1
|
Zayoud K, Chikhaoui A, Kraoua I, Tebourbi A, Najjar D, Ayari S, Safra I, Kraiem I, Turki I, Menif S, Yacoub-Youssef H. Immunity in the Progeroid Model of Cockayne Syndrome: Biomarkers of Pathological Aging. Cells 2024; 13:402. [PMID: 38474366 PMCID: PMC10930946 DOI: 10.3390/cells13050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder that affects the DNA repair process. It is a progeroid syndrome predisposing patients to accelerated aging and to increased susceptibility to respiratory infections. Here, we studied the immune status of CS patients to determine potential biomarkers associated with pathological aging. CS patients, as well as elderly and young, healthy donors, were enrolled in this study. Complete blood counts for patients and donors were assessed, immune cell subsets were analyzed using flow cytometry, and candidate cytokines were analyzed via multi-analyte ELISArray kits. In CS patients, we noticed a high percentage of lymphocytes, an increased rate of intermediate and non-classical monocytes, and a high level of pro-inflammatory cytokine IL-8. In addition, we identified an increased rate of particular subtypes of T Lymphocyte CD8+ CD28- CD27-, which are senescent T cells. Thus, an inflammatory state was found in CS patients that is similar to that observed in the elderly donors and is associated with an immunosenescence status in both groups. This could explain the CS patients' increased susceptibility to infections, which is partly due to an aging-associated inflammation process.
Collapse
Affiliation(s)
- Khouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
- Faculty of Sciences of Bizerte, Bizerte 7021, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia; (I.K.)
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia; (A.T.); (S.A.)
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Saker Ayari
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia; (A.T.); (S.A.)
| | - Ines Safra
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (I.S.)
| | - Imen Kraiem
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (I.S.)
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia; (I.K.)
| | - Samia Menif
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (I.S.)
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
2
|
Kaszubowska L, Foerster J, Kaczor JJ, Karnia MJ, Kmieć Z. Anti-Inflammatory Klotho Protein Serum Concentration Correlates with Interferon Gamma Expression Related to the Cellular Activity of Both NKT-like and T Cells in the Process of Human Aging. Int J Mol Sci 2023; 24:ijms24098393. [PMID: 37176100 PMCID: PMC10179552 DOI: 10.3390/ijms24098393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Klotho is a beta-glucuronidase that reveals both anti-inflammatory and anti-oxidative properties that have been associated with mechanisms of aging. The study aimed to analyze the relationships between the serum concentration of soluble α-Klotho and cellular activity of two populations of lymphocytes; T and NKT-like cells corresponding to the level of cytokine secretion; i.e., IFN-γ, TNF-α, and IL-6. The studied population comprised three age groups: young individuals ('young'), seniors aged under 85 ('old'), and seniors aged over 85 ('oldest'). Both NKT-like and T cells were either non-cultured or cultured for 48 h and stimulated appropriately with IL-2, LPS or PMA with ionomycin to compare with unstimulated control cells. In all studied age groups non-cultured or cultured NKT-like cells revealed higher expressions of TNF-α, IL-6, and IFN-γ than T cells. α-Klotho concentration in serum decreased significantly in the process of aging. Intriguingly, only IFN-γ expression revealed a positive correlation with α-Klotho protein serum concentration in both non-cultured and cultured T and NKT-like cells. Since IFN-γ is engaged in the maintenance of immune homeostasis, the observed relationships may indicate the involvement of α-Klotho and cellular IFN-γ expression in the network of adaptive mechanisms developed during the process of human aging.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
3
|
Restaino AC, Vermeer PD. Neural regulations of the tumor microenvironment. FASEB Bioadv 2022; 4:29-42. [PMID: 35024571 PMCID: PMC8728107 DOI: 10.1096/fba.2021-00066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
The identification of nerves in the tumor microenvironment has ushered in a new area of research in cancer biology. Numerous studies demonstrate the presence of various types of peripheral nerves (sympathetic, parasympathetic, sensory) within the tumor microenvironment; moreover, an increased density of nerves in the tumor microenvironment correlates with worse prognosis. In this review, we address the current understanding of nerve-mediated alterations of the tumor microenvironment and how they impact disease through a variety of processes, including direct nerve-cancer cell communication, alteration of the infiltrative immune population, and alteration of stromal components.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Sanford ResearchCancer Biology and Immunotherapies GroupSioux FallsSouth DakotaUSA
- University of South Dakota Sanford School of MedicineVermillionSouth DakotaUSA
| | - Paola D. Vermeer
- Sanford ResearchCancer Biology and Immunotherapies GroupSioux FallsSouth DakotaUSA
- University of South Dakota Sanford School of MedicineVermillionSouth DakotaUSA
| |
Collapse
|
4
|
Vallejo AN, Mroczkowski HJ, Michel JJ, Woolford M, Blair HC, Griffin P, McCracken E, Mihalik SJ, Reyes‐Mugica M, Vockley J. Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD). Clin Transl Immunology 2021; 10:e1304. [PMID: 34194748 PMCID: PMC8236555 DOI: 10.1002/cti2.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a disorder of fatty acid oxidation. Symptoms are managed by dietary supplementation with medium-chain fatty acids that bypass the metabolic block. However, patients remain vulnerable to hospitalisations because of rhabdomyolysis, suggesting pathologic processes other than energy deficit. Since rhabdomyolysis is a self-destructive process that can signal inflammatory/immune cascades, we tested the hypothesis that inflammation is a physiologic dimension of VLCADD. METHODS All subjects (n = 18) underwent informed consent/assent. Plasma cytokine and cytometry analyses were performed. A prospective case analysis was carried out on a patient with recurrent hospitalisation. Health data were extracted from patient medical records. RESULTS Patients showed systemic upregulation of nine inflammatory mediators during symptomatic and asymptomatic periods. There was also overall abundance of immune cells with high intracellular expression of IFNγ, IL-6, MIP-1β (CCL4) and TNFα, and the transcription factors p65-NFκB and STAT1 linked to inflammatory pathways. A case analysis of a patient exhibited already elevated plasma cytokine levels during diagnosis in early infancy, evolving into sustained high systemic levels during recurrent rhabdomyolysis-related hospitalisations. There were corresponding activated leukocytes, with higher intracellular stores of inflammatory molecules in monocytes compared to T cells. Exposure of monocytes to long-chain free fatty acids recapitulated the cytokine signature of patients. CONCLUSION Pervasive plasma cytokine upregulation and pre-activated immune cells indicate chronic inflammatory state in VLCADD. Thus, there is rationale for practical implementation of clinical assessment of inflammation and/or translational testing, or adoption, of anti-inflammatory intervention(s) for personalised disease management.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Henry J Mroczkowski
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Present address:
Department of PediatricsUniversity of Tennessee Health Sciences CenterMemphisTNUSA
| | - Joshua J Michel
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Michael Woolford
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Harry C Blair
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Veterans Administration Medical CenterPittsburghPAUSA
| | - Patricia Griffin
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Elizabeth McCracken
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephanie J Mihalik
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Miguel Reyes‐Mugica
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jerry Vockley
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Human GeneticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| |
Collapse
|
5
|
Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN. The role of senescent T cells in immunopathology. Aging Cell 2020; 19:e13272. [PMID: 33166035 PMCID: PMC7744956 DOI: 10.1111/acel.13272] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
The development of senescence in tissues of different organs and in the immune system are usually investigated independently of each other although during ageing, senescence in both cellular systems develop concurrently. Senescent T cells are highly inflammatory and secrete cytotoxic mediators and express natural killer cells receptors (NKR) that bypass their antigen specificity. Instead they recognize stress ligands that are induced by inflammation or infection of different cell types in tissues. In this article we discuss data on T cell senescence, how it is regulated and evidence for novel functional attributes of senescent T cells. We discuss an interactive loop between senescent T cells and senescent non-lymphoid cells and conclude that in situations of intense inflammation, senescent cells may damage healthy tissue. While the example for immunopathology induced by senescent cells that we highlight is cutaneous leishmaniasis, this situation of organ damage may apply to other infections, including COVID-19 and also rheumatoid arthritis, where ageing, inflammation and senescent cells are all part of the same equation.
