Glaucoma 2024; 33:417-421. [PMID: 38506830 DOI: 10.1097/ijg.0000000000002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/28/2024] [Indexed: 03/21/2024]
Abstract
PRCIS Elevated corneal hysteresis (CH) and resistance factor (CRF) in obese and overweight children imply weight's effect on corneal biomechanics. Increased Goldmann-correlated intraocular pressure (IOPg) in obese children indicates glaucoma risk, emphasizing screening for IOP and retinal changes. PURPOSE To evaluate the effect of obesity on corneal biomechanics, retinal nerve fiber layer (RNFL), and central macular thickness (CMT) in children. PATIENTS AND METHODS In this prospective, cross-sectional, comparative study, 146 eyes of normal-weight, over-weight, and obese children aged between 6 to 17 years were evaluated. The IOPg, corneal compensated IOP (IOPcc), CH, CRF, and the average retinal nerve fiber layer (RNFL), average cup-to-disk ratio (c/d), and central macular thickness (CMT) were measured by Ocular Response Analyser and Spectral-Domain Optical Coherence Tomography (SD-OCT), respectively. RESULTS There was no statistically significant difference regarding age, gender, IOPcc, average RNFL thickness, c/d ratio, and CMT among the groups ( P ≥0.05). The IOPg was significantly higher in obese children compared with normal-weight children, while CH and CRF values were significantly higher in both obese and over-weight children compared with healthy ones ( P <0.05). There was a positive correlation between BMI percentile and IOPg, CH, and CRF values. CONCLUSION In our study, higher IOPg, corneal hysteresis, and corneal resistance factor values suggest that obese children could be potential candidates for glaucoma. Therefore, it would be appropriate to screen them for IOP and retinal alterations. Further investigations with larger sample size and longer follow-up are needed to understand the risk of glaucoma in obese children.
Collapse
Affiliation(s)
- Sayime Aydin Eroglu
- Department of Ophthalmology, Bakircay University Cigli Training and Research Hospital, İzmir, Turkey
| | | | - Furkan Verdi
- Department of Ophthalmology, Aydin Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| | - Imran Kurt Omurlu
- Department of Biostatistics, Aydin Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| | - Tolga Unuvar
- Department of Pediatric Endocrinology, Aydin Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| | - Ahmet Anik
- Department of Pediatric Endocrinology, Aydin Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| |
Collapse
|
7
|
Mascolini MV, Toniolo I, Carniel EL, Fontanella CG. Ex vivo, in vivo and in silico studies of corneal biomechanics: a systematic review. Phys Eng Sci Med 2024; 47:403-441. [PMID: 38598066 PMCID: PMC11166853 DOI: 10.1007/s13246-024-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Healthy cornea guarantees the refractive power of the eye and the protection of the inner components, but injury, trauma or pathology may impair the tissue shape and/or structural organization and therefore its material properties, compromising its functionality in the ocular visual process. It turns out that biomechanical research assumes an essential role in analysing the morphology and biomechanical response of the cornea, preventing pathology occurrence, and improving/optimising treatments. In this review, ex vivo, in vivo and in silico methods for the corneal mechanical characterization are reported. Experimental techniques are distinct in testing mode (e.g., tensile, inflation tests), samples' species (human or animal), shape and condition (e.g., healthy, treated), preservation methods, setup and test protocol (e.g., preconditioning, strain rate). The meaningful results reported in the pertinent literature are discussed, analysing differences, key features and weaknesses of the methodologies adopted. In addition, numerical techniques based on the finite element method are reported, incorporating the essential steps for the development of corneal models, such as geometry, material characterization and boundary conditions, and their application in the research field to extend the experimental results by including further relevant aspects and in the clinical field for diagnostic procedure, treatment and planning surgery. This review aims to analyse the state-of-art of the bioengineering techniques developed over the years to study the corneal biomechanics, highlighting their potentiality to improve diagnosis, treatment and healing process of the corneal tissue, and, at the same, pointing out the current limits in the experimental equipment and numerical tools that are not able to fully characterize in vivo corneal tissues non-invasively and discourage the use of finite element models in daily clinical practice for surgical planning.
Collapse
Affiliation(s)
- Maria Vittoria Mascolini
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Padova, Italy.
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy.
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Arcas-Carbonell M, Orduna-Hospital E, Fernández-Espinosa G, Mechó-García M, Castro-Torres JJ, Sánchez-Cano A. Anterior Chamber and Retinal Morphological Changes During Accommodation in Different Age Ranges. Curr Eye Res 2024; 49:671-681. [PMID: 38379315 DOI: 10.1080/02713683.2024.2320771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Accommodation mainly affects the lens, a structure of the eyeball that degrades with age. The aim of this work was to study the morphological changes of different ocular structures during accommodation, both in the anterior pole and the posterior pole, which may also be involved in the accommodation process. METHODS The study will be carried out by stimulating accommodation through lenses of -1.00, -3.00 and -5.00 D starting from the spherical equivalent (M) of each participant in different age groups, from 18 to 66 years. To obtain the M value, aberrometry was achieved, and retinal optical coherence tomography and anterior pole tomography were performed to evaluate the possible structural modifications (central and peripheral), while accommodation was progressively stimulated. RESULTS It showed that as the accommodative demand increased, morphological changes were produced in retinal thickness, both in the central and peripheral retina, in all age groups. A thinning of the retina was observed in the central 3 mm, while significant progressive thickening was observed closer to the periphery (up to 6 mm from the fovea) as the required accommodative power increased. A decrease in the anterior chamber depth (ACD) and anterior chamber volume (ACV) was observed with increasing lens power. CONCLUSION Structural changes were observed in the central and peripheral retina, as well as in the ACD and ACV, while progressively greater accommodation was stimulated, showing that these structures were modified in the accommodation process even in advanced presbyopes.
