1
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
2
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
3
|
Li Y, Gao Y, Li G. Preclinical multi-target strategies for myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:967115. [PMID: 36072870 PMCID: PMC9444048 DOI: 10.3389/fcvm.2022.967115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite promising breakthroughs in diagnosing and treating acute coronary syndromes, cardiovascular disease’s high global mortality rate remains indisputable. Nearly half of these patients died of ischemic heart disease. Primary percutaneous coronary intervention (PCI) and coronary artery bypass grafting can rapidly restore interrupted blood flow and become the most effective method for salvaging viable myocardium. However, restoring blood flow could increase the risk of other complications and myocardial cell death attributed to myocardial ischemia-reperfusion injury (IRI). How to reduce the damage of blood reperfusion to ischemic myocardium has become an urgent problem to be solved. In preclinical experiments, many treatments have substantial cardioprotective effects against myocardial IRI. However, the transition from these cardioprotective therapies to clinically beneficial therapies for patients with acute myocardial infarction remains elusive. The reasons for the failure of the clinical translation may be multi-faceted, and three points are summarized here: (1) Our understanding of the complex pathophysiological mechanisms of myocardial IRI is far from enough, and the classification of specific therapeutic targets is not rigorous, and not clear enough; (2) Most of the clinical patients have comorbidities, and single cardioprotective strategies including ischemia regulation strategies cannot exert their due cardioprotective effects under conditions of hyperglycemia, hypertension, hyperlipidemia, and aging; (3) Most preclinical experimental results are based on adult, healthy animal models. However, most clinical patients had comorbidities and received multiple drug treatments before reperfusion therapy. In 2019, COST Action proposed a multi-target drug combination initiative for prospective myocardial IRI; the optimal cardioprotective strategy may be a combination of additive or synergistic multi-target therapy, which we support. By establishing more reasonable preclinical models, screening multi-target drug combinations more in line with clinical practice will benefit the translation of clinical treatment strategies.
Collapse
|
4
|
Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020; 192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Severity of cardiovascular disease increases markedly in elderly patients. In addition, many therapeutic strategies that decrease cardiac injury in adult patients are invalid in elderly patients. Thus, it is a challenge to protect the aged heart in the context of underlying chronic or acute cardiac diseases including ischemia-reperfusion injury. The cause(s) of this age-related increased damage remain unknown. Aging impairs the function of the mitochondrial electron transport chain (ETC), leading to decreased energy production and increased oxidative stress due to generation of reactive oxygen species (ROS). Additionally, ROS-induced oxidative stress can increase cardiac injury during ischemia-reperfusion by potentiating mitochondrial permeability transition pore (MPTP) opening. Aging leads to increased endoplasmic reticulum (ER) stress, which contributes to mitochondrial dysfunction, including reduced function of the ETC. The activation of both cytosolic and mitochondrial calcium-activated proteases termed calpains leads to mitochondrial dysfunction and decreased ETC function. Intriguingly, mitochondrial ROS generation also induces ER stress, highlighting the dynamic interaction between mitochondria and ER. Here, we discuss the role of ER stress in sensitizing and potentiating mitochondrial dysfunction in response to ischemia-reperfusion, and the promising potential therapeutic benefit of inhibition of ER stress and / or calpains to attenuate cardiac injury in elderly patients.
Collapse
Affiliation(s)
- Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Michael Maceyka
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
5
|
Kim SA, Lee YM, Choi JY, Jacobs DR, Lee DH. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:725-734. [PMID: 29126094 DOI: 10.1016/j.envpol.2017.10.124] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
Although the toxicity of synthetic chemicals at high doses is well known, chronic exposure to low-dose chemical mixtures has only recently been linked to many age-related diseases. However, it is nearly impossible to avoid the exposure to these low-dose chemical mixtures as humans are exposed to a myriad of synthetic chemicals as a part of their daily lives. Therefore, coping with possible harms due to low dose chemical mixtures is challenging. Interestingly, within the range of environmental exposure, disease risk does not increase linearly with increasing dose of chemicals, but often tends to plateau or even decrease with increasing dose. Hormesis, the over-compensation of various adaptive responses through cellular stresses, is one possible mechanism for this non-linearity. Although the hormetic effects of synthetic chemicals or radiation have long been debated in the field of toxicology, the hormesis concept has recently been generalized in the field of molecular biology; similar to responses to synthetic chemicals, mild to moderate intermittent stressors from any source can induce hormetic responses. Examples of stressors are exercise, calorie restriction, intermittent fasting, cognitive stimulation, and phytochemicals. Mitohormesis is hormesis induced by such stressors through mitochondrial retrograde signalling including the increased production of mild reactive oxygen species. Xenohormesis is phytochemical-induced hormesis, reflective of a mutualistic relationship between plant and animals. As humans had repeated exposure to all of these stressors during their evolution, the hormetic effects of these health behaviours may be considered to be evolutionarily adapted. Although hormesis induced by synthetic chemicals occurs in humans, such hormesis may not be recommended to the public due to unresolved issues on safety including the impossibility of control exposure. However, the use of personal health behaviors which enhance mitohormetic- or xenohormetic-stress can be readily incorporated into everyone's daily lives as a practical way to counteract harmful effects of unavoidable low-dose chemical mixtures.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea
| | - Yu-Mi Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea; Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Researcher Analysis Center, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University and Hospital, Daegu, Republic of Korea
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Duk-Hee Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea; Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
7
|
Mitochondrial Dysfunction in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:451-464. [PMID: 28551802 DOI: 10.1007/978-3-319-55330-6_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are the prime source of ATP in cardiomyocytes. Impairment of mitochondrial metabolism results in damage to existing proteins and DNA. Such deleterious effects are part and parcel of the aging process, reducing the ability of cardiomyocytes to counter stress, such as myocardial infarction and consequent reperfusion. In such conditions, mitochondria in the heart of aged individuals exhibit decreased oxidative phosphorylation, decreased ATP production, and increased net reactive oxygen species production; all of these effects are independent of the decrease in number of mitochondria that occurs in these situations. Rather than being associated with the mitochondrial population in toto, these defects are almost exclusively confined to those organelles positioned between myofibrils (interfibrillar mitochondria). It is in complex III and IV where these dysfunctional aspects are manifested. In an apparent effort to correct mitochondrial metabolic defects, affected organelles are to some extent eliminated by mitophagy; at the same time, new, unaffected organelles are generated by fission of mitochondria. Because these cardiac health issues are localized to specific mitochondria, these organelles offer potential targets for therapeutic approaches that could favorably affect the aging process in heart.