Collapse
Affiliation(s)
- Luciana P. Covre
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
| | | | - Daniel C. O. Gomes
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
6
|
Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol 2020; 11:583019. [PMID: 33178213 PMCID: PMC7592394 DOI: 10.3389/fimmu.2020.583019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.
Collapse
Affiliation(s)
- Branca Pereira
- HIV/GUM Directorate, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiao-Ning Xu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Kasakovski D, Zeng X, Lai J, Yu Z, Yao D, Chen S, Zha X, Li Y, Xu L. Characterization of
KIR
+
NKG2A
+ Eomes−
NK
‐like
CD8
+ T cells and their decline with age in healthy individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:467-475. [PMID: 32830898 DOI: 10.1002/cyto.b.21945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Dimitri Kasakovski
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Zhi Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan University Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
- The Clinical Medicine Postdoctoral Research StationJinan University Guangzhou China
| |
Collapse
|
8
|
Alberro A, Osorio-Querejeta I, Sepúlveda L, Fernández-Eulate G, Mateo-Abad M, Muñoz-Culla M, Carregal-Romero S, Matheu A, Vergara I, López de Munain A, Sáenz-Cuesta M, Otaegui D. T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. Aging (Albany NY) 2019; 11:10723-10741. [PMID: 31785146 PMCID: PMC6914389 DOI: 10.18632/aging.102517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023]
Abstract
Aging is a universal and complex process that affects all tissues and cells types, including immune cells, in a process known as immunosenescence. However, many aspects of immunosenescence are not completely understood, as the characteristics of the immune cells of nonagenarians and centenarians or the features and implications of extracellular vesicles (EVs). In this study, we analyzed blood samples from 51 individuals aged 20-49 and 70-104 years. We found that senescent CD8 cells accumulate with age, while there is a partial reduction of senescent CD4 cells in nonagenarians and centenarians. Moreover, plasma EVs carry T cell specific markers, but no accumulation of "senescent-like EVs" was found within any of analyzed age groups. Our functional studies of cocultures of peripheral blood mononuclear cells and EVs showed that EVs enhance T cell viability and, under phytohemagglutinin stimulation, they influence cytokine secretion and cell activation in an age-dependent manner. These results underline the importance of EVs on the immune system functioning, and open new perspectives to further study their implication in human aging.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain
| | - Iñaki Osorio-Querejeta
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Lucía Sepúlveda
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain
| | - Gorka Fernández-Eulate
- Osakidetza Basque Health Service, Donostia University Hospital, San Sebastian, Spain.,Biodonostia Health Research Institute, Neuromuscular Diseases Group, San Sebastian, Spain
| | - Maider Mateo-Abad
- Biodonostia Health Research Institute, Primary Care Unit, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Susana Carregal-Romero
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,CIC biomaGUNE, Molecular and Functional Biomarkers Group, San Sebastian, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Cellular Oncology Group, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Itziar Vergara
- Biodonostia Health Research Institute, Primary Care Unit, San Sebastian, Spain.,Health Services Research on Chronic Patients Network (REDISSEC), Madrid, Spain
| | - Adolfo López de Munain
- Osakidetza Basque Health Service, Donostia University Hospital, San Sebastian, Spain.,Biodonostia Health Research Institute, Neuromuscular Diseases Group, San Sebastian, Spain.,CIBERNED, Madrid, Spain
| | - Matías Sáenz-Cuesta
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - David Otaegui
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| |
Collapse
|
9
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
10
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
12
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
13
|
Li G, Larregina AT, Domsic RT, Stolz DB, Medsger TA, Lafyatis R, Fuschiotti P. Skin-Resident Effector Memory CD8 +CD28 - T Cells Exhibit a Profibrotic Phenotype in Patients with Systemic Sclerosis. J Invest Dermatol 2016; 137:1042-1050. [PMID: 28012718 DOI: 10.1016/j.jid.2016.11.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/20/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Loss of CD28 expression by CD8+ T cells occurs with age and during chronic inflammatory conditions. CD8+CD28- T cells are a heterogeneous cell subpopulation whose function ranges from immunosuppressive to effector. Here we analyzed the role of CD8+CD28- T cells in the pathogenesis of systemic sclerosis (SSc), a connective tissue disorder characterized by autoimmunity, vasculopathy, and extensive cutaneous and visceral fibrosis. We show that the frequency of CD8+CD28- T cells is increased in the blood and affected skin of SSc patients, independent of patient age, and correlates with the extent of skin fibrosis. We found that most skin-tropic CD8+CD28- T cells are resident in the skin lesions of patients in the early stage of the disease, exhibit an effector memory phenotype, and present a strong cytolytic activity ex vivo. Skin-resident and circulating SSc CD8+CD28- T cells produce high levels of the profibrotic cytokine IL-13, which induces collagen production by normal and SSc dermal fibroblasts. Thus, our findings indicate that CD8+CD28- T cells represent a pathogenic T-cell subset in SSc and likely play a critical role in the early stage of SSc skin disease.
