1
|
Zhu H, Li B, Huang T, Wang B, Li S, Yu K, Cai L, Ye Y, Chen S, Zhu H, Xu J, Lu Q, Ji L. Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167758. [PMID: 40048937 DOI: 10.1016/j.bbadis.2025.167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes caused by long-term hyperglycemia that leads to microvascular and neuronal damage in the retina. The molecular mechanisms of DR involve oxidative stress, inflammatory responses, neurodegenerative changes, and vascular dysfunction triggered by hyperglycemia. Oxidative stress activates multiple metabolic pathways, such as the polyol, hexosamine, and protein kinase C (PKC) pathways, resulting in the production of, which in turn promote the formation of advanced glycation end products (AGEs). These pathways exacerbate vascular endothelial damage and the release of inflammatory factors, activating inflammatory signaling pathways such as the NF-κB pathway, leading to retinal cell damage and apoptosis. Additionally, DR involves neurodegenerative changes, including the activation of glial cells, neuronal dysfunction, and cell death. Research on the multiomics molecular markers of DR has revealed complex mechanisms at the genetic, epigenetic, and transcriptional levels. Genome-wide association studies (GWASs) have identified multiple genetic loci associated with DR that are involved in metabolic and inflammatory pathways. Noncoding RNAs, such as miRNAs, circRNAs, and lncRNAs, participate in the development of DR by regulating gene expression. Proteomic, metabolomic and lipidomic analyses have revealed specific proteins, metabolites and lipid changes associated with DR, providing potential biomarkers for the early diagnosis and treatment of this disease. This review provides a comprehensive perspective for understanding the molecular network of DR and facilitates the exploration of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Bingqi Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Huang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Wang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuoyu Li
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kuai Yu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liwei Cai
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuxin Ye
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siyuan Chen
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haotian Zhu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinkang Lu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Lin Y, Pang Q, Shi Y, Chen X, Tu F. Long noncoding RNA MALAT1 promotes angiogenesis through the caveolin-1/VEGF pathway after cerebral ischemic injury. Neuroreport 2025; 36:350-363. [PMID: 40203233 DOI: 10.1097/wnr.0000000000002157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) might protect against cerebral ischemic injury. This study explored MALAT1's function in ischemic stroke and whether it acts through the caveolin-1/vascular endothelial growth factor (VEGF) pathway. A mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a human brain microvascular endothelial cell (HBMEC) model of oxygen-glucose deprivation/reoxygenation (OGD/R) were established. Lentiviral vectors for MALAT1 knockdown, caveolin-1 knockdown, and MALAT1 overexpression were used for gene regulation studies. Neurological deficits, endothelial cell proliferation, cell apoptosis, cell viability, in vitro angiogenesis, cell migration, and the expression of related gene and protein were evaluated using the Zea Longa five-point scale, VEGF receptor 2/CD34 double immunofluorescence, TdT-mediated dUTP nick end labeling staining, cell counting kit-8 assay, tube formation assay, transwell assay, quantitative real time PCR, and western blot. In mouse MCAO/R model and HBMEC OGD/R model, the expression levels of MALAT1, caveolin-1, and VEGF were significantly upregulated compared to the control group. In vivo, downregulation of MALAT1 expression exacerbated cerebral ischemic injury as manifested by severe neurological deficits, larger infarct volume, increased apoptosis, decreased numbers of VEGF receptor 2+/CD34+ endothelial progenitor cells, increased cell apoptosis, and the downregulation of caveolin-1 and VEGF. Conversely, overexpression of MALAT1 partially reversed the inhibition of cell migration and tubule formation by caveolin-1 gene downregulation, and restored in the expression of caveolin-1 and VEGF. MALAT1 promotes angiogenesis after cerebral ischemic injury, likely in part via the caveolin-1/VEGF pathway. Thus, MALAT1 may serve as a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yao Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
3
|
Yang G, Huang X. LncRNA MALAT1's role in the development of retinopathy: A review. Medicine (Baltimore) 2025; 104:e41954. [PMID: 40128064 PMCID: PMC11936551 DOI: 10.1097/md.0000000000041954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and retinopathy are 2 distinct yet interconnected areas of research in the field of ocular studies. MALAT1, with its diverse biological functions, has been extensively studied and demonstrated to play a role in various diseases, including ocular pathologies. Its involvement in alternative splicing regulation, transcriptional control, and the competing endogenous RNA (ceRNA) network suggests its potential implication in retinopathy. Retinopathy refers to a group of disorders that affect the retina, leading to vision impairment and, in severe cases, even blindness. These conditions include diabetic retinopathy, retinoblastoma, proliferative vitreoretinopathy, retinopathy of prematurity, and retinal neurodegeneration. The understanding of the molecular mechanisms underlying the development and progression of retinopathy, along with the potential involvement of MALAT1, can provide valuable insights for the diagnosis and treatment of this condition. Retinopathy, characterized by various manifestations and underlying mechanisms, presents a significant challenge in the field of ophthalmology. As a complex disease, its pathogenesis involves multifactorial factors, including angiogenic dysregulation, inflammatory responses, oxidative stress, and cellular signaling abnormalities. The emerging role of long noncoding RNA MALAT1 in retinopathy has attracted considerable attention. MALAT1 has been found to participate in multiple cellular processes, including alternative splicing regulation and transcriptional control. Additionally, the competing endogenous RNA (ceRNA) network involving MALAT1 indicates its potential relevance as a regulator in retinopathy. Further investigations into the specific mechanisms underlying MALAT1's involvement in retinopathy pathogenesis may provide valuable insights into the development of diagnostic and therapeutic approaches for managing retinal disorders.
