1
|
Huang S, Zhang W, Ba M, Xuan S, Huang D, Qi D, Pei X, Lu D, Li Z. Chronic Jet Lag Disrupts Circadian Rhythms and Induces Hyperproliferation in Murine Lacrimal Glands via ROS Accumulation. Invest Ophthalmol Vis Sci 2025; 66:12. [PMID: 39775698 PMCID: PMC11717126 DOI: 10.1167/iovs.66.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood. Methods A CJL model was established using C57BL/6J mice. Extraorbital lacrimal glands (ELGs) were collected at 3-hour intervals for RNA extraction and high-throughput RNA sequencing. Circadian transcriptomic profiles were analyzed, and functional annotations were performed. Hydrogen peroxide levels and total antioxidant capacity in tear fluid were measured using chemometric assays. Immunofluorescence was used to assess cell proliferation, apoptosis, immune cell infiltration in ELGs, and reactive oxygen species (ROS) accumulation. The potential therapeutic effects of alpha-lipoic acid (ALA) on CJL-induced oxidative stress and pathological changes in ELGs were also investigated. Results CJL significantly disrupted locomotor activity, altered body temperature rhythms, and modified diurnal oscillations in ELGs. Transcriptomic analysis revealed extensive changes in rhythmic gene expression, phase shifts, and pathway clustering in response to CJL. The disruption of the core circadian clock transcription was associated with ELG hyperproliferation and increased ROS accumulation. tert-Butyl hydroperoxide promoted ELG cell proliferation, and ALA effectively reduced ROS levels and mitigated CJL-induced hyperproliferation. Conclusions These findings uncover novel molecular pathways affected by CJL and highlight the potential of antioxidant therapies, such as ALA, in preserving ocular surface health under conditions of circadian rhythm disruption.
Collapse
Affiliation(s)
- Shenzhen Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhijie Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Murataeva N, Yust K, Mattox S, Du W, Straiker A. A Sex-Dependent Cannabinoid CB1 Receptor Role in Circadian Tearing of the Mouse. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 39630463 PMCID: PMC11622162 DOI: 10.1167/iovs.65.14.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
Purpose We have shown that cannabinoid CB1 receptors regulate both salivation and tearing, but for tearing, this regulation is sex dependent with opposing effects by sex. We investigated a potential interplay of circadian and cannabinoid regulation of tearing. Methods We measured cannabinoid and circadian regulation of tearing in CD1 strain mice as well as CB1 receptor protein expression using immunohistochemistry. Results We now report that CD1 strain mice have a circadian variation in basal tearing, differing by sex in terms of phase and amplitude. The amplitude of circadian variation in females is substantially dampened relative to males. Male CB1 receptor knockout mice do not differ from strain controls, but in female CB1 knockouts, the amplitude is enhanced and resembles that of WT males. This increased tearing is mimicked by the CB1 antagonist SR141716 (4 mg/kg, intraperitoneally [IP]), suggesting that tonic CB1 activation dampens female circadian tearing. Consistent with this, the cannabinoid receptor agonist CP55940 (0.5 mg/kg, IP) decreases tearing during the rest phase but increases tearing during the active phase in females. CB1 protein expression also differs by sex. While both males and females have CB1 receptors in parasympathetic inputs to the lacrimal gland, in female lacrimal glands, CB1 is also detected in myoepithethial cells. Conclusions Mice have a sex-dependent circadian cycle of tearing. The endogenous cannabinoid signaling system appears to mediate some circadian effects, albeit in a sex-dependent manner and via distinct cellular targets.