Collapse
Affiliation(s)
- Gang Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adriana T Larregina
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robyn T Domsic
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas A Medsger
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert Lafyatis
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrizia Fuschiotti
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Michel JJ, Griffin P, Vallejo AN. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging. Front Immunol 2016; 7:530. [PMID: 27933066 PMCID: PMC5121286 DOI: 10.3389/fimmu.2016.00530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population.
Collapse
Affiliation(s)
- Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia Griffin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Claude Pepper Older Americans Independence Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Pereira BI, Akbar AN. Convergence of Innate and Adaptive Immunity during Human Aging. Front Immunol 2016; 7:445. [PMID: 27867379 PMCID: PMC5095488 DOI: 10.3389/fimmu.2016.00445] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 01/06/2023] Open
Abstract
Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review, we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased T cell receptor signaling, suggesting a functional shift away from antigen-specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance, and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London , London , UK
| | - Arne N Akbar
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
16
|
Klinger M, Banasik M. Immunological characteristics of the elderly allograft recipient. Transplant Rev (Orlando) 2015; 29:219-23. [DOI: 10.1016/j.trre.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 07/28/2015] [Indexed: 01/24/2023]
|
17
|
Abstract
Abstract The concept of immunosenescence reflects age-related changes in immune responses, both cellular and serological, affecting the process of generating specific responses to foreign and self-antigens. The decline of the immune system with age is reflected in the increased susceptibility to infectious diseases, poorer response to vaccination, increased prevalence of cancer, autoimmune and other chronic diseases. Both innate and adaptive immune responses are affected by the aging process; however, the adaptive response seems to be more affected by the age-related changes in the immune system. Additionally, aged individuals tend to present a chronic low-grade inflammatory state that has been implicated in the pathogenesis of many age-related diseases (atherosclerosis, Alzheimer's disease, osteoporosis and diabetes). However, some individuals arrive to advanced ages without any major health problems, referred to as healthy aging. The immune system dysfunction seems to be somehow mitigated in this population, probably due to genetic and environmental factors yet to be described. In this review, an attempt is made to summarize the current knowledge on how the immune system is affected by the aging process.
Collapse
Affiliation(s)
- Camil Castelo-Branco
- Faculty of Medicine, Institut Clínic of Gynecology, Obstetrics and Neonatology, University of Barcelona , Barcelona , Spain and
| | | |
Collapse
|
18
|
Dvergsten JA, Mueller RG, Griffin P, Abedin S, Pishko A, Michel JJ, Rosenkranz ME, Reed AM, Kietz DA, Vallejo AN. Premature cell senescence and T cell receptor-independent activation of CD8+ T cells in juvenile idiopathic arthritis. ACTA ACUST UNITED AC 2013; 65:2201-10. [PMID: 23686519 DOI: 10.1002/art.38015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/07/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE CD8+ T cells lacking CD28 were originally reported to be a characteristic feature of juvenile idiopathic arthritis (JIA), but the relevance of these unusual cells to this disease remains to be elucidated. Because of recent evidence that loss of CD28 cells is typical of terminally differentiated lymphocytes, the aim of this study was to examine functional subsets of CD8+ T cells in patients with JIA. METHODS Blood and/or waste synovial fluid samples were collected from children with a definite diagnosis of JIA (n = 98). Deidentified peripheral blood (n = 33) and cord blood (n = 13) samples from healthy donors were also collected. CD8+ and CD4+ T cells were screened for novel receptors, and where indicated, bioassays were performed to determine the functional relevance of the identified receptor. RESULTS JIA patients had a naive T cell compartment with shortened telomeres, and their entire T cell pool had reduced proliferative capacity. They had an overabundance of CD31+CD28(null) CD8+ T cells, which was a significant feature of oligoarticular JIA (n = 62) as compared to polyarticular JIA (n = 36). CD31+ CD28(null) CD8+ T cells had limited mitotic capacity and expressed high levels of the senescence antigens histone γH2AX and/or p16. Ligation of CD31, which was independent of the T cell receptor (TCR), sufficiently induced tyrosine phosphorylation, vesicle exocytosis, and production of interferon-γ and interleukin-10. CONCLUSION These data provide the first evidence of cell senescence, as represented by CD31+CD28(null) CD8+ T cells, in the pathophysiology of JIA. Activation of these unusual cells in a TCR-independent manner suggests that they are maladaptive and could be potential targets for immunotherapy.
Collapse
Affiliation(s)
- Jeffrey A Dvergsten
- Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moro-García MA, Alonso-Arias R, López-Larrea C. Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 2013; 13:589-602. [PMID: 23730199 PMCID: PMC3492799 DOI: 10.2174/138920212803759749] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/24/2022] Open
Abstract
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.
Collapse
|
20
|
Goronzy JJ, Li G, Yang Z, Weyand CM. The janus head of T cell aging - autoimmunity and immunodeficiency. Front Immunol 2013; 4:131. [PMID: 23761790 PMCID: PMC3671290 DOI: 10.3389/fimmu.2013.00131] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/21/2013] [Indexed: 01/09/2023] Open
Abstract
Immune aging is best known for its immune defects that increase susceptibility to infections and reduce adaptive immune responses to vaccination. In parallel, the aged immune system is prone to autoimmune responses and many autoimmune diseases increase in incidence with age or are even preferentially encountered in the elderly. Why an immune system that suboptimally responds to exogenous antigen fails to maintain tolerance to self-antigens appears to be perplexing. In this review, we will discuss age-associated deviations in the immune repertoire and the regulation of signaling pathways that may shed light on this conundrum.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA ; Department of Medicine, Palo Alto Veteran Administration Health Care System , Palo Alto, CA , USA
| | | | | | | |
Collapse
|
21
|
Chen G, Lustig A, Weng NP. T cell aging: a review of the transcriptional changes determined from genome-wide analysis. Front Immunol 2013; 4:121. [PMID: 23730304 PMCID: PMC3657702 DOI: 10.3389/fimmu.2013.00121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
Age carries a detrimental impact on T cell function. In the past decade, analyses of the genome-scale transcriptional changes of T cells during aging have yielded a large amount of data and provided a global view of gene expression changes in T cells from aged hosts as well as subsets of T cells accumulated with age. Here, we aim to review the changes of gene expression in thymocytes and peripheral mature T cells, as well as the subsets of T cells accumulated with age, and discuss the gene networks and signaling pathways that are altered with aging in T cells. We also discuss future direction for furthering the understanding of the molecular basis of gene expression alterations in aged T cells, which could potentially provide opportunities for gene-based clinical interventions.