Collapse
Affiliation(s)
| | | | | | - María Mechó-García
- Clinical & Experimental Optometry Research Lab, Center of Physics (Optometry), School of Sciences, University of Minho, Braga, Portugal
| | | | - Ana Sánchez-Cano
- Departamento de Física Aplicada, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
9
|
Wang D, Chang Y, Nan W, Zhang Y. Comparative analysis of corneal parameters in simple myopic anisometropia using Scheimpflug technology. Front Bioeng Biotechnol 2024; 12:1366408. [PMID: 38840667 PMCID: PMC11150699 DOI: 10.3389/fbioe.2024.1366408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose This study aims to investigate the differences in binocular corneal parameters and their interrelation with binocular biometric parameters asymmetry in patients with simple myopic anisometropia, thereby elucidating the influence of myopia process on various corneal parameters. Methods In this cross-sectional study, 65 patients with anisometropia in monocular myopia were included. They were divided into low anisometropia group: 3.00D<Δ spherical equivalent (SE)≤-1.00D (Δ represents the difference between the two eyes, i.e., myopic data minus emmetropic data) and high anisometropia group: ΔSE ≤ -3.00D. Corneal and ocular biometric parameters were measured using Pentacam, Corvis ST, and IOL Master 700. Statistical analyses focused on the binocular corneal parameters asymmetry, using the contralateral emmetropia as a control. Results The mean age of participants was 18.5 ± 1.3 years, with the average SE for myopia and emmetropia being -2.93 ± 1.09D and -0.16 ± 0.41D, respectively. The central corneal thickness (CCT), flat keratometry (Kf), keratometry astigmatism (Ka), total corneal aberration (6 mm) (TOA), surface variance index (ISV), vertical asymmetry index (IVA), stress-strain index (SSI), and first applanation stiffness parameter (SPA1) and ambrosia relational thickness-horizontal (ARTh) showed significant differences between anisometropic fellow eyes (p < 0.05). There were significant differences in ΔIVA, Δ the difference between the mean refractive power of the inferior and superior corneas (I-S), Δ deviation value of Belin/Ambrósio enhanced ectasia display (BAD-D), Δ deformation amplitude ratio max (2 mm) (DAR)and Δ tomographic biomechanical index (TBI) (p < 0.05) in two groups. Asymmetry of corneal parameters was correlated with asymmetry of ocular biometric parameters. Anisometropia (ΔSE) was positively correlated with ΔIVA (r = 0.255, p = 0.040), ΔBAD-D (r = 0.360, p = 0.006), and ΔSSI (r = 0.276, p = 0.039) and negatively correlated with ΔDAR (r = -0.329, p = 0.013) in multiple regression analysis. Δ mean keratometry (Km), Δ anterior chamber depth (ACD), and Δ biomechanically corrected intraocular pressure (bIOP) were also associated with binocular corneal differences. Conclusion Compared to contralateral emmetropia, myopic eyes have thinner corneas and smaller corneal astigmatism. Myopic corneas exhibit relatively more regular surface morphology but are more susceptible to deformation and possess marginally inferior biomechanical properties. In addition, there is a certain correlation between anisometropia and corneal parameter asymmetry, which would be instrumental in predicting the development of myopia.
Collapse
Affiliation(s)
- Di Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Yue Chang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Weijin Nan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Čulina K, Tomić M, Bulum T, Medić A, Šoša I, Ivanišević K, Jukić T. Corneal Biomechanics and Other Factors Associated with Postoperative Astigmatism after Cataract Surgery. Life (Basel) 2024; 14:655. [PMID: 38929639 PMCID: PMC11204989 DOI: 10.3390/life14060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the impact of the cornea's biomechanical properties, corneal hysteresis (CH), and corneal resistance factor (CRF) on postoperative astigmatism after cataract surgery and determine the other factors that influence it. Forty eyes of 40 patients (13M/27F; the median age of 74) were included in this prospective study, underwent 2.75 mm incision cataract surgery, and were followed for 30 days. Visits were scheduled at baseline before surgery (V0), the 1st (V1), the 7th (V2), and the 30th (V3) postoperative days. The main parameters estimated and analyzed with Statistica® 14.0.1 were CH, CRF, astigmatism diopter, and axis. Following the cataract surgery, the CH did not significantly change during the study visits (p = 0.109). However, there was a significant change in the CRF from baseline during the study visits (per protocol set) (p = 0.002). After a slight but insignificant increase from V0 to V1, post hoc analysis found a significant decrease in the mean CRF from V1 to V2 (p = 0.049) with no substantial change from V2 to V3. According to the post hoc analysis, the median astigmatism diopter increased significantly only from V0 to V1 (p = 0.001) and slightly but not significantly decreased to the end of the study with the achievement of a near-baseline value. The main predictors for the final astigmatism diopter (R2 = 0.898) obtained by stepwise regression analysis were its values at V0, V1, and V2 (p < 0.001). The CRF at V1 was marginally significant, with a negative parameter estimate of -0.098303 (p = 0.0623). In conclusion, there was no correlation between preoperative CH and CRF and postoperative astigmatism using 2.75 mm incision cataract surgery. However, the final astigmatism diopter's main predictors were its baseline values before cataract surgery, the first, and the seventh postoperative days.
Collapse
Affiliation(s)
- Kata Čulina
- Eye Clinic “Medić, Jukić”, 21000 Split, Croatia
| | - Martina Tomić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Tomislav Bulum
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Ivan Šoša
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Tomislav Jukić
- Eye Clinic “Medić, Jukić”, 21000 Split, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Ophthalmology, Zagreb University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Li X. Changes in corneal biomechanics in patients with glaucoma: a systematic review and meta-analysis. BMC Ophthalmol 2024; 24:168. [PMID: 38622519 PMCID: PMC11017643 DOI: 10.1186/s12886-024-03443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION Corneal biomechanics has been implicated in a variety of ocular diseases. The purpose of this study was to evaluate the relationship between the glaucoma and corneal biomechanical properties, and exploring the value of corneal biomechanics in the diagnosis and follow-up of glaucoma diseases. METHODS We searched studies in PubMed, EMBASE, Web of Science and clinicaltrials.gov., as of October 8, 2022. Only English studies were included, without publication time limit. We also searched the reference lists of published reviews. This meta-analysis was conducted with random-effects models, we used mean difference(MD) to evaluate the outcome, and the heterogeneity was assessed with the I2 statistic. Subgroup analyses were performed under the appearance of high heterogeneity. We used 11 items to describe the characteristics of included studies, publication bias was performed through the Egger's test. The quality assessment were evaluated by Newcastle-Ottawa Scale(NOS) items. RESULTS A total of 27 eligible studies were identified for data synthesis and assessment. The result of meta-analysis showed that in the comparison of included indicators, the corneal biomechanics values of glaucoma patients were statistically lower than those of normal subjects in a similar age range. The covered indicators included central corneal thickness(CCT) (MD = -8.34, 95% CI: [-11.74, -4.94]; P < 0.001), corneal hysteresis(CH)(MD = -1.54, 95% CI: [-1.88, -1.20]; P < 0.001), corneal resistance factor(CRF)( MD = -0.82, 95% CI: [-1.21, -0.44]; P < 0.001), and intraocular pressure(IOP)( corneal-compensated intraocular pressure (IOPcc): MD = 2.45, 95% CI: [1.51, 3.38]; P < 0.001); Goldmann-correlated intraocular pressure (IOPg): MD = 1.30, 95% CI: [0.41, 2.20]; P = 0.004), they all showed statistical difference. While the value of axial length(AL) did not show statistically different(MD = 0.13, 95% CI: [-0.24, 0.50]; P = 0.48). CONCLUSION Corneal biomechanics are associated with glaucoma. The findings can be useful for the design of glaucoma screening, treatment and prognosis.
Collapse
Affiliation(s)
- Xinru Li
- Department of Ophthalmology, The First People's Hospital of Yongkang Affiliated to Hangzhou Medical College, Yongkang, 321300, Zhejiang, P. R. China.
| |
Collapse
|
12
|
Huo Y, Chen X, Khan GA, Wang Y. Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence. Graefes Arch Clin Exp Ophthalmol 2024; 262:1337-1349. [PMID: 37943332 DOI: 10.1007/s00417-023-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Keratoconus is a blinding eye disease that affects activities of daily living; therefore, early diagnosis is crucial. Great efforts have been made toward an early diagnosis of keratoconus. Recent studies have shown that corneal biomechanics is associated with the occurrence and progression of keratoconus. Hence, detecting changes in corneal biomechanics may provide a novel strategy for early diagnosis. However, an early keratoconus diagnosis remains challenging due to the subtle and localized nature of its lesions. Artificial intelligence has been used to help address this problem. Herein, we reviewed the literature regarding three aspects of keratoconus (keratoconus, early keratoconus, and keratoconus grading) based on corneal biomechanical properties using artificial intelligence. Furthermore, we summarized the current research progress, limitations, and possible prospects.