Collapse
Affiliation(s)
- Natalia Murataeva
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Kyle Yust
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Sam Mattox
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Wenwen Du
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States
| | - Alex Straiker
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
3
|
Li L, Li H, Chen B. Chronobiological and neuroendocrine insights into dry eye. Trends Mol Med 2024:S1471-4914(24)00279-X. [PMID: 39551666 DOI: 10.1016/j.molmed.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Dry eye, a prevalent ocular surface disease, is significantly influenced by modern lifestyle factors such as night-shift work and extended screen time. Emerging evidence suggests a strong correlation between disturbances in circadian rhythm, sleep disorders, and dry eye. However, the precise underlying mechanisms remain unclear. Recent studies have underscored the crucial role of circadian rhythms and neuroendocrine regulation in maintaining ocular surface health. Advances in treatment strategies targeting neuroendocrine pathways have shown promising developments. This review explores the interplay between circadian rhythms, neuroendocrine regulation, and the ocular surface, examines the impact of circadian disruption on the pathophysiology of dry eye, and proposes intervention strategies to alleviate dry eye associated with disturbances in circadian rhythms.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China.
| |
Collapse
|
4
|
Wojtulewicz K, Tomczyk M, Wójcik M, Antushevich H, Bochenek J, Herman AP. Influence of Acute Inflammation on the Expression of Clock Genes in the Ovine Pars Tuberalis Under Different Photoperiodic Conditions. Int J Mol Sci 2024; 25:11471. [PMID: 39519024 PMCID: PMC11546426 DOI: 10.3390/ijms252111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The pars tuberalis (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal's immune status. The melatonin signal processing in PT cells occurs through the presence of melatonin receptors and the expression of molecular clock genes. This study aimed to define the effects of acute inflammation induced by intravenous administration of lipopolysaccharide (LPS) on the expression of clock genes in the PT of ewes under different photoperiodic conditions. Two analogous experiments were conducted in different photoperiods: short-day and long-day. Both experiments included 24 sheep divided into two groups: day (n = 12) and night (n = 12), further subdivided into a control group (n = 6) and a group treated with LPS (n = 6) at a dose of 400 ng/kg. Under short-day conditions, the expression of clock circadian regulator, basic helix-loop-helix ARNT like 1, cryptochrome circadian regulator (CRY) 1, 2, and casein kinase 1 epsilon genes was lower during inflammation. LPS injection increased expression of the period circadian regulator 1 gene during the night. Under long-day conditions, CRY1 mRNA level was lower during the night, while diurnal CRY2 mRNA expression was decreased after LPS injection. Our results showed that inflammation disturbed the expression of molecular clock genes in the PT; however, this influence was partly dependent on photoperiod conditions.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.T.); (M.W.); (H.A.); (J.B.); (A.P.H.)
| | | | | | | | | | | |
Collapse
|
5
|
Wei R, Chen Q, Zheng Q, Reinach PS, Tan X, Pan C, Xu W, Tong L, Chen W. Epigenetic Activation of Circadian Clock Genes Elicits Inflammation in Experimental Murine Dry Eye. Ocul Immunol Inflamm 2024; 32:1180-1188. [PMID: 37163389 DOI: 10.1080/09273948.2023.2205525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE To explore whether circadian clock genes contribute to elicit inflammation in experimental dry eye (EDE). METHODS RNA sequencing analyzed mRNA expression patterns in EDE model. RT-qPCR and/or Western blot determined the expression of inflammatory factors and circadian genes during EDE. MethylTarget™ assays determined the promoter methylation levels of Per genes in vivo. Per2 or Per3 knockdown assessed their effects on inflammatory factors in vitro. RESULTS We utilized an intelligently controlled environmental system (ICES) to establish a mouse EDE model. The significant upregulated genes were enriched for circadian rhythms. Therein lied oscillatory and time-dependent upregulation of PER2 and PER3, as well as their promoter hypomethylation during EDE. Silencing PER2 or PER3 significantly decreased inflammatory factor expression and also reversed such increased inflammatory response in azacitidine (AZA) treatment in vitro model. CONCLUSIONS Our findings suggest that DNA methylation mediated the upregulation of PER2 and PER3, leading to inflammatory response in EDE.
