1
|
Wu X, Zhou X, Wang S, Mao G. DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus. Virol J 2023; 20:250. [PMID: 37915066 PMCID: PMC10621139 DOI: 10.1186/s12985-023-02203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS).
Collapse
Affiliation(s)
- Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Genxiang Mao
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
2
|
Rivino L, Wooldridge L. Ready and waiting to go. eLife 2023; 12:85080. [PMID: 36607230 PMCID: PMC9822238 DOI: 10.7554/elife.85080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some T cells that have been activated by a herpesvirus can also respond to SARS-CoV-2, even if the original herpesvirus infection happened before the COVID-19 pandemic.
Collapse
Affiliation(s)
- Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of BristolBristolUnited Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health Sciences, University of BristolBristolUnited Kingdom
| |
Collapse
|
3
|
Davies EL, Noor M, Lim EY, Houldcroft CJ, Okecha G, Atkinson C, Reeves MB, Jackson SE, Wills MR. HCMV carriage in the elderly diminishes anti-viral functionality of the adaptive immune response resulting in virus replication at peripheral sites. Front Immunol 2022; 13:1083230. [PMID: 36591233 PMCID: PMC9797693 DOI: 10.3389/fimmu.2022.1083230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection and periodic reactivation is, generally, well controlled by adaptative immune responses in the healthy. In older people, overt HCMV disease is rarely seen despite the association of HCMV with increased risk of mortality; evidence from studies of unwell aged populations suggest that HCMV seropositivity is an important co-morbidity factor. HCMV genomes have been detected in urine from older donors, suggesting that the immune response prevents systemic disease but possibly immunomodulation due to lifelong viral carriage may alter its efficacy at peripheral tissue sites. Previously we have demonstrated that there were no age-related expansions of T cell responses to HCMV or increase in latent viral carriage with age and these T cells produced anti-viral cytokines and viremia was very rarely detected. To investigate the efficacy of anti-HCMV responses with increasing age, we used an in vitro Viral Dissemination Assay (VDA) using autologous dermal fibroblasts to determine the anti-viral effector capacity of total PBMC, as well as important subsets (T cells, NK cells). In parallel we assessed components of the humoral response (antibody neutralization) and combined this with qPCR detection of HCMV in blood, saliva and urine in a cohort of young and old donors. Consistent with previous studies, we again show HCMV specific cIL-10, IFNγ and TNFα T cell responses to peptides did not show an age-related defect. However, assessment of direct anti-viral cellular and antibody-mediated adaptive immune responses using the VDA shows that older donors are significantly less able to control viral dissemination in an in vitro assay compared to young donors. Corroborating this observation, we detected viral genomes in saliva samples only from older donors, these donors had a defect in cellular control of viral spread in our in vitro assay. Phenotyping of fibroblasts used in this study shows expression of a number of checkpoint inhibitor ligands which may contribute to the defects observed. The potential to therapeutically intervene in checkpoint inhibitor pathways to prevent HCMV reactivation in the unwell aged is an exciting avenue to explore.
Collapse
Affiliation(s)
- Emma L. Davies
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mahlaqua Noor
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Eleanor Y. Lim
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Charlotte J. Houldcroft
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Georgina Okecha
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Claire Atkinson
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Sarah E. Jackson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
4
|
IL-10-Secreting CD8 + T Cells Specific for Human Cytomegalovirus (HCMV): Generation, Maintenance and Phenotype. Pathogens 2022; 11:pathogens11121530. [PMID: 36558866 PMCID: PMC9781655 DOI: 10.3390/pathogens11121530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
HCMV-specific CD8+ T-cells are potent anti-viral effector cells in HCMV infected individuals, but evidence from other viral infections suggests that CD8+ T-cells can also produce the immunomodulatory cytokine IL-10. In this work we show that there are HCMV-specific IL-10 CD8+ T-cell responses in a cohort of individuals aged 23-76 years of age, predominantly directed against the HCMV proteins known to be expressed during latent infections as well as towards the proteins US3 and pp71. The analysis of HCMV-specific responses established during primary infection has shown that the IL-10 responses to US3 and pp71 HCMV proteins are detectable in the first weeks post infection, but not the responses to latency-associated proteins, and this IL-10 response is produced by both CD8+ and CD4+ T-cells. Phenotyping studies of HCMV-specific IL-10+ CD8+ T-cells show that these are CD45RA+ effector memory cells and co-express CD28 and CD57, however, the expression of the inhibitory receptor PD-1 varied from 90% to 30% between donors. In this study we have described for the first time the HCMV-specific IL-10 CD8+ T-cell responses and have demonstrated their broad specificity and the potential immune modulatory role of the immune response to HCMV latent carriage and periodic reactivation.
Collapse
|
5
|
Lee GH, Lee JY, Jang J, Kang YJ, Choi SA, Kim HC, Park S, Kim MS, Lee W. Anti‐thymocyte globulin‐mediated immunosenescent alterations of T cells in kidney transplant patients. Clin Transl Immunology 2022; 11:e1431. [PMCID: PMC9686013 DOI: 10.1002/cti2.1431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives Kidney transplant (KT) is the most effective treatment for end‐stage renal disease. The immunosuppressant anti‐thymocyte globulin (ATG) has been applied for induction therapy to reduce the risk of acute transplant rejection for patients at high immunological risk. Despite its putative role in replicative stress during immune reconstitution, the effects of ATG on T‐cell immunosenescent changes remain to be understood. Methods Phenotypic and functional features of senescent T cells were examined by flow cytometry in 116 healthy controls (HC) and 95 KT patients for comparative analysis according to ATG treatment and CMV reactivation. The TCR repertoire was analysed in peripheral blood mononuclear cells (PBMCs) of KT patients. Results T cells of KT patients treated with ATG (ATG+) show typical immunosenescent features, accumulation of CD28−, CD85j+ or CD57+ T cells, and imbalance of functional T‐cell subsets, compared with untreated KT patients (ATG−). Plasma IL‐15 and CMV‐IgG levels were higher in KT patients than in HCs, and the IL‐15 level positively correlated with the frequency of CD28− T cells in KT patients. ATG+ patients had a higher prevalence of CMV reactivation, which is associated with an increased frequency of CD28− T cells. As a result, ATG+ patients had expanded CMV‐specific T cells and decreased TCR diversity. However, proliferation, cytokine‐producing capacity and polyfunctionality of T cells were preserved in ATG+ patients. Conclusion Our findings suggest that ATG treatment contributes to the accumulation of senescent T cells, which may have lifelong clinical implications in KT patients. Thus, these patients require long‐term and comprehensive immune monitoring.
Collapse
Affiliation(s)
- Ga Hye Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea,Department of Microbiology and ImmunologySeoul National University College of MedicineSeoulSouth Korea
| | - Jee Youn Lee
- Department of SurgeryKangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jiyeon Jang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea,Department of Microbiology and ImmunologySeoul National University College of MedicineSeoulSouth Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea,Department of Microbiology and ImmunologySeoul National University College of MedicineSeoulSouth Korea
| | - Seung Ah Choi
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea,Department of Microbiology and ImmunologySeoul National University College of MedicineSeoulSouth Korea
| | - Hyeon Chang Kim
- Department of Preventive MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular HospitalYonsei University Health SystemSeoulSouth Korea
| | - Myoung Soo Kim
- Department of SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Won‐Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea,Department of Microbiology and ImmunologySeoul National University College of MedicineSeoulSouth Korea,Cancer Research Institute, Ischemic/Hypoxic Disease Institute, and Institute of Infectious DiseasesSeoul National University College of Medicine; Seoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| |
Collapse
|
6
|
Toma G, Karapetian E, Massa C, Quandt D, Seliger B. Characterization of the effect of histone deacetylation inhibitors on CD8 + T cells in the context of aging. J Transl Med 2022; 20:539. [PMID: 36419167 PMCID: PMC9682763 DOI: 10.1186/s12967-022-03733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Posttranslational protein modifications regulate essential cellular processes, including the immune cell activation. Despite known age-related alterations of the phenotype, composition and cytokine profiles of immune cells, the role of acetylation in the aging process of the immune system was not broadly investigated. Therefore, in the current study the effect of acetylation on the protein expression profiles and function of CD8+ T cells from donors of distinct age was analyzed using histone deacetylase inhibitors (HDACi). METHODS CD8+ T cells isolated from peripheral blood mononuclear cells of 30 young (< 30 years) and 30 old (> 60 years) healthy donors were activated with anti-CD3/anti-CD28 antibodies in the presence and absence of a cocktail of HDACi. The protein expression profiles of untreated and HDACi-treated CD8+ T cells were analyzed using two-dimensional gel electrophoresis. Proteins with a differential expression level (less than 0.66-fold decrease or more than 1.5-fold increase) between CD8+ T cells of young and old donors were identified by matrix-associated laser desorption ionization-time of flight mass spectrometry. Functional enrichment analysis of proteins identified was performed using the online tool STRING. The function of CD8+ T cells was assessed by analyses of cytokine secretion, surface expression of activation markers, proliferative capacity and apoptosis rate. RESULTS The HDACi treatment of CD8+ T cells increased in an age-independent manner the intracellular acetylation of proteins, in particular cytoskeleton components and chaperones. Despite a strong similarity between the protein expression profiles of both age groups, the functional activity of CD8+ T cells significantly differed with an age-dependent increase in cytokine secretion and expression of activation markers for CD8+ T cells from old donors, which was maintained after HDACi treatment. The proliferation and apoptosis rate of CD8+ T cells after HDACi treatment was equal between both age groups. CONCLUSIONS Despite a comparable effect of HDACi treatment on the protein signature of CD8+ T cells from donors of different ages, an initial higher functionality of CD8+ T cells from old donors when compared to CD8+ T cells from young donors was detected, which might have clinical relevance.