Collapse
Affiliation(s)
- Gukun Yang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, PR China
| |
Collapse
|
4
|
Ybarra M, Martínez-Santos M, Oltra M, Muriach M, Pires ME, Ceresoni C, Sancho-Pelluz J, Barcia JM. miR-205-5p Modulates High Glucose-Induced VEGFA Levels in Diabetic Mice and ARPE-19 Cells. Antioxidants (Basel) 2025; 14:218. [PMID: 40002404 PMCID: PMC11851844 DOI: 10.3390/antiox14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
High glucose levels may cause vascular alterations in patients with diabetes, which can lead to complications such as diabetic retinopathy-an abnormal growth of retinal blood vessels. The micro-RNA miR-205-5p is known to regulate angiogenesis by modulating the expression of the vascular endothelial growth factor (VEGFA) in different systems. This study investigates the role of miR-205-5p in controlling VEGFA expression both in vitro and in the eye under hyperglycemic conditions. An alloxan-induced diabetic mouse model and retinal pigment epithelium human cell line (ARPE-19) were exposed to high glucose and treated with an ectopic miR-205-5p mimic. VEGFA mRNA and protein levels were assessed using qRT-PCR, Western blot, and immunocytochemistry. Additionally, human umbilical vein endothelial cells (HUVECs) were employed to evaluate angiogenesis. Our results show that high glucose significantly reduced miR-205-5p levels while upregulating VEGFA expression in both ARPE-19 cells and diabetic mice. The ectopic administration of miR-205-5p (via transfection or intravitreal injection) restored VEGFA levels and inhibited angiogenesis in HUVEC cultures. Based on these preliminary data, we suggest a potential therapeutic strategy against VEGFA involving miR-205-5p in proliferative eye-related vascular disorders.
Collapse
Affiliation(s)
- María Ybarra
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Miriam Martínez-Santos
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Maria Oltra
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Muriach
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad Jaime I, Avda. Vicent Sos Baynat, 12006 Castellón de la Plana, Spain;
| | - Maria E. Pires
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Chiara Ceresoni
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Javier Sancho-Pelluz
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Jorge M. Barcia
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
5
|
Zhang HY, Zhang QY, Liu Q, Feng SG, Ma Y, Wang FS, Zhu Y, Yao J, Yan B. Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy. J Nanobiotechnology 2025; 23:36. [PMID: 39844301 PMCID: PMC11756024 DOI: 10.1186/s12951-024-03079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics. In this study, we report a marked down-regulation of miR-205 under pathological conditions. miR-205 potently inhibits endothelial cell functions critical for pathological neovascularization, including proliferation, migration, and tube formation. Furthermore, miR-205 strengthens the endothelial barrier, thereby reducing vascular leakage. In mouse models of retinal and choroidal neovascularization, miR-205 administration effectively suppresses abnormal blood vessel formation and leakage. Mechanistically, miR-205 directly targets VEGFA and ANGPT2, which are key drivers of pathological neovascularization. To improve delivery, we successfully loaded miR-205 into exosomes derived from mesenchymal stem cells. This innovative approach avoids cytotoxicity while preserving therapeutic efficacy in both cellular and animal models. Collectively, our findings highlight miR-205 as a promising therapeutic for ocular neovascularization, with exosome delivery offering a novel and efficient strategy for treating vision-threatening vascular diseases.
Collapse
Affiliation(s)
- Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Si-Guo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yan Ma
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Feng-Sheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
6
|
Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q, Lu Y, Zhao Y. Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition. Cell Commun Signal 2025; 23:16. [PMID: 39789529 PMCID: PMC11720945 DOI: 10.1186/s12964-025-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch. Nevertheless, the exact roles of EndMT in complicated diseases have not been comprehensively reviewed. In this review, we summarize the predominant molecular regulatory mechanisms and signaling pathways that contribute to the development of EndMT, as well as highlight the contributions of a series of imperative non-coding RNAs in curbing the initiation of EndMT. Furthermore, we discuss the significant impact of EndMT on worsening vasculature-related diseases, including cancer, cardiovascular diseases, atherosclerosis, pulmonary vascular diseases, diabetes-associated fibrotic conditions, and cerebral cavernous malformation, providing the implications that targeting EndMT holds promise as a therapeutic strategy to mitigate disease progression.