Collapse
Affiliation(s)
- Guobing Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | | | | |
Collapse
|
22
|
Moro-García MA, Alonso-Arias R, López-Larrea C. When Aging Reaches CD4+ T-Cells: Phenotypic and Functional Changes. Front Immunol 2013; 4:107. [PMID: 23675374 PMCID: PMC3650461 DOI: 10.3389/fimmu.2013.00107] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022] Open
Abstract
Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8 + T-cell compartment, these mechanisms ultimately fail with age.
Collapse
|
23
|
Ma Y, Fang M. Immunosenescence and age-related viral diseases. SCIENCE CHINA-LIFE SCIENCES 2013; 56:399-405. [PMID: 23633071 PMCID: PMC7089158 DOI: 10.1007/s11427-013-4478-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022]
Abstract
Immunosenescence is described as a decline in the normal functioning of the immune system associated with physiologic ageing. Immunosenescence contributes to reduced efficacy to vaccination and increased susceptibility to infectious diseases in the elderly. Extensive studies of laboratory animal models of ageing or donor lymphocyte analysis have identified changes in immunity caused by the ageing process. Most of these studies have identified phenotypic and functional changes in innate and adaptive immunity. However, it is unclear which of these defects are critical for impaired immune defense against infection. This review describes the changes that occur in innate and adaptive immunity with ageing and some age-related viral diseases where defects in a key component of immunity contribute to the high mortality rate in mouse models of ageing.
Collapse
Affiliation(s)
- YongChao Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
24
|
Goronzy JJ, Li G, Yu M, Weyand CM. Signaling pathways in aged T cells - a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 2012; 24:365-72. [PMID: 22560928 DOI: 10.1016/j.smim.2012.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 01/04/2023]
Abstract
With increasing age, the ability of the immune system to protect against new antigenic challenges or to control chronic infections erodes. Decline in thymic function and cumulating antigenic experiences of acute and chronic infections threaten T cell homeostasis, but insufficiently explain the failing immune competence and the increased susceptibility for autoimmunity. Alterations in signaling pathways in the aging T cells account for many of the age-related defects. Signaling threshold calibrations seen with aging frequently built on mechanisms that are operational in T cell development and T cell differentiation or are adaptations to the changing environment in the aging host. Age-related changes in transcription of receptors and signaling molecules shift the balance towards inhibitory pathways, most dominantly seen in CD8 T cells and to a lesser degree in CD4 T cells. Prominent examples are the expression of negative regulatory receptors of the CD28 and the TNF receptor superfamilies as well the expression of various cytoplasmic and nuclear dual-specific phosphatases.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | |
Collapse
|
25
|
Vallejo AN, Hamel DL, Mueller RG, Ives DG, Michel JJ, Boudreau RM, Newman AB. NK-like T cells and plasma cytokines, but not anti-viral serology, define immune fingerprints of resilience and mild disability in exceptional aging. PLoS One 2011; 6:e26558. [PMID: 22028907 PMCID: PMC3197651 DOI: 10.1371/journal.pone.0026558] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022] Open
Abstract
Exceptional aging has been defined as maintenance of physical and cognitive function beyond the median lifespan despite a history of diseases and/or concurrent subclinical conditions. Since immunity is vital to individual fitness, we examined immunologic fingerprint(s) of highly functional elders. Therefore, survivors of the Cardiovascular Health Study in Pittsburgh, Pennsylvania, USA were recruited (n = 140; mean age = 86 years) and underwent performance testing. Blood samples were collected and examined blindly for humoral factors and T cell phenotypes. Based on results of physical and cognitive performance testing, elders were classified as "impaired" or "unimpaired", accuracy of group assignment was verified by discriminant function analysis. The two groups showed distinct immune profiles as determined by factor analysis. The dominant immune signature of impaired elders consisted of interferon (IFN)-γ, interleukin (IL)-6, tumor necrosis factor-α, and T cells expressing inhibitory natural killer-related receptors (NKR) CD158a, CD158e, and NKG2A. In contrast, the dominant signature of unimpaired elders consisted of IL-5, IL-12p70, and IL-13 with co-expression of IFN-γ, IL-4, and IL-17, and T cells expressing stimulatory NKRs CD56, CD16, and NKG2D. In logistic regression models, unimpaired phenotype was predicted independently by IL-5 and by CD4(+)CD28(null)CD56(+)CD57(+) T cells. All elders had high antibody titers to common viruses including cytomegalovirus. In cellular bioassays, T cell receptor (TCR)-independent ligation of either CD56 or NKG2D elicited activation of T cells. Collectively, these data demonstrate the importance of immunological parameters in distinguishing between health phenotypes of older adults. NKR(+) T cells and cytokine upregulation indicate a unique physiologic environment in old age. Correlation of particular NKR(+) T cell subsets and IL-5 with unimpaired performance, and NKR-driven TCR-independent activation of T cells suggest novel immunopathway(s) that could be exploited to improve immunity in old age.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
26
|
Vallejo AN, Mueller RG, Hamel DL, Way A, Dvergsten JA, Griffin P, Newman AB. Expansions of NK-like αβT cells with chronologic aging: novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells. Ageing Res Rev 2011; 10:354-61. [PMID: 20932941 DOI: 10.1016/j.arr.2010.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 01/01/2023]
Abstract
As the repertoire of αβT cell receptors (TCR) contracts with advancing age, there is an associated age-dependent accumulation of oligoclonal T cells expressing of a variety of receptors (NKR), normally expressed on natural killer (NK) cells. Evidences for differential regulation of expression of particular NKRs between T cells and NK cells suggest that NKR expression on T cells is physiologically programmed rather than a random event of the aging process. Experimental studies show NKRs on aged αβT cells may function either as independent receptors, and/or as costimulatory receptors to the TCR. Considering the reported deficits of conventional αβTCR-driven activation and also functional deficits of classical NK cells, NKR(+) αβT cells likely represent novel immune effectors that are capable of combining innate and adaptive functions. Inasmuch as immunity is a determinant of individual fitness, the type and density of NKRs could be important contributing factors to the wide heterogeneity of health characteristics of older adults, ranging from institutionalized frail elders who are unable to mount immune responses to functionally independent community-dwelling elders who exhibit protective immunity. Understanding the biology of NKR(+) αβT cells could lead to new avenues for age-specific intervention to improve protective immunity.