Collapse
|
8
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
10
|
Calabrese EJ. Pre- and post-conditioning hormesis in elderly mice, rats, and humans: its loss and restoration. Biogerontology 2016; 17:681-702. [DOI: 10.1007/s10522-016-9646-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
|
11
|
Le Bourg É. Fasting and other mild stresses with hormetic effects in Drosophila melanogaster can additively increase resistance to cold. Biogerontology 2015; 16:517-27. [DOI: 10.1007/s10522-015-9574-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
|
12
|
Sirvinskas E, Kinderyte A, Trumbeckaite S, Lenkutis T, Raliene L, Giedraitis S, Macas A, Borutaite V. Effects of sevoflurane vs. propofol on mitochondrial functional activity after ischemia-reperfusion injury and the influence on clinical parameters in patients undergoing CABG surgery with cardiopulmonary bypass. Perfusion 2015; 30:590-5. [DOI: 10.1177/0267659115571174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to evaluate the effects of sevoflurane and propofol on the activity of mitochondrial function related to ischemia-reperfusion injury, myocardial damage biomarkers release and clinical parameters in the postoperative period. Seventy-two patients scheduled for elective coronary artery bypass graft surgery with cardiopulmonary bypass were randomized into two groups: 36 patients received sevoflurane during anesthesia (Group S) and 36 patients received propofol (Group P). To investigate the functional activity of mitochondria, we used skinned fibers prepared from biopsies of right atrial tissue before cardioplegia and after the aorta cross-clamp removal (within 10-15 minutes after reperfusion). Patients’ clinical data (length of stay in ICU, hemodynamic parameters, duration of mechanical ventilation (MV) and the amount of lactate and troponin I in the blood serum) were evaluated postoperatively. The results showed that, before cardioplegia and after reperfusion, there was no significant difference in the mitochondrial routine and State 3 respiration rates between the groups. The effect of cytochrome c was higher in Group P. Troponin I concentration at the 12th hour after the surgery was 2.2 ± 0.8 ng/mL in Group S and 3.5 ± 1.1 ng/mL in Group P (p<0.001). There were no significant differences in the duration of mechanical ventilation, hemodynamic parameters and length of stay in the ICU between the groups. We conclude that sevoflurane slightly protects the mitochondrial outer membrane from ischemia-reperfusion injury and the loss of cytochrome c, yet has the similar effect on clinical parameters in the postoperative period when compared to propofol.
Collapse
Affiliation(s)
- E Sirvinskas
- The Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - A Kinderyte
- The Department of Anesthesiology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - S Trumbeckaite
- Biochemical Laboratory of the Institute of Neurosciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - T Lenkutis
- The Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - L Raliene
- The Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - S Giedraitis
- The Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - A Macas
- The Department of Anesthesiology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - V Borutaite
- Biochemical Laboratory of the Institute of Neurosciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
13
|
Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2015; 171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
14
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
15
|
Rengo G, Parisi V, Femminella GD, Pagano G, de Lucia C, Cannavo A, Liccardo D, Giallauria F, Scala O, Zincarelli C, Perrone Filardi P, Ferrara N, Leosco D. Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clin Exp Res 2013; 25:487-97. [PMID: 23949971 DOI: 10.1007/s40520-013-0117-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Aging is a well-recognized risk factor for several different forms of cardiovascular disease. However, mechanisms by which aging exerts its negative effect on outcome have been only partially clarified. Numerous evidence indicate that aging is associated with alterations of several mechanisms whose integrity confers protective action on the heart and vasculature. The present review aims to focus on the beneficial effects of exercise, which plays a pivotal role in primary and secondary prevention of cardiovascular diseases, in counteracting age-related deterioration of protective mechanisms that are crucially involved in the homeostasis of cardiovascular system. In this regard, animal and human studies indicate that exercise training is able: (1) to improve the inotropic reserve of the aging heart through restoration of cardiac β-adrenergic receptor signaling; (2) to rescue the mechanism of cardiac preconditioning and angiogenesis whose integrity has been shown to confer cardioprotection against ischemia and to improve post-myocardial infarction left ventricular remodeling; (3) to counteract age-related reduction of antioxidant systems that is associated to decreased cellular resistance to reactive oxygen species accumulation. Moreover, this review also describes the molecular effects induced by different exercise training protocols (endurance vs. resistance) in the attempt to better explain what kind of exercise strategy could be more efficacious to improve cardiovascular performance in the elderly population.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Van der Mieren G, Nevelsteen I, Vanderper A, Oosterlinck W, Flameng W, Herijgers P. Angiotensin-converting enzyme inhibition and food restriction restore delayed preconditioning in diabetic mice. Cardiovasc Diabetol 2013; 12:36. [PMID: 23432808 PMCID: PMC3598767 DOI: 10.1186/1475-2840-12-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/19/2013] [Indexed: 01/07/2023] Open
Abstract