Collapse
Affiliation(s)
- Cheng Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanglu Dong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Zheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chongjin Zhong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuhong Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Li X, Dong X, Zhang W, Shi Z, Liu Z, Sa Y, Li L, Ni N, Mei Y. Multi-omics in exploring the pathophysiology of diabetic retinopathy. Front Cell Dev Biol 2024; 12:1500474. [PMID: 39723239 PMCID: PMC11668801 DOI: 10.3389/fcell.2024.1500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading global cause of vision impairment, with its prevalence increasing alongside the rising rates of diabetes mellitus (DM). Despite the retina's complex structure, the underlying pathology of DR remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) and recent advancements in multi-omics analyses have revolutionized molecular profiling, enabling high-throughput analysis and comprehensive characterization of complex biological systems. This review highlights the significant contributions of scRNA-seq, in conjunction with other multi-omics technologies, to DR research. Integrated scRNA-seq and transcriptomic analyses have revealed novel insights into DR pathogenesis, including alternative transcription start site events, fluctuations in cell populations, altered gene expression profiles, and critical signaling pathways within retinal cells. Furthermore, by integrating scRNA-seq with genetic association studies and multi-omics analyses, researchers have identified novel biomarkers, susceptibility genes, and potential therapeutic targets for DR, emphasizing the importance of specific retinal cell types in disease progression. The integration of scRNA-seq with metabolomics has also been instrumental in identifying specific metabolites and dysregulated pathways associated with DR. It is highly conceivable that the continued synergy between scRNA-seq and other multi-omics approaches will accelerate the discovery of underlying mechanisms and the development of novel therapeutic interventions for DR.
Collapse
Affiliation(s)
- Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - XiaoJing Dong
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhizhou Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yalian Sa
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Li Li
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ninghua Ni
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Fang Z, Wang D, Sun F, Chang J, Yuan D, Lin S, Teng J. Circ-Luc7l Absence Attenuates Diabetic Nephropathy Progression by Reducing Mesangial Cell Excessive Proliferation, Inflammation, and Extracellular Matrix Accumulation via Mediating the miR-205-5p/Tgfbr1 Pathway. Biochem Genet 2024; 62:4896-4913. [PMID: 38376578 DOI: 10.1007/s10528-024-10694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Diabetic nephropathy (DN) threatens the survival quality of patients, with complex pathogenesis. Circular RNA (circRNA) dysregulation occurs in DN development. This work aimed to investigate the role of circ-Luc7l in DN cell models and related molecular mechanisms. The expression of circ-Luc7l, microRNA (miR)-205-5p, and transforming growth factor-beta receptor 1 (Tgfbr1) was examined by real-time quantitative PCR (RT-qPCR). Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) assay and EdU assay. The expression of extracellular matrix (ECM)-related markers and Tgrbr1 protein was measured by Western blot. The binding between miR-205-5p and circ-Luc7l or Tgfbr1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Experimental animal models were established to elucidate the function of circ-Luc7l in vivo. Circ-Luc7l expression was notably enhanced in high glucose (HG)-treated mesangial cells. Knockdown of circ-Luc7l attenuated HG-induced cell proliferation, inflammation, and ECM accumulation in vitro and relieved inflammation and ECM accumulation of kidneys of diabetic mice in vivo. Circ-Luc7l targeted miR-205-5p, and miR-205-5p inhibition rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. MiR-205-5p bound to Tgfbr1 whose expression was negatively regulated by circ-Luc7l. Tgfbr1 overexpression also rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. In HG conditions, increased circ-Luc7l upregulated Tgfbr1 expression via targeting miR-205-5p to induce DN progression.