Collapse
Affiliation(s)
- Georgiana Toma
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Eliza Karapetian
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Chiara Massa
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Dagmar Quandt
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Barbara Seliger
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany ,grid.418008.50000 0004 0494 3022Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Vanpouille C, Wells A, Dan JM, Rawlings SA, Little S, Fitzgerald W, Margolis L, Gianella S. HIV but Not CMV Replication Alters the Blood Cytokine Network during Early HIV Infection in Men. Viruses 2022; 14:1833. [PMID: 36016455 PMCID: PMC9416553 DOI: 10.3390/v14081833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE CMV coinfection contributes to sustained immune activation in people with chronic HIV. In particular, asymptomatic CMV shedding in semen has been associated with increased local and systemic immune activation, even during suppressive antiretroviral therapy (ART). However, the effect of seminal CMV shedding in people with HIV in the earliest phase of HIV infection is not known. METHODS Using Luminex, we measured the concentration of 34 cytokines in the blood plasma of sixty-nine men who had sex with men with or without HIV and in subgroups of CMV shedders vs. non-shedders. Differences in blood plasma cytokines between groups were investigated using the multivariate supervised partial least squares discriminant analysis method. RESULTS Independently of CMV, we found that concentrations of IP-10, MIG, MCP-1, I-TAC 10, IL-16, and MIP-1β were modulated in the earliest phase of HIV infection compared with control individuals without HIV. In people with HIV, there was no difference in blood cytokines among CMV shedders vs. non-shedders. CONCLUSION In early/acute HIV infection, asymptomatic CMV shedding in semen does not drive additional cytokine changes in blood. Early ART initiation should remain the priority, while the added benefit of CMV suppression during the various stages of HIV infection needs to be further investigated.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Wells
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Jennifer M. Dan
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Stephen A. Rawlings
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Susan Little
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Wendy Fitzgerald
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonid Margolis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
8
|
Functional Changes of T-Cell Subsets with Age and CMV Infection. Int J Mol Sci 2021; 22:ijms22189973. [PMID: 34576140 PMCID: PMC8465008 DOI: 10.3390/ijms22189973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) latent infection and aging contribute to alterations in the function and phenotype of the T-cell pool. We have demonstrated that CMV-seropositivity is associated with the expansion of polyfunctional CD57+ T-cells in young and middle-aged individuals in response to different stimuli. Here, we expand our results on the effects of age and CMV infection on T-cell functionality in a cohort of healthy middle-aged and older individuals stratified by CMV serostatus. Specifically, we studied the polyfunctional responses (degranulation, IFN-γ and TNF-α production) of CD4+, CD8+, CD8+CD56+ (NKT-like), and CD4−CD8− (DN) T-cells according to CD57 expression in response to Staphylococcal Enterotoxin B (SEB). Our results show that CD57 expression by T-cells is not only a hallmark of CMV infection in young individuals but also at older ages. CD57+ T-cells are more polyfunctional than CD57− T-cells regardless of age. CMV-seronegative individuals have no or a very low percentages of cytotoxic CD4+ T-cells (CD1017a+) and CD4+CD57+ T-cells, supporting the notion that the expansion of these T-cells only occurs in the context of CMV infection. There was a functional shift in T-cells associated with CMV seropositivity, except in the NKT-like subset. Here, we show that the effect of CMV infection and age differ among T-cell subsets and that CMV is the major driving force for the expansion of highly polyfunctional CD57+ T-cells, emphasizing the necessity of considering CMV serology in any study of immunosenescence.
Collapse
|
9
|
Rizka A, Setiati S, Sadikin M, Mansur IG. Immunomodulatory effect of in vitro calcitriol in fit and frail elderly. Int Immunopharmacol 2021; 96:107737. [PMID: 33965881 DOI: 10.1016/j.intimp.2021.107737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Effect of calcitriol on PBMCs of healthy adults have been well studied but not much is known about its effect on the PBMCs of elderly patients with various degree of frailty syndrome and immune senescence. This study was aimed to assess the effect of in vitro calcitriol immunomodulatory effect on IL-6, IL-10 and IFN-γ in elderly patients who were fit, pre-frail and frail to see which group of patients might get the most benefit of calcitriol. METHODS This study was an experimental study on the PBMCs of 24 elderly people, of which 8 subjects each were in fit, pre-frail and frail categories based on the Cardiovascular Health Study criteria. IL-6, IL-10, and IFN-γ were examined by ELISA, before and after administration of lipopolysaccharide and 100 pg/mL calcitriol into PBMC cultures in vitro. RESULT The mean serum vitamin D level was 26.2 (2.4) ng/ml. Vitamin D level is decreasing along with worsening of frailty status. After LPS induction, calcitriol did not reduce IL-6 and IFN-γ in all the groups. Calcitriol increased IL-10 in all groups, with the most observed change in the pre-frail group. CONCLUSION In vitro administration of calcitriol showed anti-inflammatory potential by increasing IL-10 mainly in pre-frail subjects.
Collapse
Affiliation(s)
- Aulia Rizka
- Division of Geriatric Medicine, Department of Internal Medicine Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo National Hospital, Jakarta 10430, Indonesia; Metabolic Vascular and Aging Cluster, Indonesian Medical Education and Research Institute Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia.
| | - Siti Setiati
- Division of Geriatric Medicine, Department of Internal Medicine Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo National Hospital, Jakarta 10430, Indonesia
| | - M Sadikin
- Department of Biochemistry Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Indra G Mansur
- Department of Biology Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
10
|
Effects of a 6 Week Low-Dose Combined Resistance and Endurance Training on T Cells and Systemic Inflammation in the Elderly. Cells 2021; 10:cells10040843. [PMID: 33917916 PMCID: PMC8068286 DOI: 10.3390/cells10040843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, affecting the shift of T cell subpopulations and the development of chronic low-grade inflammation. Clinically, this is characterized by increased susceptibility to infections or development of several diseases. Since lifestyle factors can play a significant role in reducing the hallmarks of immune aging and inflammation, we investigated the effect of a 6 week low-dose combined resistance and endurance training program. Forty participants (70.3 ± 5.0 years) were randomly assigned to either a training (TG) or control group (CG) and performed a controlled low-threshold and care-oriented 6-week-long combined resistance and endurance training program. Changes in anthropometrics as well as strength capacity were measured. In subgroups of TG and CG, T cells and their subpopulations (CD4+, CD8+, naïve, central, effector memory, T-EMRA) were analyzed by flow cytometry. The changes of various plasma cytokines, chemokines, growth factors and adipokines were analyzed by luminex assays. The exercise program was followed by an increase in strength capacities. Participants of TG showed an increase of the CD4+/CD8+ T cell ratio over time (p < 0.05). Significant decreases in systemic levels of interleukin (IL-) 6, IL-8, IL-10 and vascular endothelial growth factor (VEGF) (p < 0.05) were observed for participants of TG over time. Even short-term and low-threshold training can reduce some of the hallmarks of immune aging in elderly and thus could be beneficial to stimulate immunity. The specific characteristics of the program make it easily accessible to older people, who may benefit in the longer term in terms of their immunocompetence.
Collapse
|
11
|
Lehmann AA, Zhang T, Reche PA, Lehmann PV. Discordance Between the Predicted Versus the Actually Recognized CD8+ T Cell Epitopes of HCMV pp65 Antigen and Aleatory Epitope Dominance. Front Immunol 2021; 11:618428. [PMID: 33633736 PMCID: PMC7900545 DOI: 10.3389/fimmu.2020.618428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cell immune monitoring aims at measuring the size and functions of antigen-specific CD8+ T cell populations, thereby providing insights into cell-mediated immunity operational in a test subject. The selection of peptides for ex vivo CD8+ T cell detection is critical because within a complex antigen exists a multitude of potential epitopes that can be presented by HLA class I molecules. Further complicating this task, there is HLA class I polygenism and polymorphism which predisposes CD8+ T cell responses towards individualized epitope recognition profiles. In this study, we compare the actual CD8+ T cell recognition of a well-characterized model antigen, human cytomegalovirus (HCMV) pp65 protein, with its anticipated epitope coverage. Due to the abundance of experimentally defined HLA-A*02:01-restricted pp65 epitopes, and because in silico epitope predictions are most advanced for HLA-A*02:01, we elected to focus on subjects expressing this allele. In each test subject, every possible CD8+ T cell epitope was systematically covered testing 553 individual peptides that walk the sequence of pp65 in steps of single amino acids. Highly individualized CD8+ T cell response profiles with aleatory epitope recognition patterns were observed. No correlation was found between epitopes' ranking on the prediction scale and their actual immune dominance. Collectively, these data suggest that accurate CD8+ T cell immune monitoring may necessitate reliance on agnostic mega peptide pools, or brute force mapping, rather than electing individual peptides as representative epitopes for tetramer and other multimer labeling of surface antigen receptors.