Collapse
|
27
|
Strioga M, Pasukoniene V, Characiejus D. CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011; 134:17-32. [PMID: 21711350 DOI: 10.1111/j.1365-2567.2011.03470.x] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic antigenic stimulation leads to gradual accumulation of late-differentiated, antigen-specific, oligoclonal T cells, particularly within the CD8(+) T-cell compartment. They are characterized by critically shortened telomeres, loss of CD28 and/or gain of CD57 expression and are defined as either CD8(+) CD28(-) or CD8(+) CD57(+) T lymphocytes. There is growing evidence that the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population plays a significant role in various diseases or conditions, associated with chronic immune activation such as cancer, chronic intracellular infections, chronic alcoholism, some chronic pulmonary diseases, autoimmune diseases, allogeneic transplantation, as well as has a great influence on age-related changes in the immune system status. CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population is heterogeneous and composed of various functionally competing (cytotoxic and immunosuppressive) subsets thus the overall effect of CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell-mediated immunity depends on the predominance of a particular subset. Many articles claim that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells have lost their proliferative capacity during process of replicative senescence triggered by repeated antigenic stimulation. However recent data indicate that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells can transiently up-regulate telomerase activity and proliferate under certain stimulation conditions. Similarly, conflicting data is provided regarding CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell sensitivity to apoptosis, finally leading to the conclusion that this T-cell population is also heterogeneous in terms of its apoptotic potential. This review provides a comprehensive approach to the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population: we describe in detail its origins, molecular and functional characteristics, subsets, role in various diseases or conditions, associated with persistent antigenic stimulation.
Collapse
Affiliation(s)
- Marius Strioga
- Laboratory of Immunology, Institute of Oncology, Vilnius University, Vilnius Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | | | | |
Collapse
|
28
|
Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro ADS, Falcão RR, Abdelhay E, Bouzas LF, Thuler LCS, Ornellas MH, Diamond HR. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol 2011; 72:319-29. [PMID: 21262312 DOI: 10.1016/j.humimm.2011.01.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 12/27/2010] [Accepted: 01/13/2011] [Indexed: 01/18/2023]
Abstract
Most studies on natural killer (NK) cells and aging have focused on overall cell numbers and global cytotoxic activity. NK cell functions are controlled by surface receptors belonging to three major families: killer cell immunoglobulin-like receptors (KIRs), natural cytotoxicity receptors (NCRs), and C-type lectins. The expression of these receptors was investigated from childhood through old age in T, NKT- and NK cells and also in the CD56(dim) (cytotoxic) and CD56(bright) (responsible for cytokine production) NK cell subsets. A decrease in the expression of activating receptors (NKp30 and NKp46) was observed in NK cells in elderly individuals. KIR expression was increased only in the CD56(bright) subset. Children presented similar results regarding expression of NKp30 and KIR, but not NKp46. NKG2D expression was decreased in T cells of elderly subjects. Analysis of KIR genotype revealed that KIR2DL5 and KIR2DS3 were significantly associated with old age. Cytotoxic activity was preserved from childhood through old age, suggesting that the increase of the absolute number of CD56(dim), observed in elderly, may represent a compensatory mechanism for the receptor expression alterations. This initial study provides the framework for more focused studies of this subject, which are necessary to determine whether the changing balance of NK receptor expression may influence susceptibility to infectious, inflammatory, and neoplastic diseases.
Collapse
Affiliation(s)
- Aline Almeida-Oliveira
- Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pita-Lopez ML, Gayoso I, DelaRosa O, Casado JG, Alonso C, Muñoz-Gomariz E, Tarazona R, Solana R. Effect of ageing on CMV-specific CD8 T cells from CMV seropositive healthy donors. IMMUNITY & AGEING 2009; 6:11. [PMID: 19715573 PMCID: PMC2741428 DOI: 10.1186/1742-4933-6-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/28/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ageing is associated with changes in the immune system with substantial alterations in T-lymphocyte subsets. Cytomegalovirus (CMV) is one of the factors that affect functionality of T cells and the differentiation and large expansions of CMV pp65-specific T cells have been associated with impaired responses to other immune challenges. Moreover, the presence of clonal expansions of CMV-specific T cells may shrink the available repertoire for other antigens and contribute to the increased incidence of infectious diseases in the elderly. In this study, we analyse the effect of ageing on the phenotype and frequency of CMV pp65-specific CD8 T cell subsets according to the expression of CCR7, CD45RA, CD27, CD28, CD244 and CD85j. RESULTS Peripheral blood from HLA-A2 healthy young, middle-aged and elderly donors was analysed by multiparametric flow cytometry using the HLA-A*0201/CMV pp65(495-504) (NLVPMVATV) pentamer and mAbs specific for the molecules analysed. The frequency of CMV pp65-specific CD8 T cells was increased in the elderly compared with young and middle-aged donors. The proportion of naïve cells was reduced in the elderly, whereas an age-associated increase of the CCR7(null) effector-memory subset, in particular those with a CD45RA(dim) phenotype, was observed, both in the pentamer-positive and pentamer-negative CD8 T cells. The results also showed that most CMV pp65-specific CD8 T cells in elderly individuals were CD27/CD28 negative and expressed CD85j and CD244. CONCLUSION The finding that the phenotype of CMV pp65-specific CD8 T cells in elderly individuals is similar to the predominant phenotype of CD8 T cells as a whole, suggests that CMV persistent infections contributes to the age-related changes observed in the CD8 T cell compartment, and that chronic stimulation by other persistent antigens also play a role in T cell immunosenescence. Differences in subset distribution in elderly individuals showing a decrease in naive and an increase in effector-memory CD8 T cells may be relevant in the age-associated defective immune response.