Collapse
Affiliation(s)
- Zhan Fang
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Dan Wang
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Fang Sun
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Jing Chang
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Dong Yuan
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Shuhua Lin
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Jian Teng
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
9
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Gao J, Wang C, Zhang J, Shawuti Z, Wang S, Ma C, Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol Cell Endocrinol 2024; 590:112261. [PMID: 38679361 DOI: 10.1016/j.mce.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zulifeiya Shawuti
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Siyao Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Cunhua Ma
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Juan Wang
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
11
|
Ning J, Pan M, Yang H, Wang Z, Wang X, Guo K, Feng Y, Xie T, Chen Y, Chen C, Liu S, Zhang Y, Wang Y, Yan X, Han J. Melatonin Attenuates Diabetic Retinopathy by Regulating EndMT of Retinal Vascular Endothelial Cells via Inhibiting the HDAC7/FOXO1/ZEB1 Axis. J Pineal Res 2024; 76:e13008. [PMID: 39300782 DOI: 10.1111/jpi.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Diabetic retinopathy (DR) is characterized as a microvascular disease. Nonproliferative diabetic retinopathy (NPDR) presents with alterations in retinal blood flow and vascular permeability, thickening of the basement membrane, loss of pericytes, and formation of acellular capillaries. Endothelial-mesenchymal transition (EndMT) of retinal microvessels may play a critical role in advancing NPDR. Melatonin, a hormone primarily secreted by the pineal gland, is a promising therapeutic for DR. This study explored the EndMT in retinal microvessels of NPDR and its related mechanisms. The effect of melatonin on the retina of diabetic rats was evaluated by electroretinogram (ERG) and histopathologic slide staining. Furthermore, the effect of melatonin on human retinal microvascular endothelial cells (HRMECs) was detected by EdU incorporation assay, scratch assay, transwell assay, and tube formation test. Techniques such as RNA-sequencing, overexpression or knockdown of target genes, extraction of cytoplasmic and nuclear protein, co-immunoprecipitation (co-IP), and multiplex immunofluorescence facilitated the exploration of the mechanisms involved. Our findings reveal, for the first time, that melatonin attenuates diabetic retinopathy by regulating EndMT of retinal vascular endothelial cells via inhibiting the HDAC7/FOXO1/ZEB1 axis. Collectively, these results suggest that melatonin holds potential as a therapeutic strategy to reduce retinal vascular damage and protect vision in NPDR.
Collapse
Affiliation(s)
- Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Cardiothoracic Surgery, Western Theater Command Air Force Hospital, Chengdu, China
| | - Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaolan Wang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Kai Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yingtong Feng
- Department of Cardiothoracic Surgery, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingke Xie
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Yixuan Chen
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Sida Liu
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
12
|
Fu XL, He FT, Li MH, Fu CY, Chen JZ. circZNF532 promotes endothelial-to-mesenchymal transition in diabetic retinopathy by recruiting TAF15 to stabilize PIK3CD. Endocr J 2024; 71:675-686. [PMID: 38811189 DOI: 10.1507/endocrj.ej23-0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a pivotal event in diabetic retinopathy (DR). This study explored the role of circRNA zinc finger protein 532 (circZNF532) in regulating EndMT in DR progression. Human retinal microvascular endothelial cells (HRMECs) were exposed to high glucose (HG) to induce the DR cell model. Actinomycin D-treated HRMECs were used to confirm the mRNA stability of phosphoinositide-3 kinase catalytic subunit δ (PIK3CD). The interaction between TATA-box-binding protein-associated factor 15 (TAF15) and circZNF532/PIK3CD was subsequently analyzed using RNA immunoprecipitation (RIP), RNA pull-down. It was found that HG treatment accelerated EndMT process, facilitated cell migration and angiogenesis, and enhanced PIK3CD and p-AKT levels in HRMECs, whereas si-circZNF532 transfection neutralized these effects. Further data showed that circZNF532 recruited TAF15 to stabilize PIK3CD, thus elevating PIK3CD expression. Following rescue experiments suggested that PIK3CD overexpression partially negated the inhibitory effect of circZNF532 silencing on EndMT, migration, and angiogenesis of HG-treated HRMECs. In conclusion, our results suggest that circZNF532 recruits TAF15 to stabilize PIK3CD, thereby facilitating EndMT in DR.
Collapse
Affiliation(s)
- Xiao-Lin Fu
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou 571700, Hainan Province, P.R. China
| | - Fu-Tao He
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou 571700, Hainan Province, P.R. China
| | - Mo-Han Li
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou 571700, Hainan Province, P.R. China
| | - Chun-Yan Fu
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou 571700, Hainan Province, P.R. China
| | - Jian-Zhi Chen
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou 571700, Hainan Province, P.R. China
| |
Collapse
|
13
|
Fu W, Ye Y, Hu F. LncRNA XIST promotes neovascularization in diabetic retinopathy by regulating miR-101-3p/VEGFA. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230097. [PMID: 38739522 PMCID: PMC11156180 DOI: 10.20945/2359-4292-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/04/2023] [Indexed: 05/16/2024]
Abstract
Objective This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.