Collapse
Affiliation(s)
- Alexander A. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Ting Zhang
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Pedro A. Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| |
Collapse
|
12
|
Sattler A, Angermair S, Stockmann H, Heim KM, Khadzhynov D, Treskatsch S, Halleck F, Kreis ME, Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 2020; 130:6477-6489. [PMID: 32833687 DOI: 10.1172/jci140965] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, viral targets of cellular immunity and factors determining successful mounting of T cell responses are poorly defined. We therefore analyzed cellular responses to membrane, nucleocapsid, and spike proteins in individuals suffering from moderate or severe infection and in individuals who recovered from mild disease. We demonstrate that the CoV-2-specific CD4+ T helper cell response is directed against all 3 proteins with comparable magnitude, ex vivo proliferation, and portions of responding patients. However, individuals who died were more likely to have not mounted a cellular response to the proteins. Higher patient age and comorbidity index correlated with increased frequencies of CoV-2-specific CD4+ T cells, harboring higher portions of IL-2-secreting, but lower portions of IFN-γ-secreting, cells. Diminished frequencies of membrane protein-reactive IFN-γ+ T cells were particularly associated with higher acute physiology and chronic health evaluation II scores in patients admitted to intensive care. CoV-2-specific T cells exhibited elevated PD-1 expression in patients with active disease as compared with those individuals who recovered from previous mild disease. In summary, our data suggest a link between individual patient predisposition with respect to age and comorbidity and impairment of CoV-2-specific Th1-type cellular immunity, thereby supporting a concept of altered T cell function in at-risk patients.
Collapse
Affiliation(s)
- Arne Sattler
- Department for General, Visceral and Vascular Surgery
| | | | | | - Katrin Moira Heim
- Department of Infectiology and Pneumonology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, and
| | | | - Katja Kotsch
- Department for General, Visceral and Vascular Surgery
| |
Collapse
|
13
|
The human immunosenescence phenotype: does it exist? Semin Immunopathol 2020; 42:537-544. [PMID: 32757035 PMCID: PMC7405710 DOI: 10.1007/s00281-020-00810-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023]
Abstract
“Immunosenescence” has been invoked as the root cause of increased incidence and severity of infectious disease in older adults and their poorer response to vaccination, and is implicated in increased solid cancers and increased autoimmunity with age. But how to define it in the individual and to show that immunosenescence is responsible for these adverse health outcomes? How can we monitor interventions aimed at restoring appropriate immune function to overcome these perceived immune deficits? Hence, the many efforts over the years aimed at establishing biomarkers of immunosenescence which to be useful must exhibit robust correlations with the chosen clinical outcome. Developments in “omics” technologies acquiring unprecedently detailed data on personal trajectories of immunosenescence and taking into account the under-appreciated importance of gender, ethnicity geography, socioeconomic, and multiple other differences will be of pivotal importance to identify biomarkers that are clinically useful at the level of the individual. This contribution addresses the question of whether or not we are currently in possession of any such useful biomarkers.
Collapse
|
14
|
Lupini C, Quaglia G, Mescolini G, Russo E, Salaroli R, Forni M, Boldini S, Catelli E. Alteration of immunological parameters in infectious bronchitis vaccinated-specific pathogen-free broilers after the use of different infectious bursal disease vaccines. Poult Sci 2020; 99:4351-4359. [PMID: 32867979 PMCID: PMC7318956 DOI: 10.1016/j.psj.2020.05.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022] Open
Abstract
The vaccines currently available to control infectious bursal disease (IBD) include live-attenuated and inactivated vaccines, immune-complex vaccines, and vaccines consisting of viral constructs of herpesvirus of turkeys genetically engineered to express VP2 surface protein. To evaluate the impact of vaccines on the chicken immune system, 2 animal trials were performed in specific pathogen-free broiler chickens. In trial 1, birds were either vaccinated when they are one-day old with a dual recombinant herpes virus of turkey construct vaccine, expressing VP2 protein of (IBDV) and F protein of Newcastle disease virus, or an immune-complex IBDV vaccine or birds were not vaccinated. At 14, 28, and 35 D, the bursa of Fabricius was collected for bursa:body weight (B:BW) ratio calculation. In trial 2, birds were vaccinated when they were 1-day old according to the same protocol as trial 1, but at day 14, all groups also received a live infectious bronchitis (IB) vaccine. At 0, 7, 14, 21, and 28 days after IB vaccination, birds were tested by ELISA for IB serology and, soon after the last blood sampling, they were euthanized for collection of Harderian glands, trachea, and spleen and testing by flow cytometry for characterization of mononuclear cells. The immune-complex vaccine groups showed significantly lower B:BW ratio, lower IBV antibody titers, and higher mean percentage of CD8+ T cells in the spleen, trachea, and Harderian glands than those in the other experimental groups. The results of the in vivo trials coupled with a depth analysis of the repertoire of parameters involved in the immune response to IBD and IB vaccinations show one vaccine may influence the immune response of other vaccines included in the vaccination program.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Elisa Russo
- MSD Animal Health Srl, 20090 Segrate, MI, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
15
|
Yang TO, Chuang YF, Chiu YL. T-cell aging in end-stage renal disease: an evolving story with CMV. Med Microbiol Immunol 2019; 208:281-287. [PMID: 30903371 DOI: 10.1007/s00430-019-00596-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Established evidence from the last decade has suggested that chronic cytomegalovirus infection has strong impact on the human immune system, resulting in aggravated aging-associated T-cell changes that are associated with poorer vaccination responses, cardiovascular disease and shortened survival. Patients with end-stage renal disease (ESRD), the most severe form of chronic kidney disease, exhibit premature aging phenotypes in almost all organ systems, including the immune system. Longitudinal studies of T-cell aging in healthy humans have been scanty because it requires a large number of study subjects and a study duration for decades. In recent years, it became clear that ESRD patients with cytomegalovirus (CMV) infection exhibit enhanced aging-related immune changes than CMV-seropositive individuals without renal disease, including chronic inflammation, decreased numbers of naïve CD4+ and CD8+ T cells, increased clonality of memory T cells with skewed repertoire and shortened telomeres. These findings lead to the hypothesis that the uremic milieu and treatment for renal failure can lead to premature aging of T cells independent from CMV infection and suggest that ESRD can be an important disease model for studying human aging. Future studies deciphering the underlying mechanisms of accelerated T cell aging in ESRD patients may eventually reveal additional insights into T-cell persistence and function during aging in CMV-seropositive, non-ESRD individuals.
Collapse
Affiliation(s)
- TienYu Owen Yang
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Wycombe Hospital, Buckinghamshire Healthcare NHS Trust, High Wycombe, UK
| | - Yi-Fang Chuang
- International Health Program, National Yang Ming University School of Public Health, Taipei, Taiwan
- Department of Epidemiology, National Yang Ming University School of Public Health, Taipei, Taiwan
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan.
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
16
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Cicin-Sain L. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol 2019; 208:339-347. [PMID: 30972476 DOI: 10.1007/s00430-019-00607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Cytomegalovirus (CMV) infection induces powerful and sustained T-cell responses against a few selected immunodominant antigenic epitopes. This immune response was named memory inflation, because it does not contract in the long term, and may even expand over months and years of virus latency. It is by now understood that memory inflation does not occur at the expense of the naïve T-cell pool, but rather as a competitive selection process within the effector pool, where viral antigens with higher avidity of TCR binding and with earlier expression patterns outcompete those that are expressed later and bind TCRs less efficiently. It is also understood that inflationary epitopes require processing by the constitutive proteasome in non-hematopoietic cells, and this likely implies that memory inflation is fuelled by direct low-level antigenic expression in latently infected cells. This review proposes that these conditions make inflationary epitopes the optimal candidates for adoptive immunotherapy of CMV disease in the immunocompromised host. At present, functional target CMV epitopes have been defined only for the most common HLA haplotypes. Mapping the uncharacterized inflationary epitopes in less frequent HLAs may, thus, be a strategy for the identification of optimal immunotherapeutic targets in patients with uncommon haplotypes.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany. .,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany.
| |
Collapse
|
18
|
T-cell immunity against cytomegalovirus in HIV infection and aging: relationships with inflammation, immune activation, and frailty. Med Microbiol Immunol 2019; 208:289-294. [PMID: 30900090 DOI: 10.1007/s00430-019-00591-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Both aging and treated human immunodeficiency virus (HIV) infection are characterized by low-level chronic inflammation and immune activation which contribute to the development of age-related diseases, frailty, and early mortality. Chronic cytomegalovirus (CMV) infection is highly prevalent in older adults and HIV-infected populations. A number of studies have shown that CMV induces broad and strong T-cell responses in CMV-seropositive older adults and HIV-infected individuals. CMV infection rarely develops into clinical disease in immunocompetent individuals. However, a large body of literature has shown adverse effects of chronic CMV infection on the health and longevity of these populations. It has been hypothesized that chronic CMV infection may be a driver of chronic inflammation and immune activation, and may further contribute to the development of frailty. Thus, there is a need to better understand the extent of the impact of chronic CMV infection on T-cell immunity and health in aging and HIV infection. In this review, we will address important considerations and challenges in the assessment of chronic CMV infection and CMV-specific T-cell responses. We will then review recent data on relationships between T-cell responses to CMV and levels of inflammatory markers and immune activation, as well as the onset of frailty.
Collapse
|
19
|
Lindau P, Mukherjee R, Gutschow MV, Vignali M, Warren EH, Riddell SR, Makar KW, Turtle CJ, Robins HS. Cytomegalovirus Exposure in the Elderly Does Not Reduce CD8 T Cell Repertoire Diversity. THE JOURNAL OF IMMUNOLOGY 2018; 202:476-483. [PMID: 30541882 PMCID: PMC6321841 DOI: 10.4049/jimmunol.1800217] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023]
Abstract
With age, the immune system becomes less effective, causing increased susceptibility to infection. Chronic CMV infection further impairs immune function and is associated with increased mortality in the elderly. CMV exposure elicits massive CD8+ T cell clonal expansions and diminishes the cytotoxic T cell response to subsequent infections, leading to the hypothesis that to maintain homeostasis, T cell clones are expelled from the repertoire, reducing T cell repertoire diversity and diminishing the ability to combat new infections. However, in humans, the impact of CMV infection on the structure and diversity of the underlying T cell repertoire remains uncharacterized. Using TCR β-chain immunosequencing, we observed that the proportion of the peripheral blood T cell repertoire composed of the most numerous 0.1% of clones is larger in the CMV seropositive and gradually increases with age. We found that the T cell repertoire in the elderly grows to accommodate CMV-driven clonal expansions while preserving its underlying diversity and clonal structure. Our observations suggest that the maintenance of large CMV-reactive T cell clones throughout life does not compromise the underlying repertoire. Alternatively, we propose that the diminished immunity in elderly individuals with CMV is due to alterations in cellular function rather than a reduction in CD8+ T cell repertoire diversity.