Collapse
Affiliation(s)
- María Luisa Pita-Lopez
- University of Cordoba, Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, Cordoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lin YC, Huang YC, Wang YS, Juang RH, Liao KW, Chu RM. Canine CD8 T cells showing NK cytotoxic activity express mRNAs for NK cell-associated surface molecules. Vet Immunol Immunopathol 2009; 133:144-53. [PMID: 19709755 DOI: 10.1016/j.vetimm.2009.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 07/19/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
Natural killer (NK) cells have been considered to be a group of lymphocytes lacking clonally distributed receptors for antigens typical of T cells and B cells. In some mammalian species, including humans, a subpopulation of CD8(+) peripheral blood lymphocytes (PBLs) exhibits NK activity. This NK subpopulation has not been well characterized in mammals and its characterization is particularly poor in the dog. In this study, we demonstrated that a subset of canine CD8(+) cells derived from PBLs and lymphokine (IL-2)-activated killers (LAKs) of PBLs that was CD3(+), CD4(-), CD21(-), CD5(lo), alpha/betaTCR(+), and gamma/deltaTCR(-) contained substantially higher levels of mRNAs for NK cell-related receptors (NKp30, NKp44, NKG2D, 2B4, and CD16 for PBL, and NKG2D and CD56 for LAK) than the corresponding CD8(-) cells. This subset of CD8(+) lymphocytes derived from LAKs also displayed significantly higher NK cytotoxic activity than the corresponding CD8(-) cells. In contrast, CD8(+) cells derived from nonstimulated PBLs showed very low levels of NK cytotoxic activity. Our results indicate that, in IL-2-stimulated PBLs, canine CD8(+) cells are an important subset associated with NK cytotoxic activity.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Animal Cancer Center, School of Veterinary Medicine, National Taiwan University, 1, Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
31
|
Eleftheriadis T, Kartsios C, Yiannaki E, Antoniadi G, Kazila P, Pliakos K, Liakopoulos V, Markala D. Decreased CD3+CD16+ natural killer-like T-cell percentage and zeta-chain expression accompany chronic inflammation in haemodialysis patients. Nephrology (Carlton) 2009; 14:471-475. [PMID: 19486472 DOI: 10.1111/j.1440-1797.2008.01041.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM Clinical and experimental data indicate a deficient immune response in haemodialysis (HD) patients. Natural killer-like (NKL) T cells express on their surface both the T-cell antigen receptor (TCR) and a diverse set of NK-cell receptors (NKR) and share properties of both T cells and NK cells. zeta-Chain phosphorylation is an early event that follows TCR activation or some NKR activation. The zeta-chain of both T cell and NK cells is downregulated in many chronic inflammatory states, HD included. In the present study, NKL T-cell percentage and zeta-chain expression in HD patients were evaluated. METHODS Thirty-three stable HD patients and 30 healthy volunteers were enrolled into the study. NKL T-cell percentage and NKL T-cell zeta-chain mean fluorescence intensity (MFI) were evaluated with flow cytometry. The inflammatory markers C-reactive protein, interleukin-6 and tumour necrosis factor-alpha were measured in the serum by means of enzyme-linked immunosorbent assay. RESULTS All the evaluated markers of inflammation were increased in HD patients. In these patients, NKL T-cell percentage (1.71 +/- 1.69% vs 3.94 +/- 3.86%) and zeta-chain MFI (3.66 +/- 2.79 vs 7.03 +/- 7.91) were decreased. CONCLUSIONS NKL T-cell percentage and zeta-chain expression is decreased in HD patients. Taking into consideration the continuously increasing age of the HD patients and that normally NKL T-cell numbers increase with age counteracting the impaired T-cell and NK-cell function accompanying advancing age, the above NKL T-cell disturbances could contribute to the impaired immune response in this population. Measures towards alleviating chronic inflammation could partially restore NKL T-cell impairment.
Collapse
|
32
|
Abstract
With increasing age, T cells gain expression of killer immunoglobulin-like receptors (KIRs) that transmit negative signals and dampen the immune response. KIR expression is induced in CD4 and CD8 T cells by CpG DNA demethylation suggesting epigenetic control. To define the mechanisms that underlie the age-associated preferential KIR expression in CD8 T cells, we examined KIR2DL3 promoter methylation patterns. With age, CD8 T cells developed a patchy and stochastic promoter demethylation even in cells that did not express the KIR2DL3-encoded CD158b protein; complete demethylation of the minimal KIR2DL3 promoter was characteristic for CD158b-expressing cells. In contrast, the promoter in CD4 T cells was fully methylated irrespective of age. The selectivity for CD8 T cells correlated with lower DNMT1 recruitment to the KIR2DL3 promoter which further diminished with age. In contrast, binding of the polycomb protein EZH2 known to be involved in DNMT1 recruitment was not different. Our data suggest that CD8 T cells endure increasing displacement of DNMT1 from the KIR promoter with age, possibly because of an active histone signature. The ensuing partial demethylation lowers the threshold for transcriptional activation and renders CD8 T cells more susceptible to express KIR, thereby contributing to the immune defect in the elderly.
Collapse
|
33
|
Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 2009; 30:325-33. [PMID: 19541535 DOI: 10.1016/j.it.2009.05.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
The past decade has seen an explosion in research focusing on innate immunity. Through a wide range of mechanisms including phagocytosis, intracellular killing and activation of proinflammatory or antiviral cytokine production, the cells of the innate immune system initiate and support adaptive immunity. The effects of aging on innate immune responses remain incompletely understood, particularly in humans. Here we review advances in the study of human immunosenescence in the diverse cells of the innate immune system, including neutrophils, monocytes, macrophages, natural killer and natural killer T (NKT) cells and dendritic cells-with a focus on consequences for the response to infection or vaccination in old age.