Background Classical and delayed preconditioning are powerful endogenous protection mechanisms against ischemia-reperfusion damage. However, it is still uncertain whether delayed preconditioning can effectively salvage myocardium in patients with co-morbidities, such as diabetes and the metabolic syndrome. We investigated delayed preconditioning in mice models of type II diabetes and the metabolic syndrome and investigated interventions to optimize the preconditioning potential. Methods Hypoxic preconditioning was induced in C57Bl6-mice (WT), leptin deficient ob/ob (model for type II diabetes) and double knock-out (DKO) mice with combined leptin and LDL-receptor deficiency (model for metabolic syndrome). Twenty-four hours later, 30 min of regional ischemia was followed by 60 min reperfusion. Left ventricular contractility and infarct size were studied. The effect of 12 weeks food restriction or angiotensin-converting enzyme inhibition (ACE-I) on this was investigated. Differences between groups were analyzed for statistical significance by student’s t-test or one-way ANOVA followed by a Fisher’s LSD post hoc test. Factorial ANOVA was used to determine the interaction term between preconditioning and treatments, followed by a Fisher’s LSD post hoc test. Two-way ANOVA was used to determine the relationship between infarct size and contractility (PRSW). A value of p<0.05 was considered significant. Results Left ventricular contractility is reduced in ob/ob compared with WT and even further reduced in DKO. ACE-I improved contractility in ob/ob and DKO mice. After ischemia/reperfusion without preconditioning, infarct size was larger in DKO and ob/ob versus WT. Hypoxic preconditioning induced a strong protection in WT and a partial protection in ob/ob mice. The preconditioning potential was lost in DKO. Twelve weeks of food restriction or ACE-I restored the preconditioning potential in DKO and improved it in ob/ob. Conclusion Delayed preconditioning is restored by food restriction and ACE-I in case of type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Gerry Van der Mieren
- Department of Cardiovascular Sciences, Research Unit Experimental Cardiac Surgery, K.U. Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Lesnefsky EJ, Hoppel CL. Aged rat heart: Modulation of age-related respiratory defects decreases ischemic-reflow injury. Health (London) 2013. [DOI: 10.4236/health.2013.51001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Mendelsohn AR, Larrick JW. Dietary Restriction: Critical Co-Factors to Separate Health Span from Life Span Benefits. Rejuvenation Res 2012; 15:523-9. [DOI: 10.1089/rej.2012.1371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Andrew R. Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| | - James W. Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
19
|
Is physical activity able to modify oxidative damage in cardiovascular aging? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:728547. [PMID: 23029599 PMCID: PMC3458405 DOI: 10.1155/2012/728547] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial process resulting in damage of molecules, cells, and tissues. It has been demonstrated that the expression and activity of antioxidant systems (SOD, HSPs) are modified in aging, with reduced cell ability to counteract the oxidant molecules, and consequent weak resistance to ROS accumulation. An important mechanism involved is represented by sirtuins, the activity of which is reduced by aging. Physical activity increases the expression and the activity of antioxidant enzymes, with consequent reduction of ROS. Positive effects of physical exercise in terms of antioxidant activity could be ascribable to a greater expression and activity of SOD enzymes, HSPs and SIRT1 activity. The antioxidant effects could increase, decrease, or not change in relation to the exercise protocol. Therefore, some authors by using a new approach based on the in vivo/vitro technique demonstrated that the highest survival and proliferation and the lowest senescence were obtained by performing an aerobic training. Therefore, the in vivo/vitro technique described could represent a good tool to better understand how the exercise training mediates its effects on aging-related diseases, as elderly with heart failure that represents a special population in which the exercise plays an important role in the improvement of cardiovascular function, quality of life, and survival.
Collapse
|
20
|
Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Transl Res 2012; 160:207-16. [PMID: 22698829 PMCID: PMC3423471 DOI: 10.1016/j.trsl.2012.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 12/29/2022]
Abstract
Myocardial injury is increased in the aged heart following ischemia and reperfusion (I-R) in both humans and experimental models. Hearts from aged 24-month-old Fischer 344 rats sustain greater cell death and decreased contractile recovery after I-R compared with 6-month-old adult controls. Cardiac mitochondria incur damage during I-R contributing to cell death. Aged rats have a defect in complex III of the mitochondrial electron transport chain (ETC) localized to the interfibrillar population of cardiac mitochondria (IFM), situated in the interior of the cardiomyocyte among the myofibrils. The defect involves the quinol oxidation site (Qo) and increases the production of reactive oxygen species (ROS) in the baseline state. Ischemia further decreases complex III activity via functional inactivation of the iron-sulfur subunit. We studied the contribution of ischemia-induced defects in complex III with the increased cardiac injury in the aged heart. The reversible blockade of the ETC proximal to complex III during ischemia using amobarbital protects mitochondria against ischemic damage, removing the ischemia component of mitochondrial dysfunction. Reperfusion of the aged heart in the absence of ischemic mitochondrial damage decreases net ROS production from mitochondria and reduces cell death. Thus, even despite the persistence of the age-related defects in electron transport, protection against ischemic damage to mitochondria can reduce injury in the aged heart. The direct therapeutic targeting of mitochondria protects against ischemic damage and decreases cardiac injury during reperfusion in the high risk elderly heart.