Collapse
Affiliation(s)
- Paul Lindau
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, Seattle, WA 98195; .,Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Rithun Mukherjee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101
| | - Miriam V Gutschow
- Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - Edus H Warren
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195; and
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195; and
| | - Karen W Makar
- Bill and Melinda Gates Foundation, Seattle, WA 98109
| | - Cameron J Turtle
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195; and
| | - Harlan S Robins
- Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Adaptive Biotechnologies, Seattle, WA 98102
| |
Collapse
|
20
|
Araújo Carvalho AC, Tavares Mendes ML, Santos VS, Tanajura DM, Prado Nunes MA, Martins-Filho PRS. Association between human herpes virus seropositivity and frailty in the elderly: A systematic review and meta-analysis. Ageing Res Rev 2018; 48:145-152. [PMID: 30391341 DOI: 10.1016/j.arr.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/13/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Abstract
Frailty is an emerging geriatric syndrome characterized by decreased physiologic reserve and increased vulnerability to environmental factors. Several studies have examined the association between persistent cytomegalovirus (CMV) infection and poor clinical outcomes in the elderly, but the results are often contradictory. Here, we performed a systematic review and meta-analysis to analyze the association between human herpesvirus seropositivity [CMV, Epstein-Barr virus (EBV), Varicella zoster virus (VZV), and Herpes simplex virus (HSV)] and frailty in elderly people. Searches were performed in PubMed, SCOPUS, Lilacs, IBECS, and Web of Science databases. We used the odds ratio (OR) as a measure of the association between herpesvirus infections and frailty. Summary estimates were calculated using random-effects models. Six studies were included in the present systematic review. The data from 2559 elderly subjects were analyzed; 1571 of the subjects had ages between 60 and 79 years, and 988 of the subjects were older than 80. We found an association between CMV seropositivity and frailty in the elderly aged 60-79 years (OR 2.33, CI 95% 1.48-3.67) but not in the oldest-old subjects (OR 0.67, CI 95% 0.42-1.05). Moreover, no association was found between EBV, VZV, and HSV infections and frailty. Current evidence suggests an association between CMV seropositivity and frailty in individuals aged 60-79 years old.
Collapse
|
21
|
Cao Dinh H, Bautmans I, Beyer I, Mets T, Onyema OO, Forti LN, Renmans W, Vander Meeren S, Jochmans K, Vermeiren S, Vella-Azzopardi R, Njemini R. Association Between Immunosenescence Phenotypes and Pre-frailty in Older Subjects: Does Cytomegalovirus Play a Role? J Gerontol A Biol Sci Med Sci 2018; 74:480-488. [DOI: 10.1093/gerona/gly135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 02/02/2023] Open
Affiliation(s)
- Hung Cao Dinh
- Frailty in Ageing Research Group, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Belgium
| | - Ivan Bautmans
- Frailty in Ageing Research Group, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Belgium
- Department of Geriatric Medicine, Belgium
| | - Ingo Beyer
- Frailty in Ageing Research Group, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Belgium
- Department of Geriatric Medicine, Belgium
| | - Tony Mets
- Frailty in Ageing Research Group, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Belgium
- Department of Geriatric Medicine, Belgium
| | | | | | - Wim Renmans
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Belgium
| | | | - Kristin Jochmans
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Belgium
| | | | | | - Rose Njemini
- Frailty in Ageing Research Group, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Belgium
| | | |
Collapse
|
22
|
Youn JC, Kim JY, Jung MK, Yu HT, Park SH, Kim IC, Lee SK, Choi SW, Han S, Ryu KH, Park S, Shin EC. Analysis of cytomegalovirus-specific T-cell responses in patients with hypertension: comparison of assay methods and antigens. Clin Hypertens 2018; 24:5. [PMID: 29568571 PMCID: PMC5861653 DOI: 10.1186/s40885-018-0090-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recent studies suggest an association between cytomegalovirus (CMV) infection and hypertension. In the present study, we used a variety of antigens and different assay methods to investigate the relationship between CMV-specific T-cell responses and arterial stiffness in patients with hypertension. METHODS To evaluate arterial stiffness, pulse wave velocity (PWV) was measured in 207 hypertensive patients (average age, 63 ± 8 years). To measure CMV pp65 and IE-1-specific T-cell responses, we performed intracellular cytokine staining (ICS) and enzyme-linked immunospot (ELISPOT) assays. We also analyzed CMV-specific T-cell responses against 10 different CMV antigens using ELISPOT assays. RESULTS In patients with hypertension, senescent CD8+ T-cell frequencies were significantly correlated with arterial stiffness. Moreover, arterial stiffness was independently associated with CMV pp65-specific CD8+ T-cell responses as measured by ICS. CMV-specific CD8+ T-cell responses measured by ICS and ELISPOT assays showed good agreement and significant correlation with each other. ELISPOT analyses against 10 different CMV antigens revealed a consistent response pattern irrespective of age, gender, and diabetes. CONCLUSIONS CMV pp65-specific CD8+ T-cell responses were independently correlated with arterial stiffness in patients with hypertension. Additionally, the results of ICS and ELISPOT assays showed a significant correlation and good agreement with each other. These findings are important for guiding choices regarding the broad clinical application of CMV-specific T-cell response assays in this patient population.
Collapse
Affiliation(s)
- Jong-Chan Youn
- Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jun Yong Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Hee Tae Yu
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - In-Cheol Kim
- Division of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Sun Ki Lee
- Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Suk-Won Choi
- Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Seongwoo Han
- Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Kyu-Hyung Ryu
- Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
23
|
Ballegaard V, Brændstrup P, Pedersen KK, Kirkby N, Stryhn A, Ryder LP, Gerstoft J, Nielsen SD. Cytomegalovirus-specific T-cells are associated with immune senescence, but not with systemic inflammation, in people living with HIV. Sci Rep 2018; 8:3778. [PMID: 29491459 PMCID: PMC5830877 DOI: 10.1038/s41598-018-21347-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
In people living with HIV (PLWHIV), coinfection with cytomegalovirus (CMV) has been associated with inflammation, immunological ageing, and increased risk of severe non-AIDS related comorbidity. The effect of CMV-specific immune responses on systemic inflammation, immune activation and T-cell senescence was evaluated in 53 PLWHIV treated with combination antiretroviral therapy (cART). Activated-, terminally differentiated-, naïve-, and senescent T-cells were assessed by flow cytometry, and plasma levels of CMV IgG, interleukin-6, tumor necrosis factor-α, high-sensitivity C-reactive protein and soluble-CD14 were measured. In PLWHIV, expression of interleukin-2, tumor necrosis factor-α and interferon-γ was measured by intracellular-cytokine-staining after stimulation of T-cells with CMV-pp65, CMV-IE1, and CMV-gB. Increased CMV-specific T-cell responses were associated with a higher ratio of terminally differentiated/naïve CD8+ T-cells and with increased proportions of senescent CD8+ T-cells, but not with systemic inflammation or sCD14. Increased CMV-specific CD4+ T-cell responses were associated with increased proportions of activated CD8+ T-cells. In PLWHIV with expansion of CMV-specific T-cells or increased T-cell senescence, CMV-specific polyfunctionality was maintained. That the magnitude of the CMV-specific T-cell response was associated with a senescent immune phenotype, suggests that a dysregulated immune response against CMV may contribute to the immunological ageing often described in PLWHIV despite stable cART.
Collapse
Affiliation(s)
- Vibe Ballegaard
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Peter Brændstrup
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Karin Kaereby Pedersen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars P Ryder
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Di Lorenzo G, Di Bona D, Belluzzo F, Macchia L. Immunological and non-immunological mechanisms of allergic diseases in the elderly: biological and clinical characteristics. IMMUNITY & AGEING 2017; 14:23. [PMID: 29296117 PMCID: PMC5738884 DOI: 10.1186/s12979-017-0105-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
A better hygiene, a Westernized diet, air pollution, climate changes, and other factors that influence host microbiota, a key player in the induction and maintenance of immunoregulatory circuits and tolerance, are thought to be responsible for the increase of allergic diseases observed in the last years. The increase of allergic diseases in elderly is related to the presence of other factors as several comorbidities that should interfere with the development and the type of allergic reactions. A central role is played by immunosenescence responsible for modifying response to microbiota and triggering inflamm-ageing. In addition, in elderly there is a shift from Th1 responses vs. Th2, hence favouring allergic responses. Better understanding of the mechanisms of immunosenescence and its effects on allergic inflammation will most certainly lead to improved therapy.