Collapse
Affiliation(s)
- Ruifen Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxiang Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiying Tan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengjie Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Louis Tong
- Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, Singapore; National University of Singapore, Singapore
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Wang Y, Wang Q, Dou S, Zhou Q, Xie L. Sleep deprivation induces corneal endothelial dysfunction by downregulating Bmal1. BMC Ophthalmol 2024; 24:268. [PMID: 38907352 PMCID: PMC11191275 DOI: 10.1186/s12886-024-03524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Sleep deprivation (SD) is a common public health problem that contributes to various physiological disorders and increases the risk of ocular diseases. However, whether sleep loss can damage corneal endothelial function remains unclear. This study aimed to determine the effect and possible mechanism of SD on the corneal endothelium. METHODS Male C57BL/6J mice were subjected to establish SD models. After 10 days, quantitative RT-PCR (qRT-PCR) and western blot or immunostaining for the expression levels of zonula occludens-1 (ZO-1), ATPase Na+/K + transporting subunit alpha 1 (Atp1a1), and core clock genes in the corneal endothelium were evaluated. Reactive oxygen species staining and mitochondrial abundance characterized the mitochondrial function. The regulatory role of Bmal1 was confirmed by specifically knocking down or overexpressing basic helix-loop-helix ARNT like 1 protein (Bmal1) in vivo. In vitro, a mitochondrial stress test was conducted on cultured human corneal endothelial cells upon Bmal1 knockdown. RESULTS SD damaged the barrier and pump functions of mouse corneal endothelium, accompanied by mitochondrial dysfunction. Interestingly, SD dramatically downregulated the core clock gene Bmal1 expression level. Bmal1 knockdown disrupted corneal endothelial function, while overexpression of Bmal1 ameliorated the dysfunction induced by SD. Mitochondrial bioenergetic deficiency mediated by Bmal1 was an underlying mechanism for SD induced corneal endothelial dysfunction. CONCLUSION The downregulation of Bmal1 expression caused by SD led to corneal endothelial dysfunction via impairing mitochondrial bioenergetics. Our findings offered insight into how SD impairs the physiological function of the corneal endothelium and expanded the understanding of sleep loss leading to ocular diseases.
Collapse
Affiliation(s)
- Yani Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Qun Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China.
- School of ophthalmology, Shandong First Medical University, Shandong, China.
| |
Collapse
|
7
|
Kaštelan S, Braš M, Pjevač N, Bakija I, Tomić Z, Pjevač Keleminić N, Gverović Antunica A. Tear Biomarkers and Alzheimer's Disease. Int J Mol Sci 2023; 24:13429. [PMID: 37686235 PMCID: PMC10488148 DOI: 10.3390/ijms241713429] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative brain disorder that represents the most common type of dementia. It poses a significant diagnostic challenge that requires timely recognition and treatment. Currently, there is no effective therapy for AD; however, certain medications may slow down its progression. The discovery of AD biomarkers, namely, magnetic resonance imaging, positron emission tomography and cerebrospinal fluid molecules (amyloid-β and tau) has advanced our understanding of this disease and has been crucial for identifying early neuropathologic changes prior to clinical changes and cognitive decline. The close interrelationship between the eye and the brain suggests that tears could be an interesting source of biomarkers for AD; however, studies in this area are limited. The identification of biomarkers in tears will enable the development of cost-effective, non-invasive methods of screening, diagnosis and disease monitoring. In order to use tears as a standard method for early and non-invasive diagnosis of AD, future studies need to be conducted on a larger scale.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Braš
- Centre for Palliative Medicine, Medical Ethics and Communication Skills, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neda Pjevač