Collapse
|
21
|
Diet and aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:741468. [PMID: 22928085 PMCID: PMC3425961 DOI: 10.1155/2012/741468] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
Nutrition has important long-term consequences for health that are not only limited to the individual but can be passed on to the next generation. It can contribute to the development and progression of chronic diseases thus effecting life span. Caloric restriction (CR) can extend the average and maximum life span and delay the onset of age-associated changes in many organisms. CR elicits coordinated and adaptive stress responses at the cellular and whole-organism level by modulating epigenetic mechanisms (e.g., DNA methylation, posttranslational histone modifications), signaling pathways that regulate cell growth and aging (e.g., TOR, AMPK, p53, and FOXO), and cell-to-cell signaling molecules (e.g., adiponectin). The overall effect of these adaptive stress responses is an increased resistance to subsequent stress, thus delaying age-related changes and promoting longevity. In human, CR could delay many diseases associated with aging including cancer, diabetes, atherosclerosis, cardiovascular disease, and neurodegenerative diseases. As an alternative to CR, several CR mimetics have been tested on animals and humans. At present, the most promising alternatives to the use of CR in humans seem to be exercise, alone or in combination with reduced calorie intake, and the use of plant-derived polyphenol resveratrol as a food supplement.
Collapse
|
22
|
Blockade of electron transport at the onset of reperfusion decreases cardiac injury in aged hearts by protecting the inner mitochondrial membrane. J Aging Res 2012; 2012:753949. [PMID: 22619720 PMCID: PMC3347723 DOI: 10.1155/2012/753949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/23/2011] [Accepted: 12/27/2011] [Indexed: 12/23/2022] Open
Abstract
Myocardial injury is increased in the aged heart following ischemia-reperfusion (ISC-REP) compared to adult hearts. Intervention at REP with ischemic postconditioning decreases injury in the adult heart by attenuating mitochondrial driven cell injury. Unfortunately, postconditioning is ineffective in aged hearts. Blockade of electron transport at the onset of REP with the reversible inhibitor amobarbital (AMO) decreases injury in adult hearts. We tested if AMO treatment at REP protects the aged heart via preservation of mitochondrial integrity. Buffer-perfused elderly Fischer 344 24 mo. rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was given for 3 min at the onset of REP. Subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria were isolated after REP. Oxidative phosphorylation (OXPHOS) and mitochondrial inner membrane potential were measured. AMO treatment at REP decreased cardiac injury. Compared to untreated ISC-REP, AMO improved inner membrane potential in SSM and IFM during REP, indicating preserved inner membrane integrity. Thus, direct pharmacologic modulation of electron transport at REP protects mitochondria and decreases cardiac injury in the aged heart, even when signaling-induced pathways of postconditioning that are upstream of mitochondria are ineffective.
Collapse
|
23
|
Le Bourg É. Combined effects of two mild stresses (cold and hypergravity) on longevity, behavioral aging, and resistance to severe stresses in Drosophila melanogaster. Biogerontology 2012; 13:313-28. [DOI: 10.1007/s10522-012-9377-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
|
24
|
Calabrese EJ, Iavicoli I, Calabrese V. Hormesis: why it is important to biogerontologists. Biogerontology 2012; 13:215-35. [PMID: 22270337 DOI: 10.1007/s10522-012-9374-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 11/30/2022]
Abstract
This paper offers a broad assessment of the hormetic dose response and its relevance to biogerontology. The paper provides detailed background information on the historical foundations of hormesis, its quantitative features, mechanistic foundations, as well as how the hormesis concept could be further applied in the development of new therapeutic advances in the treatment of age-related diseases. The concept of hormesis has direct application to biogerontology not only affecting the quality of the aging process but also experimental attempts to extend longevity.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, University of Massachusetts, Amherst, 01003, USA.
| | | | | |
Collapse
|
25
|
Peart JN, See Hoe L, Pepe S, Johnson P, Headrick JP. Opposing effects of age and calorie restriction on molecular determinants of myocardial ischemic tolerance. Rejuvenation Res 2012; 15:59-70. [PMID: 22236144 DOI: 10.1089/rej.2011.1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We test the hypothesis that moderate calorie restriction (CR) reverses negative influences of age on molecular determinants of myocardial stress resistance. Postischemic contractile dysfunction, cellular damage, and expression of regulators of autophagy/apoptosis and of prosurvival and prodeath kinases were assessed in myocardium from young adult (YA; 2- to 4-month-old) and middle-aged (MA; 12-month-old) mice, and MA mice subjected to 14 weeks of 40% CR (MA-CR). Ventricular dysfunction after 25%±2%), as was cell death indicated by troponin I (TnI) efflux (1,701±214 ng vs. 785±102 ng in YA). MA hearts exhibited 30% and 65% reductions in postischemic Beclin1 and Parkin, respectively, yet 50% lower proapoptotic Bax and 85% higher antiapoptotic Bcl2, increasing the Bcl2/Bax ratio. Age did not influence Akt or p38-mitogen-activated protein kinase (MAPK) expression; reduced expression of increasingly phosphorylated ribosomal protein S6 kinase (p70S6K), increased expression of dephosphorylated glycogen synthase kinase 3β (GSK3β) and enhanced postischemic p38-MAPK phosphorylation. CR countered the age-related decline in ischemic tolerance, improving contractile recovery (60%±4%) and reducing cell death (123±22 ng of TnI). Protection was not associated with changes in Parkin or Bax, whereas CR partially limited the age-related decline in Beclin1 and further increased Bcl2. CR counteracted age-related changes in p70S6K, increased Akt levels, and reduced p38-MAPK (albeit increasing preischemic phosphorylation), and paradoxically reduced postischemic GSK3β phosphorylation. In summary, moderate age worsens cardiac ischemic tolerance; this is associated with reduced expression of autophagy regulators, dysregulation of p70S6K and GSK3β, and postischemic p38-MAPK activation. CR counters age effects on postischemic dysfunction/cell death; this is associated with reversal of age effects on p70S6K, augmentation of Akt and Bcl2 levels, and preischemic p38-MAPK activation. Age and CR thus impact on distinct determinants of ischemic tolerance, although p70S6K signaling presents a point of convergence.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, Australia.