Collapse
Affiliation(s)
- Gabriele Di Lorenzo
- Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Università di Palermo, Palermo, Italy.,Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), Via del Vespro, 141, 90127 Palermo, Italy
| | - Danilo Di Bona
- Department of Allergy, Clinical Immunology, Emergency Medicine, and Transplants, University of Bari, Bari, Italy
| | - Federica Belluzzo
- Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Università di Palermo, Palermo, Italy
| | - Luigi Macchia
- Department of Allergy, Clinical Immunology, Emergency Medicine, and Transplants, University of Bari, Bari, Italy
| |
Collapse
|
25
|
Pawelec G. Immune parameters associated with mortality in the elderly are context-dependent: lessons from Sweden, Holland and Belgium. Biogerontology 2017; 19:537-545. [PMID: 29185165 DOI: 10.1007/s10522-017-9739-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/23/2017] [Indexed: 01/10/2023]
Abstract
The pioneering Swedish OCTO/NONA-Immune longitudinal studies led by Anders Wikby in Jönköping in the 1990s established a cluster of simple baseline immune parameters associated with excess mortality in 85 year-old non-institutionalized individuals over 2, 4 and 6-year follow-up. We dubbed this cluster the "Immune Risk Profile" (IRP) consisting of poor proliferative responses of peripheral blood mononuclear cells to T cell mitogens, accumulations of CD8+ CD28- T-cells resulting in an inverted CD4:8 ratio, decreased amounts of B-cells, and seropositivity for Cytomegalovirus (CMV). The concept of the IRP has since been applied by others to many different populations in different circumstances and at different ages, but in general without specifically establishing whether the same risk factors were relevant in the tested subjects. However, our own later studies showed that risk factors in aged populations from The Netherlands and Belgium were markedly different, indicating that the IRP cannot simply be transferred between populations. Moreover, there was a striking sex difference in the Belgian study, which was the only one large enough to include sufficient numbers of old men. The reasons for these marked differences between populations which one might have assumed a priori to be quite similar to one another are not clear, and many candidates can be speculated upon, but the important lesson is that there is a marked context-dependency of immune biomarkers of ageing, suggesting that IRPs cannot be assumed to be identical in different populations.
Collapse
Affiliation(s)
- Graham Pawelec
- Second Department of Internal Medicine, University of Tübingen, Tübingen, Germany.
- Health Sciences North Research Institute of Canada, Sudbury, ON, Canada.
| |
Collapse
|
26
|
Waters S, Brook E, Lee S, Estiasari R, Ariyanto I, Price P. HIV patients, healthy aging and transplant recipients can reveal the hidden footprints of CMV. Clin Immunol 2017; 187:107-112. [PMID: 29108855 DOI: 10.1016/j.clim.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/24/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus. Latent infections are common in all populations. However age-associated increases in levels of CMV-reactive antibody are testament to repeated reactivations and periods of viral replication. CMV has been associated with several diseases of aging, including vasculopathy and neurocognitive impairment. These conditions occur at a younger age in persons with particularly high burdens of CMV - transplant recipients and people living with HIV. Here we define the "clinical footprints" as immunopathologies triggered by CMV that develop over many years. A high burden of CMV also drives accumulation of multifunctional terminally-differentiated αβ T-cells, a novel population of Vδ2- γδ T-cells, and a population of CD56lo NK cells lacking a key regulatory molecule. An understanding of these "immunological footprints" of CMV may reveal how they collectively promote the "clinical footprints" of the virus. This is explored here in transplant recipients, HIV patients and healthy aging.
Collapse
Affiliation(s)
- Shelley Waters
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Emily Brook
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Silvia Lee
- School of Biomedical Science, Curtin University, Bentley, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Fiona Stanley Hospital, Australia
| | - Riwanti Estiasari
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ibnu Ariyanto
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Patricia Price
- School of Biomedical Science, Curtin University, Bentley, Australia; Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
27
|
Dock J, Ramirez CM, Hultin L, Hausner MA, Hultin P, Elliott J, Yang OO, Anton PA, Jamieson BD, Effros RB. Distinct aging profiles of CD8+ T cells in blood versus gastrointestinal mucosal compartments. PLoS One 2017; 12:e0182498. [PMID: 28832609 PMCID: PMC5568404 DOI: 10.1371/journal.pone.0182498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023] Open
Abstract
A hallmark of human immunosenescence is the accumulation of late-differentiated memory CD8+ T cells with features of replicative senescence, such as inability to proliferate, absence of CD28 expression, shortened telomeres, loss of telomerase activity, enhanced activation, and increased secretion of inflammatory cytokines. Importantly, oligoclonal expansions of these cells are associated with increased morbidity and mortality risk in elderly humans. Currently, most information on the adaptive immune system is derived from studies using peripheral blood, which contains approximately only 2% of total body lymphocytes. However, most lymphocytes reside in tissues. It is not clear how representative blood changes are of the total immune status. This is especially relevant with regard to the human gastrointestinal tract (GALT), a major reservoir of total body lymphocytes (approximately 60%) and an anatomical region of high antigenic exposure. To assess how peripheral blood T cells relate to those in other locations, we compare CD8+ T cells from peripheral blood and the GALT, specifically rectosigmoid colon, in young/middle age, healthy donors, focusing on phenotypic and functional alterations previously linked to senescence in peripheral blood. Overall, our results indicate that gut CD8+ T cells show profiles suggestive of greater differentiation and activation than those in peripheral blood. Specifically, compared to blood from the same individual, the gut contains significantly greater proportions of CD8+ T cells that are CD45RA- (memory), CD28-, CD45RA-CD28+ (early memory), CD45RA-CD28- (late memory), CD25-, HLA-DR+CD38+ (activated) and Ki-67+ (proliferating); ex vivo CD3+ telomerase activity levels are greater in the gut as well. However, gut CD8+ T cells may not necessarily be more senescent, since they expressed significantly lower levels of CD57 and PD-1 on CD45RO+ memory cells, and had in vitro proliferative dynamics similar to that of blood cells. Compartment-specific age-effects in this cohort were evident as well. Blood cells showed a significant increase with age in proportion of HLA-DR+38+, Ki-67+ and CD25+ CD8+ T cells; and an increase in total CD3+ex-vivo telomerase activity that approached significance. By contrast, the only age-effect seen in the gut was a significant increase in CD45RA- (memory) and concurrent decrease in CD45RA+CD28+ (naïve) CD8+ T cells. Overall, these results indicate dynamics of peripheral blood immune senescence may not hold true in the gut mucosa, underscoring the importance for further study of this immunologically important tissue in evaluating the human immune system, especially in the context of chronic disease and aging.
Collapse
Affiliation(s)
- Jeffrey Dock
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Christina M Ramirez
- Department of Biostatistics, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Lance Hultin
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Mary Ann Hausner
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Patricia Hultin
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America.,Department of Epidemiology, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Julie Elliott
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Otto O Yang
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America.,Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,Department of Microbiology Immunology & Molecular Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,AIDS Healthcare Foundation, Los Angeles, CA, United States of America
| | - Peter A Anton
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America.,Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Beth D Jamieson
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Rita B Effros
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| |
Collapse
|
28
|
Jackson SE, Sedikides GX, Okecha G, Poole EL, Sinclair JH, Wills MR. Latent Cytomegalovirus (CMV) Infection Does Not Detrimentally Alter T Cell Responses in the Healthy Old, But Increased Latent CMV Carriage Is Related to Expanded CMV-Specific T Cells. Front Immunol 2017; 8:733. [PMID: 28694811 PMCID: PMC5483450 DOI: 10.3389/fimmu.2017.00733] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infection and periodic reactivation of latent virus is generally well controlled by T-cell responses in healthy people. In older donors, overt HCMV disease is not generally seen despite the association of HCMV infection with increased risk of mortality. However, increases in HCMV DNA in urine of older people suggest that, although the immune response retains functionality, immunomodulation of the immune response due to lifelong viral carriage may alter its efficacy. Viral transcription is limited during latency to a handful of viral genes and there is both an IFNγ and cellular IL-10 CD4+ T-cell response to HCMV latency-associated proteins. Production of cIL-10 by HCMV-specific CD4+ T-cells is a candidate for aging-related immunomodulation. To address whether long-term carriage of HCMV changes the balance of cIL-10 and IFNγ-secreting T-cell populations, we recruited a large donor cohort aged 23–78 years and correlated T-cell responses to 11 HCMV proteins with age, HCMV IgG levels, latent HCMV load in CD14+ monocytes, and T-cell numbers in the blood. IFNγ responses by CD4+ and CD8+ T-cells to all HCMV proteins were detected, with no age-related increase in this cohort. IL-10-secreting CD4+ T cell responses were predominant to latency-associated proteins but did not increase with age. Quantification of HCMV genomes in CD14+ monocytes, a known site of latent HCMV carriage, did not reveal any increase in viral genome copies in older donors. Importantly, there was a significant positive correlation between the latent viral genome copy number and the breadth and magnitude of the IFNγ T-cell response to HCMV proteins. This study suggests in healthy aged donors that HCMV-specific changes in the T cell compartment were not affected by age and were effective, as viremia was a very rare event. Evidence from studies of unwell aged has shown HCMV to be an important comorbidity factor, surveillance of latent HCMV load and low-level viremia in blood and body fluids, alongside typical immunological measures and assessment of the antiviral capacity of the HCMV-specific immune cell function would be informative in determining if antiviral treatment of HCMV replication in the old maybe beneficial.