Collapse
Affiliation(s)
- Alexander Panda
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dejaco C, Duftner C, Klauser A, Schirmer M. Altered T-cell subtypes in spondyloarthritis, rheumatoid arthritis and polymyalgia rheumatica. Rheumatol Int 2009; 30:297-303. [DOI: 10.1007/s00296-009-0949-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 04/28/2009] [Indexed: 12/24/2022]
|
35
|
Mocchegiani E, Giacconi R, Cipriano C, Malavolta M. NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol 2009; 29:416-25. [PMID: 19408107 DOI: 10.1007/s10875-009-9298-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 04/20/2009] [Indexed: 01/08/2023]
Abstract
INTRODUCTION During aging, dysregulated immune functions occur contributing to increased susceptibility to morbidity and mortality. However, these dysregulations are normally counterbalanced by continuous adaptation of the body to the deteriorative changes occurring over time. These adaptive changes well occur in healthy centenarians. DISCUSSION Both innate (natural) and adaptive (acquired) immune responses decline with advancing age. Natural killer (NK) and natural killer T (NKT) cell cytotoxicity, representing one of best models of innate immune response, decreases in aging as well as interferon-gamma (IFN-gamma) production by both activated types of cells. Both NK and NKT cell cytotoxicity and IFN-gamma production increase in very old age with respect to normal aging, especially by NKT cells bearing TCRgammadelta. The role played by zinc and metallothioneins (MT) is crucial because this affects NK and NKT cell development, maturation, and functions. In particular, some MT polymorphisms are involved in maintaining innate immune response and intracellular zinc ion availability in aging with thus a role of MT genetic background to escape some age-related diseases with subsequent healthy aging and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Nutrigenomic and Immunosenescence Laboratory, Istituto Nazionale Riposo e Cura per Anziani (INRCA), Ancona, Italy.
| | | | | | | |
Collapse
|
36
|
Merck E, Voyle RB, MacDonald HR. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. THE JOURNAL OF IMMUNOLOGY 2009; 182:183-92. [PMID: 19109149 DOI: 10.4049/jimmunol.182.1.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.
Collapse
Affiliation(s)
- Estelle Merck
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
37
|
Gorczynski RM, Terzioglu E. Aging and the immune system. Int Urol Nephrol 2008; 40:1117-25. [PMID: 18683074 DOI: 10.1007/s11255-008-9412-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/29/2008] [Indexed: 12/31/2022]
Abstract
Aging is associated with many physiological changes in a variety of organ systems. Nevertheless, considerable interest has centred on the possibility that age-related immunological changes may play a key "master" role in regulating many, if not all, subsequent events. A growing body of data, some of it highlighted in this review, supports the notion that host resistance in general is changed in both a qualitative and quantitative manner with age, though the biochemical mechanism(s) underlying such changes are not unique to the immune system per se. Moreover, interventions designed to explore treatments which may reverse some or all of those age-related changes have pointed out a fundamentally important role for nutrition, and the way(s) in which this impacts on host resistance mechanism(s), as having a hitherto unappreciated importance in immunosenescence in general.
Collapse
|
38
|
Lemster BH, Michel JJ, Montag DT, Paat JJ, Studenski SA, Newman AB, Vallejo AN. Induction of CD56 and TCR-independent activation of T cells with aging. THE JOURNAL OF IMMUNOLOGY 2008; 180:1979-90. [PMID: 18209097 DOI: 10.4049/jimmunol.180.3.1979] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Degeneration of the thymus and severe contraction of the T cell repertoire with aging suggest that immune homeostasis in old age could be mediated by distinct effectors. Therefore, receptors expressed on T cells as they undergo senescence in vitro, as well as those displayed by circulating T cells during normal chronologic aging, were examined. Monitoring of T cells driven to senescence showed de novo induction of CD56, the prototypic receptor of NK cells. Analysis of fresh T cells in peripheral blood showed an age-dependent induction of CD56. These unusual T cells expressed high levels of Bcl2, p16, and p53, and had limited, or completely lost, ability to undergo cell division, properties consistent with senescence. CD56 cross-linking without TCR ligation on CD56(+) T cells resulted in extensive protein phosphorylation, NF-kappaB activation, and Bax down-regulation. CD56 cross-linking was also sufficient to drive production of various humoral factors. These data suggest that the immunologic environment in old age is functionally distinct, rather than being a dysfunctional version of that seen at a young age. CD56(+) T cells are unique effectors capable of mediating TCR-independent immune cascades that could be harnessed to enhance protective immunity in the elderly.
Collapse
Affiliation(s)
- Bonnie H Lemster
- Department of Pediatrics, University of Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Bowie MW, Slattum PW. Pharmacodynamics in older adults: a review. ACTA ACUST UNITED AC 2008; 5:263-303. [PMID: 17996666 DOI: 10.1016/j.amjopharm.2007.10.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND Older individuals experience physiologic changes in organ function related to aging or to specific disease processes. These changes can affect drug pharmacodynamics in older adults. OBJECTIVE The goal of this article was to review age-related changes in pharmacodynamics and their clinical relevance. METHODS PubMed and International Pharmaceutical Abstracts were searched (January 1980-June 2006) for the following combination of terms: pharmacodynamic and elderly, geriatric or aged. References cited in other reviews were also evaluated. The current review focused on age-related pharmacodynamic changes in agents affecting the central nervous system (CNS), cardiovascular, and endocrine functions. RESULTS Older adults frequently demonstrate an exaggerated response to CNS-active drugs. This is in part due to an underlying age-related decline in CNS function and in part due to increased pharmacodynamic sensitivity for some benzodiazepines, anesthetics, and opioids. The most important pharmacodynamic differences with age for cardiovascular agents are the decrease in effect for beta-adrenergic agents. This decline in response in vascular, cardiac, and pulmonary tissue may be due to a decrease in Gs protein interactions. Most studies indicate there is no decrease in cx-receptor sensitivity with age. Angiotensin-converting enzyme inhibitors do not show age-related differences in elderly patients. With the dihydropyridine calcium channel blockers, there was a slight increase in effect for older adults, but this was only for treatment-naive patients and was transient. Nondihydropyridines did not show an age- associated change in pharmacodynamic effect; however, in the elderly, there appeared to be a decrease in the PR interval prolongation normally seen with these agents. Studies of diuretics indicated that the changes in diuretic and natriuretic effects seen in the elderly were associated with pharmacokinetic changes and were not pharmacodynamic in nature. There was a lack of consistent evidence regarding whether sulfonylureas show age-related changes in pharmacodynamic effect. CONCLUSIONS There is a general trend of greater pharmacodynamic sensitivity in the elderly; however, this is not universal, and these age-related changes must be investigated agent-by-agent until further research yields greater understanding of the molecular mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Mark W Bowie
- Department of Pharmacy, University of Virginia Medical Center, Charlottesville, Virginia 23298-0533, USA
| | | |
Collapse
|
40
|
Abstract
Aging is associated with a dysregulation of the immune system known as immunosenescence. Immunosenescence involves cellular and molecular alterations that impact both innate and adaptive immunity, leading to increased incidences of infectious disease morbidity and mortality as well as heightened rates of other immune disorders such as autoimmunity, cancer, and inflammatory conditions. While current data suggests physical activity may be an effective and logistically easy strategy for counteracting immunosenescence, it is currently underutilized in clinical settings. Long-term, moderate physical activity interventions in geriatric populations appear to be associated with several benefits including reduction in infectious disease risk, increased rates of vaccine efficacy, and improvements in both physical and psychosocial aspects of daily living. Exercise may also represent a viable therapy in patients for whom pharmacological treatment is unavailable, ineffective, or inappropriate. The effects of exercise impact multiple aspects of immune response including T cell phenotype and proliferation, antibody response to vaccination, and cytokine production. However, an underlying mechanism by which exercise affects numerous cell types and responses remains to be identified. Given this evidence, an increase in the use of physical activity programs by the healthcare community may result in improved health of geriatric populations.