| | | | | | | | | |
Collapse
|
26
|
Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J 2011; 10:107. [PMID: 21981968 PMCID: PMC3200169 DOI: 10.1186/1475-2891-10-107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/07/2011] [Indexed: 01/15/2023] Open
Abstract
Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion.
Collapse
Affiliation(s)
- John F Trepanowski
- Cardiorespiratory/Metabolic Laboratory, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech Ageing Dev 2010; 131:739-42. [PMID: 20934448 DOI: 10.1016/j.mad.2010.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/27/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
Abstract
Short-term caloric restriction (CR) protects the young myocardium against ischemia/reperfusion (I/R) injury through a mechanism involving AMP-activated protein kinase (AMPK). Here we ask whether a life-long CR intervention can extend this protection to the aged myocardium, and whether AMP-activated protein kinase (AMPK) plays a role in that protection. Hearts from ad libitum fed (AL) and life-long calorically restricted (LCR) mice were examined at 30 months of age by 25/90min global I/R, with and without AMPK inhibition (AraA). LCR hearts were protected from infarction (AL, 28±4% vs. LCR, 10±1%, p<0.01) and post-ischemic functional deficit (LVDP recovery: AL, 65±8% vs. LCR, 93±7%, p<0.01). Pre-ischemic AraA impaired both of these protective effects (Infarct size: LCR+AraA, 22±4%; LVDP recovery: LCR+AraA, 82±9%, both p vs. AL >0.1). AMPKα phosphorylation was dramatically increased in LCR hearts prior to I/R (AL, 1.18±0.01 vs. LCR, 1.68±0.04, ratio, p<0.0001), and accompanied by a more modest increase in total AMPKα (AL, 2.18±0.03 vs. LCR, 2.39±0.08 ratio, p<0.05). These results indicate that life-long caloric restriction profoundly protects the aged heart against I/R injury, and suggest that AMPK may play a role in that protection.
Collapse
|
29
|
Abstract
Calorie restriction (CR) is defined as a reduction in calorie intake below the usual ad libitum intake without malnutrition. Ample of clinical and experimental evidence has demonstrated that CR is capable of retarding aging process and development of cardiovascular disease. Although suppression of reactive oxygen species production and inflammation plays a central role in the favorable cardiovascular effects of CR, the health benefit of CR is believed to be ultimately mediated through a cadre of biochemical and cellular adaptations including redox homeostasis, mitochondrial function, inflammation, apoptosis and autophagy. Despite the apparent beneficial cardiovascular effects of CR, implementation of CR in the health care management is still hampered by apparent applicability issues and health concerns. Here we briefly review the cardiac consequence of CR and discuss whether CR may represent a safe and effective strategy in the management of cardiovascular health.
Collapse
|
30
|
Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res Rev 2010; 9:153-62. [PMID: 19615470 DOI: 10.1016/j.arr.2009.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 11/23/2022]
Abstract
Coronary artery disease is the leading cause of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. Cardiac ischemic preconditioning represents the most powerful endogenous protective mechanism against ischemia. Brief episodes of ischemia are able to protect the heart against a following more prolonged ischemic period. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators release and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Opposite studies are questionable for the experimental model used, the timing of ischemic preconditioning, and the selection of elderly patients. Several pharmacological stimuli failed to mimic ischemic preconditioning in the aging heart but exercise training and caloric restriction separately, and more powerfully taken together, are able to completely preserve and/or restore the age-related reduction of ischemic preconditioning.
Collapse
|
31
|
Shim YH. Cardioprotection and ageing. Korean J Anesthesiol 2010; 58:223-30. [PMID: 20498769 PMCID: PMC2872846 DOI: 10.4097/kjae.2010.58.3.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
With an increase in the elderly population and an increase in the prevalence of age-related cardiovascular disease, anesthesiologists are increasingly being faced with elderly patients with known or suspected ischemic heart disease in the perioperative period. Although early reperfusion remains the best strategy to reduce ischemic injury, reperfusion may damage the myocardium. Adjuvant therapy to revascularization is therefore necessary. To develop better strategies to prevent ischemia-reperfusion injury in older patients, we need to understand the aged myocardium, which has undergone structural and functional changes relative to the normal myocardium, resulting in reduced functional capacity and vulnerability to ischemia-reperfusion injury. In addition, innate or acquired cardioprotection deteriorates with aging. These changes in the aged myocardium might explain why there is poor translation of basic research findings from young animals to older patients. In this review, I discuss changes in intracellular signaling associated with myocardial ageing that have an effect on ischemia-reperfusion injury, and I discuss the efficacy of cardioprotection afforded by ischemic and pharmacologic pre-and post-conditioning in the aged myocardium. Finally, I outline strategies to restore protection in the aged myocardium.