Collapse
Affiliation(s)
- Sarah E Jackson
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - George X Sedikides
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Georgina Okecha
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emma L Poole
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John H Sinclair
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark R Wills
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Souquette A, Frere J, Smithey M, Sauce D, Thomas PG. A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. GeroScience 2017. [PMID: 28647907 DOI: 10.1007/s11357-017-9982-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of individuals aged 6-49 years in the United States are infected with cytomegalovirus (CMV), with seroprevalence increasing with age, reaching 85-90% by 75-80 years according to Bate et al. (Clin Infect Dis 50 (11): 1439-1447, 2010) and Pawelec et al. (Curr Opin Immunol 24:507-511, 2012). Following primary infection, CMV establishes lifelong latency with periodic reactivation. Immunocompetent hosts experience largely asymptomatic infection, but CMV can cause serious illness in immunocompromised populations, such as transplant patients and the elderly. Control of CMV requires constant immune surveillance, and recent discoveries suggest this demand alters general features of the immune system in infected individuals. Here, we review recent advances in the understanding of the immune response to CMV and the role of CMV in immune aging and fitness, while highlighting the importance of potential confounding factors that influence CMV studies. Understanding how CMV contributes to shaping "baseline" immunity has important implications for a host's ability to mount effective responses to diverse infections and vaccination.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Frere
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France.,Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Megan Smithey
- Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
30
|
Abstract
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Collapse
|
31
|
Hassouneh F, Lopez-Sejas N, Campos C, Sanchez-Correa B, Tarazona R, Solana R, Pera A. Differential Effect of Cytomegalovirus Infection with Age on the Expression of CD57, CD300a, and CD161 on T-Cell Subpopulations. Front Immunol 2017. [PMID: 28626460 PMCID: PMC5454039 DOI: 10.3389/fimmu.2017.00649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Immunosenescence is a progressive deterioration of the immune system with aging. It affects both innate and adaptive immunity limiting the response to pathogens and to vaccines. As chronic cytomegalovirus (CMV) infection is probably one of the major driving forces of immunosenescence, and its persistent infection results in functional and phenotypic changes to the T-cell repertoire, the aim of this study was to analyze the effect of CMV-seropositivity and aging on the expression of CD300a and CD161 inhibitory receptors, along with the expression of CD57 marker on CD4+, CD8+, CD8+CD56+ (NKT-Like) and CD4−CD8− (DN) T-cell subsets. Our results showed that, regardless of the T-cell subset, CD57−CD161−CD300a+ T-cells expand with age in CMV-seropositive individuals, whereas CD57−CD161+CD300a+ T-cells decrease. Similarly, CD57+CD161−CD300a+ T-cells expand with age in CMV-seropositive individuals in all subsets except in DN cells and CD57−CD161+CD300a− T-cells decrease in all T-cell subsets except in CD4+ T-cells. Besides, in young individuals, CMV latent infection associates with the expansion of CD57+CD161−CD300a+CD4+, CD57−CD161−CD300a+CD4+, CD57+CD161−CD300a+CD8+, CD57−CD161−CD300a+CD8+, CD57+CD161−CD300a+NKT-like, and CD57+CD161−CD300a+DN T-cells. Moreover, in young individuals, CD161 expression on T-cells is not affected by CMV infection. Changes of CD161 expression were only associated with age in the context of CMV latent infection. Besides, CD300a+CD57+CD161+ and CD300a−CD57+CD161+ phenotypes were not found in any of the T-cell subsets studied except in the DN subpopulation, indicating that in the majority of T-cells, CD161 and CD57 do not co-express. Thus, our results show that CMV latent infection impact on the immune system depends on the age of the individual, highlighting the importance of including CMV serology in any study regarding immunosenescence.
Collapse
Affiliation(s)
- Fakhri Hassouneh
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Nelson Lopez-Sejas
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Carmen Campos
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | | | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Rafael Solana
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain.,Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Alejandra Pera
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain.,Division of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
32
|
Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection. Curr HIV/AIDS Rep 2016; 13:10-9. [PMID: 26810437 DOI: 10.1007/s11904-016-0297-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the current era of combination antiretroviral therapy (ART), human immunodeficiency virus (HIV)-infected individuals are living longer and healthier lives. Nevertheless, HIV-infected persons are at greater risk for age-related disorders, which have been linked to residual immune dysfunction and inflammation. HIV-infected individuals are almost universally co-infected with cytomegalovirus (CMV) and both viruses are associated with inflammation-related morbidities. Therefore, a detailed investigation of the relationship between CMV and aging-related morbidities emerging during chronic HIV infection is warranted. Here, we review the literature on how CMV co-infection affects HIV infection and host immunity and we discuss the gaps in our knowledge that need elucidation.
Collapse
|
33
|
Michel JJ, Griffin P, Vallejo AN. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging. Front Immunol 2016; 7:530. [PMID: 27933066 PMCID: PMC5121286 DOI: 10.3389/fimmu.2016.00530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population.
Collapse
Affiliation(s)
- Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia Griffin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Claude Pepper Older Americans Independence Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Luna E, Caravaca F, Ferreira F, Fernandez N, Martín P, Vargas M, Saenz de Santamaría J, Garcia Pino G, Azevedo L, Muñoz Sanz A. Effect of Cytomegalovirus Infection on Survival of Older Kidney Transplant Patients (D+/R+): Impact of Valganciclovir Prophylaxis Versus Preemptive Therapy. Transplant Proc 2016; 48:2931-2937. [DOI: 10.1016/j.transproceed.2016.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022]
|
35
|
Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev 2016; 158:46-52. [PMID: 26404009 PMCID: PMC4808485 DOI: 10.1016/j.mad.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (CMV), the prototypical β-herpervirus, is a widespread pathogen that establishes a lifelong latent infection in myeloid progenitor, and possibly other cells as well. Although immunocompetent individuals show mild or no symptoms despite periodic reactivation during myeloid cell differentiation, CMV is responsible for considerable morbidity and mortality in older adults and in persons chronically infected with HIV. Indeed, in these individuals, reactivation of CMV can cause serious complications. This review will focus of the effects of CMV during aging and HIV/AIDS, with particular attention to the cellular immunity and age-related pathology outcomes from this persistent infection. The impact of the long-term chronic exposure to CMV antigens on the expansion of CD8 T cells with features of replicative senescence will be highlighted.
Collapse
Affiliation(s)
- Rita B Effros
- Department of Pathology & Laboratory Medicine and UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Bajwa M, Vita S, Vescovini R, Larsen M, Sansoni P, Terrazzini N, Caserta S, Thomas D, Davies KA, Smith H, Kern F. Functional Diversity of Cytomegalovirus-Specific T Cells Is Maintained in Older People and Significantly Associated With Protein Specificity and Response Size. J Infect Dis 2016; 214:1430-1437. [PMID: 27521364 PMCID: PMC5079367 DOI: 10.1093/infdis/jiw371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background. Parallel upregulation of several T-cell effector functions (ie, polyfunctionality) is believed to be critical for the protection against viruses but thought to decrease in large T-cell expansions, in particular at older ages. The factors determining T-cell polyfunctionality are incompletely understood. Here we revisit the question of cytomegalovirus (CMV)–specific T-cell polyfunctionality, including a wide range of T-cell target proteins, response sizes, and participant ages. Methods. Polychromatic flow cytometry was used to analyze the functional diversity (ie, CD107, CD154, interleukin 2, tumor necrosis factor, and interferon γ expression) of CD4+ and CD8+ T-cell responses to 19 CMV proteins in a large group of young and older United Kingdom participants. A group of oldest old people (age >85 years) was included to explore these parameters in exceptional survivors. Polyfunctionality was assessed for each protein-specific response subset, by subset and in aggregate, across all proteins by using the novel polyfunctionality index. Results. Polyfunctionality was not reduced in healthy older people as compared to young people. However, it was significantly related to target protein specificity. For each protein, it increased with response size. In the oldest old group, overall T-cell polyfunctionality was significantly lower. Discussion. Our results give a new perspective on T-cell polyfunctionality and raise the question of whether maintaining polyfunctionality of CMV-specific T cells at older ages is necessarily beneficial.
Collapse
Affiliation(s)
| | - Serena Vita
- Institute Pasteur, Cenci-Bolognetti Foundation, Department of Public Health and Infectious Diseases, University Sapienza of Rome
| | - Rosanna Vescovini
- Dipartimento di Medicina Interna e Scienze Biomediche, Università di Parma, Italy
| | - Martin Larsen
- Inserm UMR-S1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris).,AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Paolo Sansoni
- Dipartimento di Medicina Interna e Scienze Biomediche, Università di Parma, Italy
| | - Nadia Terrazzini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, United Kingdom
| | | | | | | | - Helen Smith
- Division of Primary Care and Public Health Brighton and Sussex Medical School, United Kingdom
| | | |
Collapse
|
37
|
Aiello AE, Feinstein L, Dowd JB, Pawelec G, Derhovanessian E, Galea S, Uddin M, Wildman DE, Simanek AM. Income and Markers of Immunological Cellular Aging. Psychosom Med 2016; 78:657-66. [PMID: 27187853 PMCID: PMC4927391 DOI: 10.1097/psy.0000000000000320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Socioeconomic disadvantage may contribute to poor health through immune-related biological mechanisms. We examined the associations between socioeconomic status, as measured by annual household income, and T-cell markers of aging, including the ratios of CD4 and CD8 effector cells to naïve cells (E/N ratio) and the CD4/CD8 T-cell ratio. We hypothesized that participants with a lower income would have higher E/N ratios and lower CD4/CD8 ratios compared with participants with a higher income, and that these associations would be partially mediated by elevated cytomegalovirus (CMV) IgG antibody levels, a virus implicated in aging and clonal expansion of T cells. METHODS Data were from 79 individuals who participated in the population-based Detroit Neighborhood Health Study. We used linear regression to quantify the association between a $10,000 decrease in income and each ratio outcome. RESULTS After adjustment for age, sex, race, smoking, medication use, and lifetime history of mental health conditions, lower income was associated with a 0.41 (95% confidence interval = 0.09-0.72) log-unit increase in the CD4 E/N ratio and a 0.20 (95% confidence interval = 0.02-0.39) log-unit increase in the CD8 E/N ratio. CMV immunoglobulin G antibody level partially mediated these associations. CONCLUSIONS Our study suggests that low socioeconomic status is associated with immunological aging as measured by the E/N ratio and that impaired immune control of CMV may partially mediate these associations.