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Bakija
- Department of Integrative Psychiatry, Psychiatry Hospital “Sveti Ivan”, 10090 Zagreb, Croatia
| | - Zora Tomić
- Health Centre of the Croatian Department of Internal Affairs, 10000 Zagreb, Croatia
| | - Nada Pjevač Keleminić
- Department of Family Medicine, Health Centre Zagreb-Centar, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonela Gverović Antunica
- Department of Ophthalmology, General Hospital Dubrovnik, University of Dubrovnik, 20000 Dubrovnik, Croatia
| |
Collapse
|
8
|
Huang S, Si H, Liu J, Qi D, Pei X, Lu D, Zou S, Li Z. Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35731510 PMCID: PMC9233287 DOI: 10.1167/iovs.63.6.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose Sleep loss markedly affects the structure and function of the lacrimal gland and may cause ocular surface disease as a common public health problem. This study aims to investigate the circadian disturbance caused by sleep loss leading to dysfunction of extraorbital lacrimal glands (ELGs). Methods A mouse sleep deprivation (SD) model for sleep loss studies was built in C57BL/6J male mice. After four weeks, the ELGs were collected at three-hour intervals during a 24-hour period. The Jonckheere-Terpstra-Kendall algorithm was used to determine the composition, phase, and rhythmicity of transcriptomic profiles in ELGs. Furthermore, we compared the non-sleep-deprived and SD-treated mouse ELG (i) reactive oxygen species (ROS) by fluorescein staining, (ii) DNA damage by immunostaining for γ-H2Ax, and (iii) circadian migration of immune cells by immunostaining for CD4, CD8, γδ-TCR, CD64, and CX3CR1. Finally, we also evaluated (i) the locomotor activity and core body temperature rhythm of mice and (ii) the mass, cell size, and tear secretion of the ELGs. Results SD dramatically altered the composition and phase-associated functional enrichment of the circadian transcriptome, immune cell trafficking, metabolism, cell differentiation, and neural secretory activities of mouse ELGs. Additionally, SD caused the ROS accumulation and consequent DNA damage in the ELGs, and the ELG dysfunction caused by SD was irreversible. Conclusions SD damages the structure, function, and diurnal oscillations of ELGs. These results highlight comprehensive characterization of insufficient sleep–affected ELG circadian transcriptome that may provide a new therapeutic approach to counteract the effects of SD on ELG function.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Tomeckova V, Krajcikova K, Glinska G. Effect of tear fluid sampling and processing on total protein quantity and electrophoretic pattern. Taiwan J Ophthalmol 2022; 12:88-92. [PMID: 35399962 PMCID: PMC8988968 DOI: 10.4103/tjo.tjo_14_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/01/2021] [Indexed: 11/12/2022] Open
Abstract
Human tears contain more than 1500 proteins that could be diagnostically relevant. To date, numerous candidates on a biomarker of protein origin were identified for ocular and systemic diseases. However, the suitable sampling method is still the subject of discussion. To address the need for a description of sampling methods properties for possible clinical analyses, we studied a total protein concentration and electrophoretic pattern of tear fluid collected by capillary tubes, Schirmer strips, cellulose microsponges, and flushing. The total protein concentration was 4.339 μg/μL ± 1.905 μg/μL, 0.967 μg/μL ± 0.117 μg/μL, 0.022 μg/μL ± 0.016 μg/μL, and 0.008 μg/μL ± 0.006 μg/μ for the capillary tubes, Schirmer strips, flushing, and cellulose microsponges, respectively. Sodium dodecyl sulfate polyacrylamide electrophoresis showed the different patterns of tear proteins obtained by the above-mentioned sampling methods. These differences could originate from the use of a bigger amount of extraction reagent that was not used in the case of capillary tubes, and retention of the proteins by strips and sponges. Taken together, capillary tubes, Schirmer strips, cellulose microsponges, and flushing represent sensitive and convenient sampling methods for tear fluid collection. For the isolation of proteins from strips and sponges, and for the flushing, less than 100 μL of a reagent should be used to ensure the sufficient concentration of the biomarkers in a trace amount.
Collapse
|