Collapse
Affiliation(s)
- Yon Hee Shim
- Department of Anesthesiology and Pain Medicine and Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Abete P, Cacciatore F, Testa G, Della-Morte D, Galizia G, Ferrara N, Rengo F. Clinical application of ischemic preconditioning in the elderly. Dose Response 2009; 8:34-40. [PMID: 20221286 DOI: 10.2203/dose-response.09-023.abete] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A mild stress such as brief ischemic episodes may protect the heart from a successive and more prolonged myocardial ischemia (ischemic preconditioning). This phenomenon is considered a typical "hormetic mechanism" by which the heart is immunized from pathological insults such as myocardial ischemia. This mechanism is reduced with aging and it may be restored and/or preserved by drugs such as adenosine or nicorandil, a mitochondrial K(ATP) channels, and lifestyle interventions such as physical activity and/or hypocaloric diet. Moreover, since the mechanisms involved in cardiac ischemic preconditioning have been established basic and clinical investigators are encouraged to test several drug in well-controlled animal and human studies in order to prevent and/or restore the age-related reduction of ischemic preconditioning.
Collapse
Affiliation(s)
- Pasquale Abete
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Cattedra di Geriatria, Università degli Studi di Napoli Federico II, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Le Bourg E. It is time to thoroughly study the effects of mild stress in rodents, but also in human beings. Dose Response 2009; 8:64-7. [PMID: 20221291 DOI: 10.2203/dose-response.09-042.lebourg] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many experiments on the effect of mild stress on aging have been done in invertebrates, but not in mammals. Using mild stress to improve healthspan seems to be possible, because the few studies on humans which have been published appear to be promising. Particularly, one may wonder whether heat shocks could be of some use in therapy or as an integrated part of daily life of elderly people. However, the top priority is probably to study more thoroughly the effects of mild stress in rodents, and not only in invertebrates.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherche sur la Cognition Animale, UMR CNRS 5169, Université Paul-Sabatier, 118 route de Narbonne, Toulouse cedex 9, France.
| |
Collapse
|
34
|
Le Bourg É. Combined effects of suppressing live yeast and of a cold pretreatment on longevity, aging and resistance to several stresses in Drosophila melanogaster. Biogerontology 2009; 11:245-54. [DOI: 10.1007/s10522-009-9250-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/29/2009] [Indexed: 11/29/2022]
|
35
|
Hormesis, aging and longevity. Biochim Biophys Acta Gen Subj 2009; 1790:1030-9. [DOI: 10.1016/j.bbagen.2009.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/31/2022]
|
36
|
Frässdorf J, De Hert S, Schlack W. Anaesthesia and myocardial ischaemia/reperfusion injury. Br J Anaesth 2009; 103:89-98. [PMID: 19502287 DOI: 10.1093/bja/aep141] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anaesthetists are confronted on a daily basis with patients with coronary artery disease, myocardial ischaemia, or both during the perioperative period. Therefore, prevention and ultimately adequate therapy of perioperative myocardial ischaemia and its consequences are the major challenges in current anaesthetic practice. This review will focus on the translation of the laboratory evidence of anaesthetic-induced cardioprotection into daily clinical practice.
Collapse
Affiliation(s)
- J Frässdorf
- Departement of Anesthesiology, AMC-University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
37
|
Peart JN, Headrick JP. Clinical cardioprotection and the value of conditioning responses. Am J Physiol Heart Circ Physiol 2009; 296:H1705-20. [PMID: 19363132 DOI: 10.1152/ajpheart.00162.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adjunctive cardioprotective strategies for ameliorating the reversible and irreversible injuries with ischemia-reperfusion (I/R) are highly desirable. However, after decades of research, the promise of clinical cardioprotection from I/R injury remains poorly realized. This may arise from the challenges of trialing and effectively translating experimental findings from laboratory models to patients. One can additionally consider whether features of the more heavily focused upon candidates could limit or preclude therapeutic utility and thus whether we might shift attention to alternate strategies. The phenomena of preconditioning and postconditioning have proven fertile in identification of experimental means of cardioprotection and are the most intensely interrogated responses in the field. However, there is evidence these processes, which share common molecular signaling elements and end effectors, may be poor choices for clinical exploitation. This includes evidence of age dependence, limiting efficacy in target aged or senescent hearts; refractoriness to conditioning stimuli in diseased myocardium; interference from a variety of relevant pharmaceuticals; inadvertent induction of these responses by prior ischemia or commonly used drugs, precluding further benefit; and sex dependence of protective signaling. This review focuses on these features, raising questions about current research strategies, and the suitability of these widely studied phenomena as rational candidates for clinical translation.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith University, Queensland, 9726, Australia.