Collapse
|
41
|
|
42
|
Vallejo AN. Age-dependent alterations of the T cell repertoire and functional diversity of T cells of the aged. Immunol Res 2007; 36:221-8. [PMID: 17337782 DOI: 10.1385/ir:36:1:221] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The aging immune system is characterized by the contraction of T cell receptor (TCR) diversity and the de novo expression of NKrelated receptors (NKR) on oligoclonal T cells. NKR+ T cells likely represent a secondary immune diversification as a biological adaptation of aging to ensure host defense despite shrinkage of the TCR repertoire. NKRs are expressed in various combinations even among TCR-identical cells, and are capable of triggering effector pathways in either TCR-independent or TCR-dependent fashion. Understanding the biology of NKR+ T cells will be pivotal to the development of strategies to enhance immunity in the elderly.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
43
|
Michel JJ, Turesson C, Lemster B, Atkins SR, Iclozan C, Bongartz T, Wasko MC, Matteson EL, Vallejo AN. CD56-expressing T cells that have features of senescence are expanded in rheumatoid arthritis. ACTA ACUST UNITED AC 2007; 56:43-57. [PMID: 17195207 DOI: 10.1002/art.22310] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE T cells deficient in CD28 expression have been implicated in the pathogenesis of rheumatoid arthritis (RA). Given that CD28-null T cells are functionally heterogeneous, we undertook this study to screen for novel receptors on these cells. METHODS Seventy-two patients with RA (ages 35-84 years) and 53 healthy persons (32 young controls ages 19-34 years, 21 older controls ages 39-86 years) were recruited. Phenotypes and proliferative capacity of T cells from fresh leukocytes and of long-term cultures were monitored by flow cytometry. Lung biopsy specimens from patients with RA-associated interstitial pneumonitis (IP) were examined by immunohistochemistry. Receptor functionality was assessed by crosslinking bioassays. RESULTS Chronic stimulation of CD28(+) T cells in vitro yielded progenies that lacked CD28 but that gained CD56. Ex vivo analysis of leukocytes from patients with extraarticular RA showed a higher frequency of CD56(+),CD28-null T cells than in patients with disease confined to the joints or in healthy controls. CD56(+),CD28-null T cells had nil capacity for proliferation, consistent with cellular senescence. CD56(+) T cells had skewed T cell receptor (TCR) alpha/beta-chain usage and restricted TCR third complementarity-determining region spectra. Histologic studies showed that CD56(+) T cells were components of cellular infiltrates in RA-associated IP. CD56 crosslinking on T cells sufficiently induced cytokine production, although CD56/TCR coligation induced higher production levels. CONCLUSION Chronic activation of T cells induces counterregulation of CD28 and CD56 expression. The loss of CD28 is accompanied by the gain of CD56 that confers TCR-independent and TCR-dependent activation pathways. We propose that accumulation of CD56(+) T cells in RA contributes to maladaptive immune responses and that CD56(+) T cells are potential targets for therapy.
Collapse
Affiliation(s)
- Joshua J Michel
- Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vallejo AN. Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease. Trends Mol Med 2007; 13:94-102. [PMID: 17267287 DOI: 10.1016/j.molmed.2007.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/08/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
Immunological studies of aging and of patients with chronic immune-mediated diseases document overlap of immune phenotypes. Here, the term "immune remodeling" refers to these phenotypes that are indicative of biological processes of deterioration and repair. This concept is explored through lessons from studies about the changes in the T-cell repertoire and the functional diversity of otherwise oligoclonal, senescent T cells. Immune remodeling suggests a gradual process that occurs throughout life. However, similar but more drastic remodeling occurs disproportionately among young patients with chronic disease. In this article, I propose that immune remodeling is a beneficial adaptation of aging to promote healthy survival beyond reproductive performance, but acute remodeling poses risk of premature exhaustion of the immune repertoire and, thus, is detrimental in young individuals.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Departments of Pediatrics and Immunology, University of Pittsburgh School of Medicine, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
45
|
Hodkinson CF, O'Connor JM, Alexander HD, Bradbury I, Bonham MP, Hannigan BM, Gilmore WS, Strain JJ, Wallace JMW. Whole Blood Analysis of Phagocytosis, Apoptosis, Cytokine Production, and Leukocyte Subsets in Healthy Older Men and Women: The ZENITH Study. J Gerontol A Biol Sci Med Sci 2006; 61:907-17. [PMID: 16960021 DOI: 10.1093/gerona/61.9.907] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Few studies to date have examined age-related changes in markers of immune status in healthy older individuals. The immune status of 93 healthy individuals aged 55-70 years was assessed by two- and three-color flow cytometry and biochemical analysis. There were significant age effects (p <or=.05) on monocyte phagocytic activity and cluster of differentiation (CD) 3/human leukocyte antigen-D-related (HLA-DR) late-activated T lymphocytes (% expression). There was a significant (p <or= 0.1) Age x Sex interaction in absolute counts (x 10(9)/L) of CD3/CD8 total cytotoxic T lymphocytes (CTL), the CD4 T- helper to CD8 CTL ratio, the CD3/CD4/CD45RA naïve T helper to CD3/CD4/CD45RO memory T helper lymphocyte ratio, and interleukin (IL)-1beta (% expression) by activated monocytes. The study shows that alterations in markers of immune status occur between 55 and 70 years, and provides reference values for the lymphocyte measures in healthy men and postmenopausal women in this age group. The study further highlights the need for sex-specific reference ranges for such markers.
Collapse
Affiliation(s)
- Clare F Hodkinson
- Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine, Northern Ireland, BT52 1SA
| | | | | | | | | | | | | | | | | |
Collapse
|