Collapse
Affiliation(s)
- Yan Huo
- School of Medicine, Nankai University, Tianjin, China
| | - Xuan Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Gauhar Ali Khan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin, China.
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, 4 Gansu Road, He-ping District, Tianjin, 300020, China.
- Nankai Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
Zhang S, Liu J, Gao J, Yan Y, Hao P, Li X. Assessment of dynamic corneal response parameters in Chinese patients of different ages with myopia and orthokeratology lenses using the Corvis ST. Cont Lens Anterior Eye 2024; 47:102123. [PMID: 38246852 DOI: 10.1016/j.clae.2024.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE To investigate the effects of orthokeratology lenses (OK lenses) on corneal biomechanics in subjects of different ages. METHODS Fifty subjects with mild to moderate myopia were categorized into three groups (Group I-III) based on their age. Corvis ST was used to collect dynamic corneal response parameters (DCRs) at different follow-up time points. Repeated measures analysis of variance combined with simple effect analysis was used to analyze the changes in DCRs in different groups during the follow-up period. Multiple linear regression analysis was used to analyze the correlations between axial length growth (ALG) at 6 months (ALG-6M) or 12 months (ALG-12M) and sex, baseline spherical equivalent refraction (SER), and DCRs. RESULTS The DCRs changed in all three groups after wearing OK lenses. Most DCRs showed significant differences between baseline and 6 months after wearing OK lenses, while the differences between DCRs at 6 months and 12 months were not statistically significant. No significant differences in DCRs were observed among the three groups at the same follow-up time point. Additionally, at 6 months post-OK lens wear, ALG-6M was significantly correlated with velocity of the corneal apex at the first applanation (A1V-6M) (P = 0.002), Corvis biomechanical index (CBI-6M) (P = 0.004), the maximum amount of corneal movement (DAM-6M) (P = 0.010), deformation amplitude ratio of 2 mm (DAR2-6M) (P = 0.010), and stress-strain index (SSI-6M) (P = 0.038) in Group I. Furthermore, ALG-12M showed significant correlations with SSI-6M (P = 0.031), peak distance at the DAM (PD)-6M (P = 0.037), baseline Ambrósio Relational Thickness to the horizontal profile (P = 0.013) in Group I. CONCLUSIONS The majority of DCRs displayed significant changes within the initial 6 months of OK lens wear. Minimal variation in DCRs was observed across different age groups at the same follow-up time point. Certain DCR parameters exhibited correlations with ALG, suggesting their potential in predicting ALG in myopic children undergoing OK lenses correction.
Collapse
Affiliation(s)
- Shuxian Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Vision Science,Tianjin 300020, China; Optometry Center of Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jinghua Liu
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Vision Science,Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Tianjin 300020, China
| | - Juan Gao
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Vision Science,Tianjin 300020, China
| | - Yarong Yan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Peng Hao
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Vision Science,Tianjin 300020, China
| | - Xuan Li
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Vision Science,Tianjin 300020, China; School of Medicine, Nankai University, Tianjin 300110, China; Nankai University Affiliated Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China.
| |
Collapse
|
14
|
Lombardo G, Alunni-Fegatelli D, Serrao S, Mencucci R, Roszkowska AM, Bernava GM, Vestri A, Aleo D, Lombardo M. Accuracy of an Air-Puff Dynamic Tonometry Biomarker to Discriminate the Corneal Biomechanical Response in Patients With Keratoconus. Cornea 2024; 43:315-322. [PMID: 37964435 DOI: 10.1097/ico.0000000000003377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/30/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE The aim of this study was to assess accuracy of the mean corneal stiffness ( kc , N/m) parameter to discriminate between patients with keratoconus and age-matched healthy subjects. METHODS Dynamic Scheimpflug imaging tonometry was performed with Corvis ST (Oculus Optikgeräte GmbH, Germany) in patients with keratoconus (n = 24; study group) and age-matched healthy subjects (n = 32; control). An image processing algorithm was developed to analyze the video sequence of the Corvis ST air-puff event and to determine the geometric and temporal parameters that correlated with the corneal tissue biomechanical properties. A modified 3-element viscoelastic model was used to derive the kc parameter, which represented the corneal tissue resistance to deformation under load. Receiver operating characteristic curves were used to assess the overall diagnostic performance for determining the area under the curve, sensitivity, and specificity of the kc in assessing the corneal tissue deformation to the Corvis ST air-puff event in keratoconus and control eyes. The Corvis Biomechanical Index ( CBI ) was analyzed for external validation. RESULTS The kc parameter was significantly different between keratoconus and controls ( P < 0.001), ranging from 24.9 ±3.0 to 34.2 ±3.5 N/m, respectively. It was highly correlated with CBI (r = -0.69; P < 0.001); however, the kc parameter had greater specificity (94%) than CBI (75%), whereas the 2 biomarkers had similar area under the curve (0.98 vs. 0.94) and sensitivity (96% vs. 92%) in predicting the occurrence of keratoconus. CONCLUSIONS The kc parameter extracted by video processing analysis of dynamic Scheimpflug tonometry data was highly accurate in discriminating patients with clinically manifest keratoconus compared with controls.
Collapse
Affiliation(s)
- Giuseppe Lombardo
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, Italy
- Vision Engineering Italy srl, Rome, Italy
| | - Danilo Alunni-Fegatelli
- Department of Public Health and infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | | | - Rita Mencucci
- SOD Oculistica, AOU Careggi, Università di Firenze, Firenze, Italy
| | | | | | - Annarita Vestri
- Department of Public Health and infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | | | - Marco Lombardo
- Vision Engineering Italy srl, Rome, Italy
- Studio Italiano di Oftalmologia, Rome, Italy
| |
Collapse
|
15
|
Tan Z, Chen X, Xu Q, Yang C, Lin X, Huo Y, Alzogool M, Wang R, Wang Y. Unsupervised corneal contour extraction algorithm with shared model for dynamic deformation videos: improving accuracy and noise resistance. Biomed Eng Online 2024; 23:4. [PMID: 38191452 PMCID: PMC10775613 DOI: 10.1186/s12938-023-01188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND In this study, an automatic corneal contour extraction algorithm with a shared model is developed to extract contours from dynamic corneal videos containing noise, which improves the accuracy of corneal biomechanical evaluation and clinical diagnoses. The algorithm does not require manual labeling and completes the unsupervised semantic segmentation of each frame in corneal dynamic deformation videos based on a fully convolutional deep-learning network using corneal geometry and texture information. RESULTS We included 1027 corneal videos at Tianjin Eye Hospital (Nankai University Affiliated Eye Hospital) from May 2020 to November 2021. The videos were obtained by the ultra-high-speed Scheimpflug camera, and then we used the shared model mechanism to accelerate the segmentation of corneal regions in videos, effectively resist noise, determine corneal regions based on shape factors, and finally achieve automatic and accurate extraction of corneal region contours. The Intersection over Union (IoU) of the extracted and real corneal contours using this algorithm reached 95%, and the average overlap error was 0.05, implying that the extracted corneal contour overlapped almost completely with the real contour. CONCLUSIONS Compared to other algorithms, the method introduced in this study does not require manual annotation of corneal contour data in advance and can still extract accurate corneal contours from noisy corneal videos with good repeatability.