| | | |
Collapse
|
38
|
Abstract
Not only the prevalence, but also the mortality due to ischaemic cardiovascular disease is higher in older than in young humans, and the demographic shift towards an ageing population will further increase the prevalence of age-related cardiovascular disease. In order to develop strategies aimed to limit reversible and irreversible myocardial damage in older patients, there is a need to better understand age-induced alterations in protein expression and cell signalling. Cardioprotective phenomena such as ischaemic and pharmacological pre and postconditioning attenuate ischaemia/reperfusion injury in young hearts. Whether or not pre and postconditioning are still effective in aged organs, animals, or patients, i.e. under conditions where such cardioprotection is most relevant, is still a matter of debate; most studies suggest a loss of protection in aged hearts. The present review discusses changes in protein expression and cell signalling important to ischaemia/reperfusion injury with myocardial ageing. The efficacy of cardioprotective manoeuvres, e.g. ischaemic pre and postconditioning in aged organs and animals will be discussed, and the development of strategies aimed to antagonize the age-induced loss of protection will be addressed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
39
|
Peart JN, Headrick JP. Sustained cardioprotection: exploring unconventional modalities. Vascul Pharmacol 2008; 49:63-70. [PMID: 18675381 DOI: 10.1016/j.vph.2008.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/27/2008] [Accepted: 07/08/2008] [Indexed: 01/18/2023]
Abstract
Since Murry et al. [Murry, C.E., Jennings, R.B., Reimer, K.A., 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 74, 1124-36.] initially reported on the powerful protective effects of ischemic preconditioning (PC), a plethora of experimental investigations have identified varied preconditioning protocols or mimetics to achieve cardioprotection. These stimuli predominantly act via archetypal mediators identified in associated signalling studies (including PI3-K, Akt, PKC, mitochondrial K(ATP) channels). Despite an intense research effort over the last 20 years, there remains a paucity of evidence that this protective paradigm is clinically exploitable. This may arise due to a number of drawbacks to conventional protection, including effects of age, disease, and interactions with other pharmacological agents. This encourages investigation of alternate strategies that trigger protection via unconventional signalling (distinct from conventional PC) and/or mediate sustained shifts in ischemic tolerance in hearts of varying age and disease status. This review considers briefly drawbacks to conventional PC, and focuses on alternate strategies for generating prolonged states of cardiac protection.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith University, Australia.
| | | |
Collapse
|
40
|
Abstract
Advanced age is a strong independent predictor for death, disability, and morbidity in patients with structural heart disease. With the projected increase in the elderly population and the prevalence of age-related cardiovascular disabilities worldwide, the need to understand the biology of the aging heart, the mechanisms for age-mediated cardiac vulnerability, and the development of strategies to limit myocardial dysfunction in the elderly have never been more urgent. Experimental evidence in animal models indicate attenuation in cardioprotective pathways with aging, yet limited information is available regarding age-related changes in the human heart. Human cardiac aging generates a complex phenotype, only partially replicated in animal models. Here, we summarize current understanding of the aging heart stemming from clinical and experimental studies, and we highlight targets for protection of the vulnerable senescent myocardium. Further progress mandates assessment of human tissue to dissect specific aging-associated genomic and proteomic dynamics, and their functional consequences leading to increased susceptibility of the heart to injury, a critical step toward designing novel therapeutic interventions to limit age-related myocardial dysfunction and promote healthy aging.
Collapse
Affiliation(s)
- Arshad Jahangir
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, and Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
41
|
Sugizaki MM, Dal Pai-Silva M, Carvalho RF, Padovani CR, Bruno A, Nascimento AF, Aragon FF, Novelli ELB, Cicogna AC. Exercise training increases myocardial inotropic response in food restricted rats. Int J Cardiol 2006; 112:191-201. [PMID: 16356569 DOI: 10.1016/j.ijcard.2005.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/24/2005] [Accepted: 08/29/2005] [Indexed: 11/20/2022]
Abstract
This study evaluated the effects of exercise training on myocardial function and ultrastructure of rats submitted to different levels of food restriction (FR). Male Wistar-Kyoto rats, 60 days old, were submitted to free access to food, light FR (20%), severe FR (50%) and/or to swimming training (one hour per day with 5% of load, five days per week for 90 days). Myocardial function was evaluated by left ventricular papillary muscle under basal condition (calcium 1.25 mM), and after extracellular calcium elevation to 5.2 mM and isoproterenol (1 microM) addition. The ultrastructure of the myocardium was examined in the papillary muscle. The training effectiveness was verified by improvement of myocardial metabolic enzyme activities. Both 20% and 50% food restriction protocols presented minor body and ventricular weights gain. The 20%-FR, in sedentary or trained rats, did not alter myocardial function or ultrastructure. The 50%-FR, in sedentary rats, caused myocardial dysfunction under basal condition, decreased response to inotropic stimulation, and promoted myocardial ultrastructural damage. The 50%-FR, in exercised rats, increased myocardial dysfunction under basal condition but increased response to inotropic stimulation although there was myocardial ultrastructural damage. In conclusion, the exercise training in severe restriction caused marked myocardial dysfunction at basal condition but increased myocardial response to inotropic stimulation.