Collapse
Affiliation(s)
- Weina Fu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China,
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China
| | - Feng Hu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
14
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Qi Y, Xu R, Song C, Hao M, Gao Y, Xin M, Liu Q, Chen H, Wu X, Sun R, Zhang Y, He D, Dai Y, Kong C, Ning S, Guo Q, Zhang G, Wang P. A comprehensive database of exosome molecular biomarkers and disease-gene associations. Sci Data 2024; 11:210. [PMID: 38360815 PMCID: PMC10869824 DOI: 10.1038/s41597-024-03015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Exosomes play a crucial role in intercellular communication and can be used as biomarkers for diagnostic and therapeutic clinical applications. However, systematic studies in cancer-associated exosomal nucleic acids remain a big challenge. Here, we developed ExMdb, a comprehensive database of exosomal nucleic acid biomarkers and disease-gene associations curated from published literature and high-throughput datasets. We performed a comprehensive curation of exosome properties including 4,586 experimentally supported gene-disease associations, 13,768 diagnostic and therapeutic biomarkers, and 312,049 nucleic acid subcellular locations. To characterize expression variation of exosomal molecules and identify causal factors of complex diseases, we have also collected 164 high-throughput datasets, including bulk and single-cell RNA sequencing (scRNA-seq) data. Based on these datasets, we performed various bioinformatics and statistical analyses to support our conclusions and advance our knowledge of exosome biology. Collectively, our dataset will serve as an essential resource for investigating the regulatory mechanisms of complex diseases and improving the development of diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yue Qi
- Department of Gynecology of the First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Rongji Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chengxin Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ming Hao
- Department of Gynecology of the First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Mengyu Xin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qian Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hongyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoting Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Rui Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuanfu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Danni He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yifan Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Congcong Kong
- Department of Gynecology of the First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qiuyan Guo
- Department of Gynecology of the First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Guangmei Zhang
- Department of Gynecology of the First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
16
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
17
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
18
|
Xiang Y, Sun M, Wu Y, Hu Y. MiR-205-5p-Mediated MAGI1 Inhibition Attenuates the Injury Induced by Diabetic Nephropathy. Pharmacology 2024; 109:98-109. [PMID: 38325349 DOI: 10.1159/000535670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Membrane-associated guanylate kinase with an inverted domain structure-1 (MAGI1) is dysregulated in diabetes; however, its role in diabetic nephropathy (DN) remains unclear. In this study, we determined the function and associated mechanisms of MAGI1 in DN. METHODS Serum samples from 28 patients with DN and 28 normal volunteers were collected. High-glucose (HG)-treated human renal mesangial cells (HRMCs) and streptozotocin-treated rats were used as cell and animal models of DN, respectively. MAGI1 mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. An 5-Ethynyl-2'-deoxyuridine assay was used to assess cell proliferation, whereas Western blot analysis was performed to quantitate the levels of markers associated with proliferation, the extracellular matrix (ECM), and inflammation. These included collagens I, collagen IV, cyclin D1, AKT, phosphorylated-AKT (p-AKT), PI3K, and phosphorylated-PI3K (p-PI3K). The predicted binding of miR-205-5p with the MAGI1 3'UTR was verified using a luciferase assay. RESULTS MAGI1 expression was increased in serum samples from DN patients and in HRMCs treated with HG. MAGI1 knockdown attenuated excessive proliferation, ECM accumulation, and inflammation in HG-induced HRMCs as well as injury to DN rats. MiR-205-5p potentially interacted with the 3'UTR of MAGI1 and binding was verified using a dual-luciferase reporter assay. Moreover, miR-205-5p repression offset the inhibitory influence of MAGI1 knockdown on proliferation, collagen deposition, and inflammation in HG-treated HRMCs. CONCLUSION MAGI1 contributes to injury caused by DN. Furthermore, miR-205-5p binds to MAGI1 and suppresses MAGI1 function. These findings suggest that miR-205-5p-mediates MAGI1 inhibition, which represents a potential treatment for DN.
Collapse
Affiliation(s)
- Yuanbing Xiang
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Min Sun
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yuxi Wu
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yao Hu
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
19
|
Martínez-Santos M, Ybarra M, Oltra M, Muriach M, Romero FJ, Pires ME, Sancho-Pelluz J, Barcia JM. Role of Exosomal miR-205-5p Cargo in Angiogenesis and Cell Migration. Int J Mol Sci 2024; 25:934. [PMID: 38256008 PMCID: PMC10815498 DOI: 10.3390/ijms25020934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Exosomes or small extracellular vesicles (sEVs) represent a pivotal component in intercellular communication, carrying a diverse array of biomolecules. Several factors can affect sEVs release dynamics, as occurs in hyperglycemia or inflammation. In fact, sEVs release has been associated with the promotion of physio-pathological processes. Among the sEVs cargo, microRNAs play an essential role in cell-to-cell regulation. More concretely, miR-205-5p is related to angiogenesis and cell proliferation. The aim of this study is to understand the specific role of sEVs containing miR-205-5p under high glucose conditions. ARPE-19 cells were cultured with high glucose (HG) for 5 days. sEVs were isolated and characterized. sEVs from ARPE-19 were used for angiogenesis and cell proliferation. HG increased sEVs release but downregulated miR-205-5p cargo expression compared to the control. sEVs from HG-treated ARPE-19 cells promoted tube formation and migration processes. In contrast, miR-205-5p overexpression (by mimic transfection) decreased angiogenesis and cell migration. Our results demonstrate how ARPE-19 cells respond to HG challenge by increasing sEVs with weak miR-205-5p cargo. The absence of this miRNA in sEVs is enough to promote angiogenesis. In contrast, restoring sEVs-miR-205-5p levels decreased it. These findings open new possibilities in sEVs-based therapies containing miR-205-5p against angiogenesis.