Collapse
Affiliation(s)
- Zuoping Tan
- Wenzhou University of Technology, Wenzhou Economic and Technological Development Zone, Longwan District, No. 337, Jinhai Third Road, Wenzhou, 325000, Zhejiang, China
| | - Xuan Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Qiang Xu
- Wenzhou University of Technology, Wenzhou Economic and Technological Development Zone, Longwan District, No. 337, Jinhai Third Road, Wenzhou, 325000, Zhejiang, China
| | - Can Yang
- Wenzhou University of Technology, Wenzhou Economic and Technological Development Zone, Longwan District, No. 337, Jinhai Third Road, Wenzhou, 325000, Zhejiang, China
| | - Xiaomin Lin
- Wenzhou University of Technology, Wenzhou Economic and Technological Development Zone, Longwan District, No. 337, Jinhai Third Road, Wenzhou, 325000, Zhejiang, China
| | - Yan Huo
- School of Medicine, Nankai University, Tianjin, China
| | | | - Riwei Wang
- Wenzhou University of Technology, Wenzhou Economic and Technological Development Zone, Longwan District, No. 337, Jinhai Third Road, Wenzhou, 325000, Zhejiang, China.
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin, China.
- Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Road, Heping District, Tianjin, 300020, China.
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China.
- Nankai Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Li DL, Liu MX, Yin ZJ, Li YZ, Ma R, Zheng YJ, Qin Y, Liang G, Pan CW. Refractive associations with corneal biomechanical properties among young adults: a population-based Corvis ST study. Graefes Arch Clin Exp Ophthalmol 2024; 262:121-132. [PMID: 37401934 DOI: 10.1007/s00417-023-06164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
PURPOSE To assess the associations of corneal biomechanical properties as measured by the Corvis ST with refractive errors and ocular biometry in an unselected sample of young adults. METHODS A total of 1645 healthy university students underwent corneal biomechanical parameters measurement by the Corvis ST. The refractive status of the participants was measured using an autorefractor without cycloplegia. Ocular biometric parameters were measured using the IOL Master. RESULTS After adjusting for the effect of age, sex, biomechanical-corrected intraocular pressure and central corneal thickness, axial length was significantly associated with A1 velocity (A1v, β = -10.47), A2 velocity (A2v, β = 4.66), A2 deflection amplitude (A2DeflA, β = -6.02), HC deflection amplitude (HC-DeflA, β = 5.95), HC peak distance (HC-PD, β = 2.57), deformation amplitude ratio max (DA Rmax, β = -0.36), Ambrósio's relational thickness to the horizontal profile (ARTh, β = 0.002). For axial length / corneal radius ratio, only A1v (β = -2.01), A1 deflection amplitude (A1DeflA, β = 2.30), HC-DeflA (β = 1.49), HC-PD (β = -0.21), DA Rmax (β = 0.07), stress-strain index (SSI, β = -0.29), ARTh (β < 0.001) were significant associates. A1v (β = 23.18), HC-DeflA (β = -15.36), HC-PD (β = 1.27), DA Rmax (β = -0.66), SSI (β = 3.53), ARTh (β = -0.02) were significantly associated with spherical equivalent. CONCLUSION Myopic eyes were more likely to have more deformable corneas and corneas in high myopia were easier to deform and were even softer compared with those in the mild/moderate myopia.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Min-Xin Liu
- School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Zhi-Jian Yin
- Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali, China
| | - Yue-Zu Li
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, 176 Qing Nian Road, Kunming, 650021, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Rong Ma
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, 176 Qing Nian Road, Kunming, 650021, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, 176 Qing Nian Road, Kunming, 650021, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, 176 Qing Nian Road, Kunming, 650021, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Gang Liang
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, 176 Qing Nian Road, Kunming, 650021, China.
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China.
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| |
Collapse
|
17
|
Elhusseiny AM, Scarcelli G, Saeedi OJ. Corneal Biomechanical Measures for Glaucoma: A Clinical Approach. Bioengineering (Basel) 2023; 10:1108. [PMID: 37892838 PMCID: PMC10604716 DOI: 10.3390/bioengineering10101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Over the last two decades, there has been growing interest in assessing corneal biomechanics in different diseases, such as keratoconus, glaucoma, and corneal disorders. Given the interaction and structural continuity between the cornea and sclera, evaluating corneal biomechanics may give us further insights into the pathogenesis, diagnosis, progression, and management of glaucoma. Therefore, some authorities have recommended baseline evaluations of corneal biomechanics in all glaucoma and glaucoma suspects patients. Currently, two devices (Ocular Response Analyzer and Corneal Visualization Schiempflug Technology) are commercially available for evaluating corneal biomechanics; however, each device reports different parameters, and there is a weak to moderate agreement between the reported parameters. Studies are further limited by the inclusion of glaucoma subjects taking topical prostaglandin analogues, which may alter corneal biomechanics and contribute to contradicting results, lack of proper stratification of patients, and misinterpretation of the results based on factors that are confounded by intraocular pressure changes. This review aims to summarize the recent evidence on corneal biomechanics in glaucoma patients and insights for future studies to address the current limitations of the literature studying corneal biomechanics.
Collapse
Affiliation(s)
- Abdelrahman M. Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Osamah J. Saeedi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Li X, Wei A, Yang Y, Hong J, Xu J. Effect of eye rubbing on corneal biomechanical properties in myopia and emmetropia. Front Bioeng Biotechnol 2023; 11:1168503. [PMID: 37346798 PMCID: PMC10279860 DOI: 10.3389/fbioe.2023.1168503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Purpose: To investigate short-term changes in corneal biomechanical properties caused by eye rubbing in myopia and emmetropia and compare the different responses between the two groups. Methods: This was a prospective observational study of 57 eyes of 57 healthy subjects aged 45 years and younger. The participants were divided into myopia and emmetropia groups. All the subjects underwent eye rubbing by the same investigator using the same technique. Biomechanical parameters were recorded using the Corvis ST device before and after 1 min of eye rubbing. One week later, all the participants underwent the test again. Statistical methods were employed to compare the differences between the data from before and after the 1 min of eye rubbing and demonstrate the different responses of the two groups. Results: After 1 min of eye rubbing, smaller SP-A1 (p < 0.001), higher deformation and deflection amplitudes (p < 0.001, p = 0.012), higher peak distances (p < 0.001), earlier A1 times (p < 0.001), faster velocities (p < 0.001), and lower maximum inverse radii (p = 0.004) were observed. According to the automatic linear modeling analysis, the refractive states (B = -5.236, p = 0.010) and biomechanically corrected intraocular pressure (bIOP) (B = 0.196, p = 0.016) had influenced a decrease in the stiffness parameter at the first applanation (SP-A1). The central corneal thickness (CCT) had decreased only in the myopia group (p = 0.039). The change of SP-A1 in amplitude was larger in the myopia group than in the emmetropia group (p < 0.001). All the parameters returned to the baseline level 1 week later. Conclusion: Eye rubbing appears to alter corneal biomechanical properties temporarily and make the cornea softer, especially for myopic young patients.