Collapse
Affiliation(s)
- Mario Mateus Sugizaki
- Department of Internal Medicine, School of Medicine, State University Júlio, Mesquita Filho, UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Napoli C, Williams-Ignarro S, de Nigris F, Lerman LO, D'Armiento FP, Crimi E, Byrns RE, Casamassimi A, Lanza A, Gombos F, Sica V, Ignarro LJ. Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. Proc Natl Acad Sci U S A 2006; 103:10479-10484. [PMID: 16801544 PMCID: PMC1502483 DOI: 10.1073/pnas.0602774103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Moderate physical exercise (PE) combined with metabolic treatment (MT) (antioxidants and l-arginine) are well known to reduce atherosclerotic lesion formation in hypercholesterolemic mice. However, the long-term beneficial effects on unstable atheroma remain poorly understood. We started early PE training in large groups of 6-week-old hypercholesterolemic mice (by graduated swimming) alone or in combination with nutritional supplementation (1.0% vitamin E added to the chow and 0.05% vitamin C and 6% l-arginine added to the drinking water). Inactive controls did not receive PE. The spontaneous development of atherosclerotic plaque rupture (associated with advanced atherosclerosis) and survival rates were evaluated. Moderate PE elicited an increase in plasma levels of nitric oxide. Early combined treatment with PE and MT in the hypercholesterolemic mice significantly reduced lesions (also detected noninvasively at 10 months) and spontaneous atherosclerotic plaque rupture and prolonged survival more effectively than each intervention alone. Thus, early concerted actions of MT and PE improve the natural history of atherosclerotic lesions and reduce the plaque instability in hypercholesterolemic mice.
Collapse
Affiliation(s)
- Claudio Napoli
- *Department of General Pathology, Division of Clinical Pathology, Excellence Research Center on Cardiovascular Diseases, and
- Whitaker Cardiovascular Institute, Boston University, Boston, MA 02118
- Research Center on Craniofacial Malformations-MRI, School of Medicine, Second University of Naples, Naples 80138, Italy
| | | | - Filomena de Nigris
- *Department of General Pathology, Division of Clinical Pathology, Excellence Research Center on Cardiovascular Diseases, and
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Francesco P D'Armiento
- **Department of Biomorphological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Ettore Crimi
- Department of Internal Medicine, Berkshire Medical Center, Pittsfield, MA 01201; and
| | - Russell E Byrns
- Department of Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735
| | - Amelia Casamassimi
- *Department of General Pathology, Division of Clinical Pathology, Excellence Research Center on Cardiovascular Diseases, and
| | - Alessandro Lanza
- Research Center on Craniofacial Malformations-MRI, School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Fernando Gombos
- Research Center on Craniofacial Malformations-MRI, School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Vincenzo Sica
- *Department of General Pathology, Division of Clinical Pathology, Excellence Research Center on Cardiovascular Diseases, and
| | - Louis J Ignarro
- Department of Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735
| |
Collapse
|
43
|
Abete P, Della Morte D, Mazzella F, D'Ambrosio D, Galizia G, Testa G, Gargiulo G, Cacciatore F, Rengo F. Lifestyle and Prevention of Cardiovascular Disease in the Elderly: An Italian Perspective. ACTA ACUST UNITED AC 2006; 15:28-34. [PMID: 16415644 DOI: 10.1111/j.1076-7460.2006.05285.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The life span of human beings is partially influenced by genetic factors, but outcomes of aging are profoundly influenced by lifestyle and other environmental factors. Age-related modifications of the cardiovascular system are preserved by antiaging lifestyle interventions such as physical activity and caloric restriction. Accordingly, physical activity and low body mass index reduce mortality in older men with cardiovascular diseases. Several mechanisms have been proposed to explain the protective effect of lifestyle interventions against cardiovascular diseases in the elderly, including a reduction of vulnerability (i.e., the age-related reduction of endogenous mechanisms protective against pathologic insults). The age-related reduction of ischemic preconditioning, the most powerful endogenous protective mechanism against myocardial ischemia, is restored by both physical activity and caloric restriction. Thus, older persons can implement lifestyle practices that minimize their risk of death from cardiovascular diseases.
Collapse
Affiliation(s)
- Pasquale Abete
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Cattedra di Geriatria, Università degli Studi di Napoli Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sugizaki MM, Carvalho RF, Aragon FF, Padovani CR, Okoshi K, Okoshi MP, Zanati SG, Pai-Silva MD, Novelli ELB, Cicogna AC. Myocardial dysfunction induced by food restriction is related to morphological damage in normotensive middle-aged rats. J Biomed Sci 2005; 12:641-9. [PMID: 16132105 DOI: 10.1007/s11373-005-7652-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 04/18/2005] [Indexed: 10/25/2022] Open
Abstract
Previous works from our laboratory have revealed that food restriction (FR) promotes discrete myocardial dysfunction in young rats. We examined the effects of FR on cardiac function, in vivo and in vitro, and ultrastructural changes in the heart of middle-aged rats. Twelve-month-old Wistar-Kyoto rats were fed a control (C) or restricted diet (daily intake reduced to 50% of the control group) for 90 days. Cardiac performance was studied by echocardiogram and in isolated left ventricular (LV) papillary muscle by isometric contraction in basal condition, after calcium chloride (5.2 mM) and beta-adrenergic stimulation with isoproterenol (10(-6) M). FR did not change left ventricular function, but increased time to peak tension, and decreased maximum rate of papillary muscle tension development. Inotropic maneuvers promoted similar effects in both groups. Ultrastructural alterations were seen in most FR rat muscle fibers and included, absence and/or disorganization of myofilaments and Z line, hyper-contracted myofibrils, polymorphic and swollen mitochondria with disorganized cristae, and a great quantity of collagen fibrils. In conclusion, cardiac muscle sensitivity to isoproterenol and elevation of extracellular calcium concentration is preserved in middle-aged FR rats. The intrinsic muscle performance depression might be related to morphological damage.
Collapse
Affiliation(s)
- Mario Mateus Sugizaki
- Department of Internal Medicine- School of Medicine, Faculdade de Medicina de Botucatu, UNESP, Rubião Júnior, S/N, 18618-000, Botucatu, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|