Collapse
Affiliation(s)
- Miriam Martínez-Santos
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Ybarra
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Oltra
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Muriach
- Facultad de Ciencias de la Salud, Universidad Jaime I, Avda. Vicent Sos Baynat, 12006 Castellón de la Plana, Spain;
| | - Francisco J. Romero
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain;
| | - Maria E. Pires
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
| | - Javier Sancho-Pelluz
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Jorge M. Barcia
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
20
|
Cao H, Hou C. Cell Division Control Protein 42 Facilitates Diabetic Retinopathy Progression by Activating the MEK/ERK Pathway. TOHOKU J EXP MED 2023; 261:211-219. [PMID: 37635064 DOI: 10.1620/tjem.2023.j068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Cell division control protein 42 (CDC42) modulates insulin secretion and angiogenesis to participate in the pathology of diabetic complications and retinal vascular-associated diseases. This study intended to explore the role of CDC42 in the progression of diabetic retinopathy, and the underlying mechanism. Human retinal microvascular endothelial cells (hRMECs) were cultured in 5.5 mM glucose (normal glucose) or 25 mM glucose (high glucose; HG) medium, respectively. CDC42 overexpression plasmid and small interference RNA (oe-CDC42 and si-CDC42) or corresponding negative controls (oe-NC and si-NC) were transfected into hRMECs under HG. Then, platelet-activating factor C-16 (C16-PAF) (MEK/ERK pathway activator) was added to si-CDC42 or si-NC transfected hRMECs under HG. Our study showed that HG increased CDC42 mRNA and protein, cell viability, invasive cell count, branch points, and tube length but reduced cell apoptosis in hRMECs. CDC42 upregulation enhanced cell viability, invasive cell count, branch points, tube length, p-MEK, and p-ERK, but attenuated cell apoptosis. Downregulation of CDC42 exhibited opposite trends. In addition, C16-PAF also increased cell viability, invasive cell count, branch points, and tube length, p-MEK, and p-ERK, but retarded cell apoptosis. Notably, C16-PAF diminished the effect of CDC42 downregulation on the above-mentioned functions in hRMECs under HG. Conclusively, CDC42 promotes HG-induced hRMEC viability and invasion, as well as angiogenesis, but inhibits apoptosis by activating the MEK/ERK pathway, which may be responsible for the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Cao
- Department of Ophthalmology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China
| | - Changzheng Hou
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University
| |
Collapse
|
21
|
Li D, Liu L, He X, Wang N, Sun R, Li X, Yu T, Chu XM. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci 2023; 330:122006. [PMID: 37544376 DOI: 10.1016/j.lfs.2023.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Lili Liu
- School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Ruicong Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Xiaolu Li
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, People's Republic of China.
| |
Collapse
|
22
|
Zhang X, Du S, Yang D, Jin X, Zhang Y, Wang D, Wang H, Zhang Y, Zhu M. LncRNA MALAT1 knockdown inhibits the development of choroidal neovascularization. Heliyon 2023; 9:e19503. [PMID: 37810031 PMCID: PMC10558713 DOI: 10.1016/j.heliyon.2023.e19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
In the pathogenesis of age-related macular degeneration, long non-coding RNAs have become important regulators. This study aimed to investigate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the progression of choroidal neovascularization (CNV) and the underlying mechanisms. The in vivo and in vitro model of CNV was established using laser-induced mouse CNV model and human choroidal vascular endothelial cells (HCVECs) exposed to hypoxia respectively. We explore the role of MALAT1 in the pathogenesis of CNV by using the small interference RNA both in vivo and in vitro. MALAT1 expression was found to be upregulated in the retinal pigment epithelial-choroidal complexes. MALAT1 knockdown inhibited CNV development and leakage in vivo and decreased HCVECs proliferation, migration, and tube formation in vitro. MALAT1 performed the task as a miR-17-5p sponge to regulate the expression of vascular endothelial growth factor A (VEGFA) and E26 transformation specific-1 (ETS1). This study provides a new perspective on the pathogenesis of CNV and suggests that the axis MALAT/miR-17-5p/VEGFA or ETS1 may be an effective therapeutic target for CNV.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Defeng Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Jin
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Diya Wang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Huixia Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
24
|
Huang X, Li Z, Zhang L, Yang Y, Wang Y, Li S, Li G, Feng H, Yang X. miR-205-5p inhibits homocysteine-induced pulmonary microvascular endothelium dysfunction by targeting FOXO1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1456-1466. [PMID: 37491880 PMCID: PMC10520487 DOI: 10.3724/abbs.2023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 07/27/2023] Open
Abstract
Homocysteine (Hcy) is a risk factor for multiple chronic diseases, and vascular endothelial cell injury has been regarded as the initiating step for this process. miRNAs are involved in Hcy-induced endothelial dysfunction, while the underlying mechanism and roles of miRNAs in pulmonary endothelial dysfunction induced by homocysteine are unknown. Here, we find that miR-205-5p alleviates pulmonary endothelial dysfunction by targeting FOXO1 in CBS +/‒ mice to protect against Hcy-induced pulmonary endothelial dysfunction. Mechanistically, we show that Hcy can lead to DNA hypermethylation of the miR-205-5p promoter due to the increased binding of DNMT1 to its promoter, which contributes to reduction of miR-205-5p expression. In summary, miR-205-5p promoter hypermethylation causes downregulation of miR-205-5p expression, resulting in a reduction in miR-205-5p binding to FOXO1 during homocysteine-induced pulmonary endothelial dysfunction. Our data indicate that miR-205-5p may be a potential therapeutic target against Hcy-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiaobo Huang