Collapse
Affiliation(s)
- Xia Li
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Anji Wei
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yujing Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Francis M, Shetty R, Padmanabhan P, Vinciguerra R, Vinciguerra P, Lippera M, Matalia H, Khamar P, Chinnappaiah N, Mukundan D, Nuijts RMMA, Sinha Roy A. New simulation software to predict postoperative corneal stiffness before laser vision correction. J Cataract Refract Surg 2023; 49:620-627. [PMID: 36791274 DOI: 10.1097/j.jcrs.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE To develop a new virtual surgery simulation platform to predict postoperative corneal stiffness (Kc mean ) after laser vision correction (LVC) surgery. SETTING Narayana Nethralaya Eye Hospital and Sankara Nethralaya, India; Humanitas Clinical and Research Center, Italy. DESIGN Retrospective observational case series. METHODS 529 eyes from 529 patients from 3 eye centers and 10 post-small-incision lenticule extraction (SMILE) ectasia eyes were included. The software (called AcuSimX) derived the anisotropic, fibril, and extracellular matrix biomechanical properties (using finite element calculation) of the cornea using the preoperative Corvis-ST, Pentacam measurement, and inverse finite element method assuming published healthy collagen fibril orientations. Then, the software-computed postoperative Kc mean was adjusted with an artificial intelligence (AI) model (Orange AI) for measurement uncertainties. A decision tree was developed to classify ectasia from normal eyes using the software-computed and preoperative parameters. RESULTS In the training cohort (n = 371 eyes from 371 patients), the mean absolute error and intraclass correlation coefficient were 6.24 N/m and 0.84 (95% CI, 0.80-0.87), respectively. Similarly, in the test cohort (n = 158 eyes from 158 patients), these were 6.47 N/m and 0.84 (0.78-0.89), respectively. In the 10 ectasia eyes, the measured in vivo (74.01 [70.01-78.01]) and software-computed (74.1 [69.03-79.17]) Kc mean were not statistically different ( P = .96). Although no statistically significant differences in these values were observed between the stable and ectasia groups ( P ≥ .14), the decision tree classification had an area under the receiver operating characteristic curve of 1.0. CONCLUSIONS The new software provided an easy-to-use virtual surgery simulation platform for post-LVC corneal stiffness prediction by clinicians and was assessed in post-SMILE ectasia eyes. Further assessments with ectasia after surgeries are required.
Collapse
Affiliation(s)
- Mathew Francis
- From the Imaging, Biomechanics and Mathematical Modelling Solutions, Narayana Nethralaya Foundation, Bangalore, India (Francis, Sinha Roy); Department of Corneal and Refractive surgery, Narayana Nethralaya, Bangalore, India (Shetty, Matalia, Khamar, Chinnappaiah); Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India (Padmanabhan, Mukundan); Humanitas San Pio X Hospital, Milan, Italy (R. Vinciguerra); The School of Engineering, University of Liverpool, Liverpool, United Kingdom (R. Vinciguerra); Humanitas Clinical and Research Center-IRCCS, Milan, Italy (P. Vinciguerra, Lippera); Department of Biomedical Sciences, Humanitas University, Milan, Italy (P. Vinciguerra, Lippera); Department of Ophthalmology, Maastricht University Medical Centre, Maastricht, the Netherlands (Nuijts)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lanza M, Mozzillo E, Boccia R, Fedi L, Di Candia F, Tinto N, Melillo P, Simonelli F, Franzese A. Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2. Diagnostics (Basel) 2023; 13:diagnostics13081500. [PMID: 37189601 DOI: 10.3390/diagnostics13081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND To evaluate corneal deformation in Maturity Onset Diabetes of the Young type 2 (MODY2), paediatric subjects were analysed using a Scheimpflug-based device. The purpose of this analysis was to find new biomarkers for MODY2 disease and to gain a better understanding of the pathogenesis of the disease. METHODS A total of 15 patients with genetic and metabolic diagnoses of MODY2 (mean age 12.8 ± 5.66 years) and 15 age-matched healthy subjects were included. The biochemical and anthropometric data of MODY2 patients were collected from clinical records, and a complete ophthalmic check with a Pentacam HR EM-3000 Specular Microscope and Corvis ST devices was performed in both groups. RESULTS Highest concavity (HC) deflection length, Applanation 1 (A1) deflection amplitude, and A1 deflection area showed significantly lower values in MODY2 patients compared to healthy subjects. A significant positive correlation was observed between Body Mass Index (BMI) and HC deflection area and between waist circumference (WC) and the following parameters: maximum deformation amplitude, HC deformation amplitude, and HC deflection area. The glycosylated hemoglobin level (HbA1c) showed a significant positive correlation with Applanation 2 time and HC time. CONCLUSIONS The obtained results show, for the first time, differences regarding corneal distortion features in the MODY2 population compared with healthy eyes.
Collapse
Affiliation(s)
- Michele Lanza
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Enza Mozzillo
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| | - Rosa Boccia
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ludovica Fedi
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| | - Francesca Di Candia
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, CEINGE Advanced Biotechnologies, Federico II University of Naples, 80131 Naples, Italy
| | - Paolo Melillo
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Adriana Franzese
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
21
|
Bao F, Lopes BT, Zheng X, Ji Y, Wang J, Elsheikh A. Corneal Biomechanics Losses Caused by Refractive Surgery. Curr Eye Res 2023; 48:137-143. [PMID: 36001080 DOI: 10.1080/02713683.2022.2103569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances, specifically in the understanding of the biomechanical properties of the cornea and its response to diseases and surgical interventions, have significantly improved the safety and surgical outcomes of corneal refractive surgery, whose popularity and demand continue to grow worldwide. However, iatrogenic keratectasia resulting from the deterioration in corneal biomechanics caused by surgical interventions, although rare, remains a global concern. On one hand, in vivo biomechanical evaluation, enabled by clinical imaging systems such as the ORA and the Corvis ST, has significantly improved the risk profiling of patients for iatrogenic keratectasia. That is despite the fact the biomechanical metrics provided by these systems are considered indicators of the cornea's overall stiffness rather than its intrinsic material properties. On the other hand, new surgical modalities including SMILE were introduced to offer superior biomechanical performance to LASIK, but this superiority could not be proven clinically, creating more myths than answers. The literature also includes sound evidence that tPRK provided the highest preservation of corneal biomechanics when compared to both LASIK and SMILE. The aim of this review is twofold; to discuss the importance of corneal biomechanical evaluation prior to refractive surgery, and to assess the current understanding of cornea's biomechanical deterioration caused by mainstream corneal refractive surgeries. The review has led to an observation that new imaging techniques, parameters and evaluation systems may be needed to reflect the true advantages of specific refractive techniques and when these advantages are significant enough to offer better protection against post-surgery complications.