Collapse
Affiliation(s)
- Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;
| | - Lydia Feinstein
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;
| | - Jennifer B Dowd
- CUNY School of Public Health, Hunter College, City University of New York, NY, USA;
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University of Tubingen, Tubingen, Germany;
| | - Evelyna Derhovanessian
- Department of Internal Medicine II, Centre for Medical Research, University of Tubingen, Tubingen, Germany;
| | - Sandro Galea
- Boston University School of Public Health, Boston University, Boston, MA, USA;
| | - Monica Uddin
- Department of Psychology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL;
| | - Derek E. Wildman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL USA;
| | - Amanda M Simanek
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA;
| |
Collapse
|
38
|
Söderberg-Nauclér C, Fornara O, Rahbar A. Cytomegalovirus driven immunosenescence-An immune phenotype with or without clinical impact? Mech Ageing Dev 2016; 158:3-13. [PMID: 27318107 DOI: 10.1016/j.mad.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
The continuous emerging increase in life span has led to vulnerability to a number of different diseases in the elderly. Some of these risks may be attributed to specific changes in the immune system referred to as immunoscenescence. This term aims to describe decreased immune functions among elderly individuals, and is characterized to be harmful age-associated changes in the immune system that lead to its gradual immune dysfunction. An impaired function of the immune system may increase susceptibility to various diseases in the elderly population such as infections, cardiovascular diseases and cancer. Although it is unclear how this immune phenotype develops, emerging evidence suggest that it may reflect an exhaustion of the immune system, possibly caused by one or several chronic infections. The main candidate is human cytomegalovirus (CMV), which can induce immune dysfunctions observed in immunoscenescence. Although the immune system is currently considered to be exhausted in CMV positive elderly individuals, it is not known whether such dysfunction of the immune system is a main reason for increased susceptibility to other diseases, or if direct effects of the virus in disease pathogenesis reflect the increased vulnerability to them. These aspects will be discussed in this review.
Collapse
Affiliation(s)
- Cecilia Söderberg-Nauclér
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden.
| | - Olesja Fornara
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
39
|
Abstract
Human immune system aging results in impaired responses to pathogens or vaccines. In the innate immune system, which mediates the earliest pro-inflammatory responses to immunologic challenge, processes ranging from Toll-like Receptor function to Neutrophil Extracellular Trap formation are generally diminished in older adults. Dysregulated, enhanced basal inflammation with age reflecting activation by endogenous damage-associated ligands contributes to impaired innate immune responses. In the adaptive immune system, T and B cell subsets and function alter with age. The control of cytomegalovirus infection, particularly in the T lineage, plays a dominant role in the differentiation and diversity of the T cell compartment.
Collapse
Affiliation(s)
- Thilinie Bandaranayake
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Sylwester A, Nambiar KZ, Caserta S, Klenerman P, Picker LJ, Kern F. A new perspective of the structural complexity of HCMV-specific T-cell responses. Mech Ageing Dev 2016; 158:14-22. [PMID: 26957355 DOI: 10.1016/j.mad.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND In studies exploring the effects of HCMV infection on immune system aging ('immunosenescence'), after organ transplantation or in other settings, HCMV-specific T-cell responses are often assessed with respect to purportedly 'immunodominant' protein subunits. However, the response structure in terms of recognized antigens and response hierarchies (architecture) is not well understood and actual correlates of immune protection are not known. METHODS We explored the distribution of T-cell response sizes and dominance hierarchies as well as response breadth in 33 HCMV responders with respect to >200 HCMV proteins. RESULTS At the individual responder level HCMV-specific T-cell responses were generally arranged in clear dominance hierarchies; interestingly, the number of proteins recognized by an individual correlated closely with the size of their biggest response. Target-specificity varied considerably between donors and across hierarchy levels with the presence, size, and hierarchy position of responses to purportedly 'immunodominant' targets being unpredictable. CONCLUSIONS Predicting protective immunity based on isolated HCMV subunit-specific T-cell responses is questionable in light of the complex architecture of the overall response. Our findings have important implications for T-cell monitoring, intervention strategies, as well as the application of animal models to the understanding of human infection.
Collapse
Affiliation(s)
- Andrew Sylwester
- Vaccine & Gene Therapy Institute, Oregon Health & Science University West Campus, Beaverton, OR 97006, USA
| | - Kate Z Nambiar
- Division of Medicine, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom
| | - Stefano Caserta
- Division of Medicine, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Louis J Picker
- Vaccine & Gene Therapy Institute, Oregon Health & Science University West Campus, Beaverton, OR 97006, USA
| | - Florian Kern
- Division of Medicine, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom.
| |
Collapse
|
41
|
Chiu YL, Lin CH, Sung BY, Chuang YF, Schneck JP, Kern F, Pawelec G, Wang GC. Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4 + and CD8 + T-cell responses in older adults positively correlates with response size. Sci Rep 2016; 6:19227. [PMID: 26778409 PMCID: PMC4726016 DOI: 10.1038/srep19227] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-α, interferon-γ, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8 + and CD4 + T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8 + and CD4 + cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4 + and CD8 + T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging.
Collapse
Affiliation(s)
- Yen-Ling Chiu
- Institute of Cell Engineering, Johns Hopkins School of Medicine, USA.,Department of Medicine and Nephrology, Far Eastern Memorial Hospital, Taiwan.,Graduate Program of Biomedical Informatics, Yuan Ze University College of Informatics, Taiwan
| | - Chung-Hao Lin
- Division of General Medicine and Geriatric Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taiwan
| | - Bo-Yi Sung
- Institute of Cell Engineering, Johns Hopkins School of Medicine, USA.,Department of Microbiology and Immunology, National Defense Medical Center, Taiwan
| | - Yi-Fang Chuang
- Department of Epidemiology, National Yang Ming University School of Public Health, Taiwan
| | | | - Florian Kern
- Division of Medicine, Pathogen Host Interaction, Brighton and Sussex Medical School, United Kingdom
| | - Graham Pawelec
- Department of Internal Medicine II, University of Tubingen Center for Medical Research, Germany
| | - George C Wang
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, USA
| |
Collapse
|
42
|
Affandi JS, Montgomery J, Lee S, Price P. HIV patients stable on ART retain evidence of a high CMV load but changes to Natural Killer cell phenotypes reflect both HIV and CMV. AIDS Res Ther 2015; 12:41. [PMID: 26664457 PMCID: PMC4673723 DOI: 10.1186/s12981-015-0080-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/11/2015] [Indexed: 12/03/2022] Open
Abstract
Background Whilst ART corrects many effects of HIV disease, T cell populations retain features of accelerated immunological aging. Methods Here we analyse phenotypic changes to natural killer (NK) cells in HIV patients who began ART with <200 CD4 T-cells/µl and maintained virological control for 12–17 years, compared with CMV seropositive and seronegative healthy control donors. Results Humoral responses to CMV antigens (lysate, gB, IE-1) remain elevated in the patients (P < 0.0001) despite the long duration of ART. Patient’s NK cells responded poorly to K562 cells when assessed by CD107a and IFNγ, but this could not be attributed to CMV as responses were low in CMV-seronegative controls. Moreover HIV (and not CMV) increased expression of CD57 on CD56lo cells. Conclusions Comparisons with published studies suggest that CMV accelerates age-related increases in CD57 expression but levels plateau by 60–70 years of age, so the effect of CMV disappears. In HIV patients the plateau is higher and perhaps reached sooner. Electronic supplementary material The online version of this article (doi:10.1186/s12981-015-0080-9) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Dichotomous effects of latent CMV infection on the phenotype and functional properties of CD8+ T-cells and NK-cells. Cell Immunol 2015; 300:26-32. [PMID: 26651951 DOI: 10.1016/j.cellimm.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/15/2023]
Abstract
CMV markedly alters the phenotype and function of NK-cells and T-cells and has been linked to immunosenescence. We show here that subjects with effective CMV control (evidenced by low CMV IgG titers) have functional responses to CMV that are driven by either NKG2C+ NK-cells or CMV-specific T-cells (15 of 24 subjects), but not both. These data indicate that people with effective CMV control are either NK-cell or T-cell responders, and corroborates the idea that NK-cells have rheostat-like properties that regulate anti-viral T-cell responses. Whether or not lifelong CMV control through either NK-cell or T-cell responses have implications for immunosenescence remains to be determined.