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Ningxia Medical University (The First People′s Hospital of Yinchuan)Yinchuan750001China
| | - Zhen Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ling Zhang
- Department of PathologyPeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750004China
| | - Yali Yang
- Department of PathologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yanjia Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Sirui Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | | | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
25
|
Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 2023; 374:99-106. [PMID: 37059656 DOI: 10.1016/j.atherosclerosis.2023.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis and numerous other cardiovascular diseases develop in an age-dependent manner. The endothelial cells that line the vessel walls play an important role in the development of atherosclerosis. Non-coding RNA like microRNAs and long non-coding RNAs are known to play an important role in endothelial function and are implicated in the disease progression. Here, we summarize several microRNAs and long non-coding RNAs that are known to have an altered expression with endothelial aging and discuss their role in endothelial cell function and senescence. These processes contribute to aging-induced atherosclerosis development and by targeting the non-coding RNAs controlling endothelial cell function and senescence, atherosclerosis can potentially be attenuated.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany; German Centre for Cardiovascular Research DZHK, Partner site Frankfurt Rhein/Main, Frankfurt Am Main, Germany.
| |
Collapse
|
26
|
Huang P, Wang F, Zhang Y, Zhang Y, Qin M, Ji J, Wei D, Ren L. Icariin alleviates atherosclerosis by regulating the miR-205-5p/ERBB4/AKT signaling pathway. Int Immunopharmacol 2023; 114:109611. [PMID: 36700779 DOI: 10.1016/j.intimp.2022.109611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Atherosclerosis (AS) is a cardiovascular disease that has become a major threat to public health worldwide. This study aims to elucidate the effect and mechanism of icariin (ICA) in treating atherosclerosis. METHODS ApoE-/- mouse AS modeling, ELISA, and hematoxylin-eosin staining were conducted to explore whether icariin has a therapeutic effect on AS. The microRNA (miRNA) chips for ICA treatment of ApoE-/- AS mice were developed; in silico analyses were performed, and signaling pathways were identified. Oxidized low-density lipoprotein (Ox-LDL) was used to induce human aortic vascular smooth muscle cells (HAVSMCs) to build an in vitro AS cell model. Moreover, miR-205-5p was silenced. Finally, cell viability was detected by MTT assay, cell apoptosis by flow cytometry and Western blot, and cell migration by the scratch test. RESULTS ICA could reduce lipid accumulation in the blood vessels of mice and plaque formation to treat AS. ICA promoted apoptosis and inhibited cell migration of HAVSMCs induced by ox-LDL. Moreover, cell proliferation and migration were inhibited via ICA, which was restored by miR-205-5p silencing. CONCLUSION ICA can alleviate AS and inhibit the proliferation and migration of HAVSMCs induced by ox-LDL, potentially mediated by the upregulation of miR-205-5p.
Collapse
Affiliation(s)
- Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Fengjun Wang
- Department of Hepatobiliary Surgery, Songyuan Central Hospital, Songyuan, China
| | - Yibing Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China.
| |
Collapse
|
27
|
Zhuang D, Wang S, Liu G, Liu P, Deng H, Sun J, Liu C, Leng X, Zhang Q, Bai F, Mi J, Wu X. Phenformin suppresses angiogenesis through the regulation of exosomal microRNA-1246 and microRNA-205 levels derived from oral squamous cell carcinoma cells. Front Oncol 2022; 12:943477. [PMID: 36158698 PMCID: PMC9492847 DOI: 10.3389/fonc.2022.943477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes secreted by cancer cells are important components in the tumor microenvironment, enabling cancer cells to communicate with each other and with noncancerous cells to play important roles in tumor progression and metastasis. Phenformin, a biguanide antidiabetic drug, has been reported to have a strong antitumor function in multiple types of cancer cells, however little research has been reported about whether phenformin can regulate the secretion of exosomes by cancer cells to regulate the tumor microenvironment and contribute to its antitumor function. Here we found that exosomes (Phen-Exo) derived from phenformin-treated oral squamous cell carcinoma (OSCC) cells significantly suppress the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. The inhibition of angiogenesis by Phen-Exo was verified in vivo by matrigel plug angiogenesis assays and by chick chorioallantoic membrane assays. Mechanistically, we discovered that the expression of microRNA-1246 (miR-1246) and microRNA-205 (miR-205) was significantly increased in exosomes secreted by OSCC cells treated with phenformin, while high expression levels of miR-1246 or miR-205 in vascular endothelial cells inhibited their angiogenic effects and decreased expression of the angiogenic factor VEGFA. In conclusion, these results reveal that phenformin can inhibit angiogenesis by regulating the levels of miR-1246 and miR-205 in exosomes secreted by OSCC cells, suggesting that phenformin has the potential to alter the tumor microenvironment to antagonize the growth of OSCCs, which provides a theoretical basis for developing new strategies to treat OSCCs in the future.