Collapse
Affiliation(s)
- FangJun Bao
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Bernardo T Lopes
- School of Engineering, University of Liverpool, Liverpool, UK.,Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - XiaoBo Zheng
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - YuXin Ji
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - JunJie Wang
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, UK.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,National Institute for Health Research (NIHR) Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
22
|
Abstract
PURPOSE The relevance of corneal biomechanics and the importance of including it in the clinical assessment of corneal ectasias are being increasingly recognized. The connection between corneal ultrastructure, biomechanical properties, and optical function is exemplified by a condition like keratoconus. Biomechanical instability is seen as the underlying basis for the secondary morphological changes in the cornea. Asymmetric biomechanical weakening is believed to drive progressive corneal steepening and thinning. Biomechanical strengthening is the principle of collagen crosslinking that has been shown to effectively arrest progression of the keratoconus. Corneal biomechanics has therefore ignited the interest of researchers and clinicians alike and has given us new insights into the cause and course of the disease. This article is an overview of the extensive work published, predominantly in the last two decades, on the biomechanical aspect of keratoconus. METHODS Published articles on corneal biomechanics in the specific context of keratoconus were reviewed, based on an electronic search using PubMed, Elsevier, and Science Direct. The search terms used included "Corneal Biomechanics," "Mechanical properties of the cornea," "Corneal ultrastructure," "Corneal Collagen," and "Keratoconus". Articles pertaining to refractive surgery, keratoplasty, collagen crosslinking, or intrastromal rings were excluded. RESULTS The electronic search revealed more than 500 articles, from which 80 were chosen for this article. CONCLUSIONS The structural and organizational pattern of the corneal stroma determines its mechanical properties and are responsible for the maintenance of the normal shape and function of the cornea. Changes in the ultrastructure are responsible for the biomechanical instability that leads to corneal ectasia. As non-invasive methods for evaluating corneal biomechanics in vivo evolve, our ability to diagnose subclinical keratoconus will improve, allowing identification of patients at risk to develop ectasia and to allow early treatment to arrest progression of the disease.
Collapse
Affiliation(s)
- Prema Padmanabhan
- Department of Cornea and Refractive Surgery, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, UK.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
23
|
Lv X, Zhang F, Song Y, Zhai C, Guo N, Lai L, Xu Y. Corneal biomechanical characteristics following small incision lenticule extraction for myopia and astigmatism with 3 different cap thicknesses. BMC Ophthalmol 2023; 23:42. [PMID: 36717828 PMCID: PMC9885585 DOI: 10.1186/s12886-023-02786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The design of cap thickness for small incision lenticule extraction (SMILE) plays a role in post-laser vision correction (post-LVC) corneal biomechanics. This study aimed to compare the corneal biomechanical characteristics following SMILE with different cap thicknesses of 110 μm, 120 μm, and 130 μm for myopia and myopic astigmatism correction. METHODS Seventy-five patients (146 eyes) who underwent SMILE with designed cap thickness of 110 μm, 120 μm, and 130 μm were recruited at the Eye Center of Beijing Tongren Hospital between August 2020 and November 2021. Visual acuity, refraction, and corneal biomechanical parameters were measured preoperatively, 1 week and 1, 3, 6 months postoperatively. One-way analysis of variances (ANOVA) with Bonferroni correction or Kruskal-Wallis test was performed to compare the parameters among different groups. Repeated-measures analysis of variance with Bonferroni correction or Friedman test was applied for comparing the parameters within different follow-up times. RESULTS Uncorrected distance visual acuity of 110-μm group was better only at 1-week and 1-month postoperatively (P = 0.012, 0.037). There were no significant differences in spherical equivalent, nor in Corvis biomechanical index-laser vision correction (CBI-LVC). All the parameters reached stability at 3-month postoperatively. Integrated radius (IR) and deformation amplitude ratio 2 mm (DA ratio 2 mm) in 120-μm and 130-μm groups were higher than 110-μm group at 1-month postoperatively (P = 0.019, 0.002). So was Ambrósio relational thickness (ARTh) at 6-month postoperatively (P = 0.011). Stiffness parameter at applanation A1 (SP-A1), stress-strain index (SSI), biomechanically corrected intraocular pressure (bIOP) and central corneal thickness (CCT) were highest in 130-μm group, followed by 120-μm group, then 110-μm group at 3-month (P<0.001, P = 0.030, P = 0.027, P = 0.008) and 6-month (P<0.001, P = 0.002, P = 0.0023, P = 0.001) postoperatively. CONCLUSIONS The corneal stiffness following SMILE was greatest with 130-μm cap, followed by 120-μm cap, then 110-μm cap. 130-μm cap might have advantages in terms of corneal biomechanics and retreatment option. The SMILE-designed protocol should be customized in practice.
Collapse
Affiliation(s)
- Xiaotong Lv
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| | - Fengju Zhang
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| | - Yanzheng Song
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| | - Changbin Zhai
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| | - Ning Guo
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| | - Lingbo Lai
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| | - Yushan Xu
- grid.414373.60000 0004 1758 1243Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, No 1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
24
|
In Vivo Evaluation of the Effects of SMILE with Different Amounts of Stromal Ablation on Corneal Biomechanics by Optical Coherence Elastography. Diagnostics (Basel) 2022; 13:diagnostics13010030. [PMID: 36611322 PMCID: PMC9818797 DOI: 10.3390/diagnostics13010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
This work aims to depth-resolved quantitatively analyze the effect of different stromal ablation amounts on the corneal biomechanical properties during small incision lenticule extraction (SMILE) using optical coherence elastography (OCE). A 4.5-MHz ultrasonic transducer was used to excite elastic waves in the corneal tissue. The OCE system combined with the antisymmetric Lamb wave model was employed to achieve a high-resolution, high-sensitivity, and depth-resolved quantitative detection of the corneal Young's modulus. Eighteen rabbits were randomly divided into three groups; each group had six rabbits. The first and second groups underwent -3D and -6D SMILE surgeries, and the third group was the control group, respectively. Young's modulus of the corneal cap and residual stromal bed (RSB) were both increased after SMILE, which shared the stress under intraocular pressure (IOP). Furthermore, the Young's modulus of both the corneal cap and RSB after 3D SMILE group were significantly lower than that in the -6D group, which indicated that the increases in the post-operative corneal Young's modulus were positively correlated with the amount of stromal ablation. The OCE system for quantitative spatial characterization of corneal biomechanical properties can provide useful information on the extent of safe ablation for SMILE procedures.