Collapse
|
44
|
Affandi JS, Montgomery J, Brunt SJ, Nolan D, Price P. The immunological footprint of CMV in HIV-1 patients stable on long-term ART. IMMUNITY & AGEING 2015; 12:14. [PMID: 26435726 PMCID: PMC4591633 DOI: 10.1186/s12979-015-0041-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/23/2015] [Indexed: 12/02/2022]
Abstract
Background Most HIV-infected persons are cytomegalovirus (CMV) seropositive and retain latent virus that can be reactivated by immune activation. Their T cell populations express markers reflecting a late stage of differentiation, but the contributions of HIV and CMV to this profile are unclear. We investigated the immunological “footprint” of CMV in HIV patients who had a history of extreme immunodeficiency but were now stable on antiretroviral therapy (ART). Results Twenty CMV seropositive HIV patients >50 years old with nadir CD4 T-cell counts <200 cells/μl were studied after >12 years on ART. 16 CMV seropositive and 9 CMV seronegative healthy controls were included. CMV antibody titres were higher in HIV patients than controls (P < 0.001-0.003). Levels of soluble B-cell activating factor (sBAFF) were elevated in patients (P = 0.002) and correlated with levels of CMV antibodies (P = 0.03-0.002), with no clear relationship in controls. CD8 T-cell IFNγ responses to the IE1 peptide (VLE) remained elevated in HIV patients (P = 0.005). The CD57+CD45RA+CD27− phenotype of CD8 T-cells correlated with age (r = 0.60, P = 0.006), antibodies against CMV IE1 protein (r = 0.44, P = 0.06) and CD4 T-cell IFNγ response to CMV lysate (r = 0.45, P = 0.05). Conclusions Humoral and T-cell responses to CMV remained elevated in HIV patients after >12 years on ART. Age and presence of CMV disease influenced CD8 T-cell phenotypes. Elevated levels of sBAFF may be a consequence of HIV disease and contribute to high titres of CMV antibody. Electronic supplementary material The online version of this article (doi:10.1186/s12979-015-0041-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacquita S Affandi
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA Australia ; School of Biomedical Science, Curtin University, GPO Box U1987 Bentley, Perth, WA Australia
| | - Jacinta Montgomery
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA Australia
| | - Samantha J Brunt
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA Australia
| | - David Nolan
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA Australia
| | - Patricia Price
- School of Biomedical Science, Curtin University, GPO Box U1987 Bentley, Perth, WA Australia
| |
Collapse
|
45
|
Freeman ML, Mudd JC, Shive CL, Younes SA, Panigrahi S, Sieg SF, Lee SA, Hunt PW, Calabrese LH, Gianella S, Rodriguez B, Lederman MM. CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection. Clin Infect Dis 2015; 62:392-6. [PMID: 26400999 DOI: 10.1093/cid/civ840] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Persistent CD8 T-cell expansion, low CD4/CD8 T-cell ratios, and heightened inflammation persist in antiretroviral therapy (ART)-treated human immunodeficiency virus (HIV) infection and are associated with increased risk of morbid outcomes. We explored the role of cytomegalovirus (CMV) infection in CD8 lymphocytosis and inflammation in ART-treated HIV infection. METHODS Absolute CD4 and CD8 T-cell counts were abstracted from clinical records and compared among 32 HIV-infected CMV-seronegative subjects, 126 age, CD4 and gender-matched HIV-infected CMV-seropositive subjects, and among 21 HIV-uninfected controls (9 CMV-negative, 12 CMV-positive). Plasma inflammatory indices were measured in a subset by ELISA. RESULTS Median CD8 counts/µL were higher in HIV-positive/CMV-positive patients (795) than in HIV-positive/CMV-negative subjects (522, P = .006) or in healthy controls (451, P = .0007), whereas CD8 T-cell counts were similar to controls' levels in HIV-positive/CMV-negative subjects. Higher plasma levels of IP-10 (P = .0011), TNF-RII (P = .0002), and D-dimer (P = .0444) were also found in coinfected patients than in HIV-positive/CMV-negative subjects. CONCLUSIONS CMV infection is associated with higher CD8 T-cell counts, resultant lower CD4/CD8 ratios, and increased systemic inflammation in ART-treated HIV infection. CMV infection may contribute to risk for morbid outcomes in treated HIV infection.
Collapse
Affiliation(s)
- Michael L Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Joseph C Mudd
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Carey L Shive
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center, Veterans Administration Medical Center, Cleveland, Ohio
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Scott F Sieg
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Sulggi A Lee
- Department of Medicine, University of California San Francisco
| | - Peter W Hunt
- Department of Medicine, University of California San Francisco
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Ohio
| | - Sara Gianella
- Division of Infectious Diseases, University of California San Diego, La Jolla
| | - Benigno Rodriguez
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Michael M Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| |
Collapse
|
46
|
Teteloshvili N, Kluiver J, van der Geest KSM, van der Lei RJ, Jellema P, Pawelec G, Brouwer E, Kroesen BJ, Boots AMH, van den Berg A. Age-Associated Differences in MiRNA Signatures Are Restricted to CD45RO Negative T Cells and Are Associated with Changes in the Cellular Composition, Activation and Cellular Ageing. PLoS One 2015; 10:e0137556. [PMID: 26360056 PMCID: PMC4567287 DOI: 10.1371/journal.pone.0137556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation-induced changes, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post-thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelof Jan van der Lei
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, Tübingen, Germany
- School of Science and Technology, Nottingham Trent University, Nottingham, United KIngdom
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
47
|
Abstract
Age-related changes in the immune system, commonly termed "immunosenescence," contribute to deterioration of the immune response and fundamentally impact the health and survival of elderly individuals. Immunosenescence affects both the innate and adaptive immune systems; however, the most notable changes are in T cell immunity and include thymic involution, the collapse of T cell receptor (TCR) diversity, an imbalance in T cell populations, and the clonal expansion of senescent T cells. Senescent T cells have the ability to produce large quantities of proinflammatory cytokines and cytotoxic mediators; thus, they have been implicated in the pathogenesis of many chronic inflammatory diseases. Recently, an increasing body of evidence has suggested that senescent T cells also have pathogenic potential in cardiovascular diseases, such as hypertension, atherosclerosis, and myocardial infarction, underscoring the detrimental roles of these cells in various chronic inflammatory responses. Given that cardiovascular disease is the number one cause of death worldwide, there is great interest in understanding the contribution of age-related immunological changes to its pathogenesis. In this review, we discuss general features of age-related alterations in T cell immunity and the possible roles of senescent T cells in the pathogenesis of cardiovascular disease.
Collapse
|
48
|
Arens R, Remmerswaal EBM, Bosch JA, van Lier RAW. 5(th) International Workshop on CMV and Immunosenescence - A shadow of cytomegalovirus infection on immunological memory. Eur J Immunol 2015; 45:954-7. [PMID: 25857239 DOI: 10.1002/eji.201570044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
49
|
Echeverría A, Moro-García MA, Asensi V, Cartón JA, López-Larrea C, Alonso-Arias R. CD4⁺CD28null T lymphocytes resemble CD8⁺CD28null T lymphocytes in their responses to IL-15 and IL-21 in HIV-infected patients. J Leukoc Biol 2015; 98:373-84. [PMID: 26034206 DOI: 10.1189/jlb.1a0514-276rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 05/01/2015] [Indexed: 01/09/2023] Open
Abstract
HIV-infected individuals suffer from accelerated immunologic aging. One of the most prominent changes during T lymphocyte aging is the accumulation of CD28(null) T lymphocytes, mainly CD8(+) but also CD4(+) T lymphocytes. Enhancing the functional properties of these cells may be important because they provide antigen-specific defense against chronic infections. The objective of this study was to compare the responses of CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes from HIV-infected patients to the immunomodulatory effects of cytokines IL-15 and IL-21. We quantified the frequencies of CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes in peripheral blood from 110 consecutive, HIV-infected patients and 25 healthy controls. Patients showed increased frequencies of CD4(+)CD28(null) and CD8(+)CD28(null). Both subsets were positively correlated to each other and showed an inverse correlation with the absolute counts of CD4(+) T lymphocytes. Higher frequencies of HIV-specific and CMV-specific cells were found in CD28(null) than in CD28(+) T lymphocytes. Activation of STAT5 by IL-15 and STAT3 by IL-21 was higher in CD28(null) compared with CD28(+) T lymphocytes. Proliferation, expression of CD69, and IFN-γ production in CD28(null) T lymphocytes were increased after treatment with IL-15, and IL-21 potentiated most of those effects. Nevertheless, IL-21 alone reduced IFN-γ production in response to anti-CD3 stimulation but increased CD28 expression, even counteracting the inhibitory effect of IL-15. Intracytoplasmic stores of granzyme B and perforin were increased by IL-15, whereas IL-21 and simultaneous treatment with the 2 cytokines also significantly enhanced degranulation in CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes. IL-15 and IL-21 could have a role in enhancing the effector response of CD28(null) T lymphocytes against their specific chronic antigens in HIV-infected patients.
Collapse
Affiliation(s)
- Ainara Echeverría
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Marco A Moro-García
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Víctor Asensi
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - José A Cartón
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Carlos López-Larrea
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Rebeca Alonso-Arias
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| |
Collapse
|
50
|
Muller GC, Gottlieb MGV, Luz Correa B, Gomes Filho I, Moresco RN, Bauer ME. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol 2015; 296:149-54. [PMID: 26051633 DOI: 10.1016/j.cellimm.2015.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 01/11/2023]
Abstract
Aging has been associated with increased generation of free radicals as well as immunosenescence. Previous studies have identified older individuals with inverted T CD4:CD8 cell ratio and increased immunity to cytomegalovirus (CMV). Here, we investigated markers of oxidative stress and antioxidant defences in older individuals with inverted CD4:CD8 T-cell ratio. Sixty-one subjects were identified with inverted CD4:CD8 ratio. Older individuals with a CD4:CD8 ratio <1 had increased levels of plasma advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP), but reduced levels of thiobarbituric acid reactive substances (TBARS) as compared to subjects with normal CD4:CD8 ratio. The CMV IgG serology was negatively correlated with CD4:CD8 ratio. These markers were more evident among elderly men than women. Our data suggest a close relationship between chronic CMV infection and oxidative profile in older individuals in the midst of its influence on the peripheral T-cell subsets.
Collapse
Affiliation(s)
- Guilherme Cerutti Muller
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Health School, University of Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, Brazil.
| | | | - Bruna Luz Correa
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Irênio Gomes Filho
- Institute of Geriatrics and Gerontology (IGG), PUCRS, Porto Alegre, Brazil
| | - Rafael Noal Moresco
- Health Sciences Center, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|