Collapse
Affiliation(s)
- Dexuan Zhuang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangshuang Wang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanyi Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Chang Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Leng
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxiang Bai
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Mi
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xunwei Wu, ; Jun Mi,
| | - Xunwei Wu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Xunwei Wu, ; Jun Mi,
| |
Collapse
|
28
|
Deng L, Han X, Wang Z, Nie X, Bian J. The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules 2022; 12:biom12060796. [PMID: 35740920 PMCID: PMC9220981 DOI: 10.3390/biom12060796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
The transcriptome of pulmonary hypertension (PH) is complex and highly genetically heterogeneous, with noncoding RNA transcripts playing crucial roles. The majority of RNAs in the noncoding transcriptome are long noncoding RNAs (lncRNAs) with less circular RNAs (circRNAs), which are two characteristics gaining increasing attention in the forefront of RNA research field. These noncoding transcripts (especially lncRNAs and circRNAs) exert important regulatory functions in PH and emerge as potential disease biomarkers and therapeutic targets. Recent technological advancements have established great momentum for discovery and functional characterization of ncRNAs, which include broad transcriptome sequencing such as bulk RNA-sequence, single-cell and spatial transcriptomics, and RNA-protein/RNA interactions. In this review, we summarize the current research on the classification, biogenesis, and the biological functions and molecular mechanisms of these noncoding RNAs (ncRNAs) involved in the pulmonary vascular remodeling in PH. Furthermore, we highlight the utility and challenges of using these ncRNAs as biomarkers and therapeutics in PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaofeng Han
- Department of Diagnostic and Interventional Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
| | - Ziping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China
- Correspondence: (X.N.); (J.B.)
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
- Correspondence: (X.N.); (J.B.)
| |
Collapse
|
29
|
LncRNAS—modulators of neurovascular units in diabetic retinopathy. Eur J Pharmacol 2022; 925:174937. [DOI: 10.1016/j.ejphar.2022.174937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
|
30
|
Giurdanella G, Longo A, Distefano A, Olivieri M, Cristaldi M, Cosentino A, Agafonova A, Caporarello N, Lupo G, Anfuso CD. The Anti-Inflammatory Effect of the β1-Adrenergic Receptor Antagonist Metoprolol on High Glucose Treated Human Microvascular Retinal Endothelial Cells. Cells 2021; 11:cells11010051. [PMID: 35011613 PMCID: PMC8750370 DOI: 10.3390/cells11010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia-induced impairment of the blood-retinal barrier represents the main pathological event in diabetic retinopathy that is elicited by a reduced cellular response to an accumulation of reactive oxygen species (ROS) and increased inflammation. The purpose of the study was to evaluate whether the selective β1-adrenoreceptor (β1-AR) antagonist metoprolol could modulate the inflammatory response to hyperglycemic conditions. For this purpose, human retinal endothelial cells (HREC) were treated with normal (5 mM) or high glucose (25 mM, HG) in the presence of metoprolol (10 μM), epinephrine (1 μM), or both compounds. Metoprolol prevented both the HG-induced reduction of cell viability (MTT assays) and the modulation of the angiogenic potential of HREC (tube formation assays) reducing the TNF-α, IL-1β, and VEGF mRNA levels (qRT-PCR). Moreover, metoprolol prevented the increase in phospho-ERK1/2, phospho-cPLA2, COX2, and protein levels (Western blot) as well as counteracting the translocation of ERK1/2 and cPLA2 (high-content screening). Metoprolol reduced ROS accumulation in HG-stimulated HREC by activating the anti-oxidative cellular response mediated by the Keap1/Nrf2/HO-1 pathway. In conclusion, metoprolol exerted a dual effect on HG-stimulated HREC, decreasing the activation of the pro-inflammatory ERK1/2/cPLA2/COX2 axis, and counteracting ROS accumulation by activating the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Anna Longo
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Alfio Distefano
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Melania Olivieri
- U.O. Clinical Pathology, Department of Hematology, AUSL Romagna, 47522 Cesena, Italy;
| | | | - Alessia Cosentino
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Aleksandra Agafonova
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Gabriella Lupo
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
- Correspondence:
| | - Carmelina Daniela Anfuso
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| |
Collapse
|