Collapse
|
25
|
Marinescu M, Dascalescu D, Constantin M, Coviltir V, Burcel M, Darabus D, Ciuluvica R, Stanila D, Potop V, Alexandrescu C. Corneal Biomechanics - an Emerging Ocular Property with a Significant Impact. MAEDICA 2022; 17:925-930. [PMID: 36818253 PMCID: PMC9923086 DOI: 10.26574/maedica.2022.17.4.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Corneal biomechanical properties reflect the capacity of the cornea to respond to applied mechanical forces. They are an increasingly important domain in ocular pathology, correlated to the diagnosis and evolution of eye diseases such as refractive errors, glaucoma or corneal ectasias. Refractive errors constitute a significant etiology of decreased vision worldwide, with a particular impact in children. Myopic eyes significantly differ from emmetropic eyes in terms of morphology and biomechanics, with differences being reported in both adults and children. In the latter, corneal hysteresis (CH) and the corneal resistance factor (CRF) are significantly lower in myopic individuals, and both biomechanical parameters correlate with the central corneal thickness and axial length. Glaucoma is a progressive optic neuropathy that leads to thinning of the nerve fiber layer and specific visual field loss, in which intraocular pressure (IOP) is an important risk factor. There is an inverse correlation between IOP and CH - a low hysteresis is associated with a high IOP. Furthermore, CH is on average lower in primary open angle glaucoma (POAG) compared to ocular hypertension (OHT) for the same IOP. Significant correlations between CH and the thickness of the ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL), in both POAG and OHT, have been described. Keratoconus is the most frequent corneal ectasia, which leads to a progressive thinning and protruding of the cornea. Biomechanical parameters are severely affected in keratoconus - usually, both CH and CRF are lower compared to normal eyes. The biomechanical behavior of the cornea modulates the evolution of several ocular pathologies. As research is ongoing, more data will enable us to apply this knowledge in diagnosing disease more efficiently and targeting the right treatment for the right patient, including refractive surgery.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies Bucharest, Romania
| | - Dana Dascalescu
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies Bucharest, Romania
| | | | - Valeria Coviltir
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies Bucharest, Romania
| | - Miruna Burcel
- Department of Ophthalmology, Oftaclinic Bucharest, Romania
| | - Diana Darabus
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Radu Ciuluvica
- Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Dan Stanila
- Department of Ophthalmology, Faculty of Medicine, "Lucian Blaga" University, Sibiu, Romania
| | - Vasile Potop
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies Bucharest, Romania
| | - Cristina Alexandrescu
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
- Department of Ophthalmology, Bucharest Emergency University Hospital, Romania
| |
Collapse
|
26
|
Acoustic Micro-Tapping Optical Coherence Elastography to Quantify Corneal Collagen Cross-Linking: An Ex Vivo Human Study. OPHTHALMOLOGY SCIENCE 2022; 3:100257. [PMID: 36685713 PMCID: PMC9852959 DOI: 10.1016/j.xops.2022.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
Purpose To evaluate changes in the anisotropic elastic properties of ex vivo human cornea treated with ultraviolet cross-linking (CXL) using noncontact acoustic micro-tapping optical coherence elastography (AμT-OCE). Design Acoustic micro-tapping OCE was performed on normal and CXL human donor cornea in an ex vivo laboratory study. Subjects Normal human donor cornea (n = 22) divided into 4 subgroups. All samples were stored in optisol. Methods Elastic properties (in-plane Young's, E, and out-of-plane, G, shear modulus) of normal and ultraviolet CXL-treated human corneas were quantified using noncontact AμT-OCE. A nearly incompressible transverse isotropic model was used to reconstruct moduli from AμT-OCE data. Independently, cornea elastic moduli were also measured with destructive mechanical tests (tensile extensometry and shear rheometry). Main Outcome Measures Corneal elastic moduli (in-plane Young's modulus, E, in-plane, μ, and out-of-plane, G, shear moduli) can be evaluated in both normal and CXL treated tissues, as well as monitored during the CXL procedure using noncontact AμT-OCE. Results Cross-linking induced a significant increase in both in-plane and out-of-plane elastic moduli in human cornea. The statistical mean in the paired study (presurgery and postsurgery, n = 7) of the in-plane Young's modulus, E = 3 μ , increased from 19 MPa to 43 MPa, while the out-of-plane shear modulus, G, increased from 188 kPa to 673 kPa. Mechanical tests in a separate subgroup support CXL-induced cornea moduli changes and generally agree with noncontact AμT-OCE measurements. Conclusions The human cornea is a highly anisotropic material where in-plane mechanical properties are very different from those out-of-plane. Noncontact AμT-OCE can measure changes in the anisotropic elastic properties in human cornea as a result of ultraviolet CXL.
Collapse
|
27
|
Gao R, Ren Y, Li S, Xu H, Lin X, McAlinden C, Ye J, Huang J, Yu J. Assessment of corneal biomechanics in anisometropia using Scheimpflug technology. Front Bioeng Biotechnol 2022; 10:994353. [PMID: 36338123 PMCID: PMC9632863 DOI: 10.3389/fbioe.2022.994353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 10/24/2023] Open
Abstract
Purpose: To investigate the relationship between corneal biomechanical and ocular biometric parameters, and to explore biomechanical asymmetry between anisometropic eyes using the corneal visualization Scheimpflug technology device (Corvis ST). Methods: 180 anisometropic participants were included. Participants were divided into low (1.00≤△Spherical equivalent (SE) < 2.00D), moderate (2.00D≤△SE < 3.00D) and high (△SE ≥ 3.00D) anisometropic groups. Axial length (AL), keratometry, anterior chamber depth (ACD) and corneal biomechanical parameters were assessed using the OA-2000 biometer, Pentacam HR and Corvis ST, respectively. Results: The mean age of participants was 16.09 ± 5.64 years. Stress-Strain Index (SSI) was positively correlated with SE (r = 0.501, p < 0.001) and negatively correlated with AL (r = -0.436, p < 0.001). Some other Corvis ST parameters had weak correlation with SE or AL. Corneal biomechanical parameters except for time of first applanation (A1T), length of second applanation (A2L), deformation amplitude (DA), first applanation stiffness parameter (SPA1) and ambrosia relational thickness-horizontal (ARTh) were correlated with ametropic parameters (SE or AL) in multiple regression analyses. A1T, velocity of first applanation (A1V), time of second applanation (A2T), A2L, velocity of second applanation (A2V), corneal curvature radius at highest concavity (HCR), peak distance (PD), DA, deformation amplitude ratio max (2 mm) (DAR), SPA1, integrated radius (IR), and SSI showed significant differences between fellow eyes (p < 0.05). There was no significant difference in asymmetry of corneal biomechanics among the three groups (p > 0.05). Asymmetry of some biomechanical parameters had weak correlation with asymmetry of mean corneal curvatures and ACD. However, asymmetry of corneal biomechanical parameters was not correlated with asymmetry of SE or AL (p > 0.05). Conclusion: More myopic eyes had weaker biomechanical properties than the contralateral eye in anisometropia. However, a certain linear relationship between anisometropia and biomechanical asymmetry was not found.
Collapse
Affiliation(s)
- Rongrong Gao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuecheng Ren
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siheng Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilin Xu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanqiao Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Colm McAlinden
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Ophthalmology, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
- Department of Ophthalmology, Royal Gwent Hospital, Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Junming Ye
- Department Ophthalmology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Jinjin Yu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
28
|
Redaelli E, Grasa J, Calvo B, Rodriguez Matas JF, Luraghi G. A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study. Front Bioeng Biotechnol 2022; 10:981665. [PMID: 36267451 PMCID: PMC9576856 DOI: 10.3389/fbioe.2022.981665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the corneal mechanical properties has great importance in the study of corneal pathologies and the prediction of refractive surgery outcomes. Non-Contact Tonometry (NCT) is a non-invasive diagnostic tool intended to characterize the corneal tissue response in vivo by applying a defined air-pulse. The biomarkers inferred from this test can only be considered as indicators of the global biomechanical behaviour rather than the intrinsic biomechanical properties of the corneal tissue. A possibility to isolate the mechanical response of the corneal tissue is the use of an inverse finite element method, which is based on accurate and reliable modelling. Since a detailed methodology is still missing in the literature, this paper aims to construct a high-fidelity finite-element model of an idealized 3D eye for in silico NCT. A fluid-structure interaction (FSI) simulation is developed to virtually apply a defined air-pulse to a 3D idealized eye model comprising cornea, limbus, sclera, lens and humors. Then, a sensitivity analysis is performed to examine the influence of the intraocular pressure (IOP) and the structural material parameters on three biomarkers associated with corneal deformation. The analysis reveals the requirements for the in silico study linked to the correct reproduction of three main aspects: the air pressure over the cornea, the biomechanical properties of the tissues, and the IOP. The adoption of an FSI simulation is crucial to capture the correct air pressure profile over the cornea as a consequence of the air-jet. Regarding the parts of the eye, an anisotropic material should be used for the cornea. An important component is the sclera: the stiffer the sclera, the lower the corneal deformation due to the air-puff. Finally, the fluid-like behavior of the humors should be considered in order to account for the correct variation of the IOP during the test which will, otherwise, remain constant. The development of a strong FSI tool amenable to model coupled structures and fluids provides the basis to find the biomechanical properties of the corneal tissue in vivo.
Collapse
Affiliation(s)
- Elena Redaelli
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- *Correspondence: Elena Redaelli,
| | - Jorge Grasa
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomecánica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Begoña Calvo
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomecánica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Jose Felix Rodriguez Matas
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Giulia Luraghi
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
29
|
Zhang D, Tian L, Zhang H, Zheng Y, Fu C, Zhai C, Jie Y, Li L. Differences of Corneal Biomechanics Among Thin Normal Cornea, Forme-Fruste Keratoconus, and Cornea After SMILE. Front Bioeng Biotechnol 2022; 10:861924. [PMID: 35646859 PMCID: PMC9136087 DOI: 10.3389/fbioe.2022.861924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: To compare the corneal biomechanics of thin normal cornea (TNC) with thinnest corneal thickness (TCT) (≤500 µm), forme-fruste keratoconus (FFKC) and cornea after small incision lenticule extraction (Post-SMILE) had their central corneal thickness (CCT) matched by Corneal Visualization Scheimpflug Technology (Corvis ST).Methods: CCT were matched in 23 eyes with FFKC, 23 eyes by SMILE in 3 months post-operatively, and 23 TNC eyes. The differences in corneal biomechanics by Corvis ST among the three groups were compared.Results: There was no significant difference in CCT among the three groups, and the biomechanically corrected intraocular pressure (bIOP) did not differ significantly among the three groups (all p > 0.05). There were significant differences in most DCR parameters between pre- and post-operatively (all p < 0.05). Compared with TNC, the values of corneal deflection amplitude during the first applanation (A1DA), length at the first applanation (A1L), corneal deflection amplitude during the second applanation (A2DA), and maximum deformation amplitude (DA) decreased in 3 months after SMILE (all p < 0.05), these values increased in the FFKC (all p < 0.05).Conclusion: The majority of the DCR parameters were different among the three groups. The parameters A1DA, A1L, A2DA, and DA may be different between TNC and Post-SMILE, TNC and FFKC, and Post-SMILE and FFKC.
Collapse
Affiliation(s)
- Di Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Lei Tian
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Tongren Hospital, Beihang University and Capital Medical University, Beijing, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yan Zheng
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Caiyun Fu
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changbin Zhai
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lin Li, ; Changbin Zhai, ; Ying Jie,
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lin Li, ; Changbin Zhai, ; Ying Jie,
| | - Lin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Lin Li, ; Changbin Zhai, ; Ying Jie,
| |
Collapse
|
30
|
Li W, Feng J, Wang Y, Shi Q, Ma G, Aglyamov S, Larin KV, Lan G, Twa M. Micron-scale hysteresis measurement using dynamic optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3021-3041. [PMID: 35774312 PMCID: PMC9203113 DOI: 10.1364/boe.457617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/28/2023]
Abstract
We present a novel optical coherence elastography (OCE) method to characterize mechanical hysteresis of soft tissues based on transient (milliseconds), low-pressure (<20 Pa) non-contact microliter air-pulse stimulation and micrometer-scale sample displacements. The energy dissipation rate (sample hysteresis) was quantified for soft-tissue phantoms (0.8% to 2.0% agar) and beef shank samples under different loading forces and displacement amplitudes. Sample hysteresis was defined as the loss ratio (hysteresis loop area divided by the total loading energy). The loss ratio was primarily driven by the sample unloading response which decreased as loading energy increased. Samples were distinguishable based on their loss ratio responses as a function loading energy or displacement amplitude. Finite element analysis and mechanical testing methods were used to validate these observations. We further performed the OCE measurements on a beef shank tissue sample to distinguish the muscle and connective tissue components based on the displacement and hysteresis features. This novel, noninvasive OCE approach has the potential to differentiate soft tissues by quantifying their viscoelasticity using micron-scale transient tissue displacement dynamics. Focal tissue hysteresis measurements could provide additional clinically useful metrics for guiding disease diagnosis and tissue treatment responses.
Collapse
Affiliation(s)
- Wenjie Li
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
- Contributed equally
| | - Jinping Feng
- Hubei University of Science and Technology, Institute of Engineering and Technology, Xianning, Hubei, 437100, China
- Contributed equally
| | - Yicheng Wang
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Qun Shi
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Guoqin Ma
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, USA
| | - Kirill V Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, USA
| | - Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Team of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, Guangdong, 528000, China
| | - Michael Twa
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
31
|
Wang Y, Cao H. Corneal and Scleral Biomechanics in Ophthalmic Diseases: An Updated Review. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Behera G, Kaliaperumal S. Commentary: The utility of water-drinking test and corneal biomechanics in glaucoma. Indian J Ophthalmol 2022; 70:1229-1230. [PMID: 35326021 PMCID: PMC9240534 DOI: 10.4103/ijo.ijo_3029_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Geeta Behera
- Department of Ophthalmology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Subashini Kaliaperumal
- Department of Ophthalmology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
33
|
Lan G, Shi Q, Wang Y, Ma G, Cai J, Feng J, Huang Y, Gu B, An L, Xu J, Qin J, Twa MD. Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography. Front Bioeng Biotechnol 2022; 10:851094. [PMID: 35360399 PMCID: PMC8962667 DOI: 10.3389/fbioe.2022.851094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Analysis of corneal tissue natural frequency was recently proposed as a biomarker for corneal biomechanics and has been performed using high-resolution optical coherence tomography (OCT)-based elastography (OCE). However, it remains unknown whether natural frequency analysis can resolve local variations in tissue structure. We measured heterogeneous samples to evaluate the correspondence between natural frequency distributions and regional structural variations. Sub-micrometer sample oscillations were induced point-wise by microliter air pulses (60–85 Pa, 3 ms) and detected correspondingly at each point using a 1,300 nm spectral domain common path OCT system with 0.44 nm phase detection sensitivity. The resulting oscillation frequency features were analyzed via fast Fourier transform and natural frequency was characterized using a single degree of freedom (SDOF) model. Oscillation features at each measurement point showed a complex frequency response with multiple frequency components that corresponded with global structural features; while the variation of frequency magnitude at each location reflected the local sample features. Silicone blocks (255.1 ± 11.0 Hz and 249.0 ± 4.6 Hz) embedded in an agar base (355.6 ± 0.8 Hz and 361.3 ± 5.5 Hz) were clearly distinguishable by natural frequency. In a beef shank sample, central fat and connective tissues had lower natural frequencies (91.7 ± 58.2 Hz) than muscle tissue (left side: 252.6 ± 52.3 Hz; right side: 161.5 ± 35.8 Hz). As a first step, we have shown the possibility of natural frequency OCE methods to characterize global and local features of heterogeneous samples. This method can provide additional information on corneal properties, complementary to current clinical biomechanical assessments, and could become a useful tool for clinical detection of ocular disease and evaluation of medical or surgical treatment outcomes.
Collapse
Affiliation(s)
- Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| | - Qun Shi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Yicheng Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jing Cai
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, China
| | - Yanping Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Boyu Gu
- School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, China
| | - Lin An
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jia Qin
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, United States
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| |
Collapse
|
34
|
Intraocular pressure measurement: A Review. Surv Ophthalmol 2022; 67:1319-1331. [DOI: 10.1016/j.survophthal.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
|