1
|
Fleming A, Lopez A, Rob M, Ramakrishna S, Park SJ, Li X, Rubinsztein DC. How does autophagy impact neurological function? Neuroscientist 2025:10738584251324459. [PMID: 40079405 DOI: 10.1177/10738584251324459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Autophagies describe a set of processes in which cells degrade their cytoplasmic contents via various routes that terminate with the lysosome. In macroautophagy (the focus of this review, henceforth autophagy), cytoplasmic contents, including misfolded proteins, protein complexes, dysfunctional organelles, and various pathogens, are captured within double membranes called autophagosomes, which ultimately fuse with lysosomes, after which their contents are degraded. Autophagy is important in maintaining neuronal and glial function; consequently, disrupted autophagy is associated with various neurologic diseases. This review provides a broad perspective on the roles of autophagy in the CNS, highlighting recent literature that furthers our understanding of the multifaceted role of autophagy in maintaining a healthy nervous system.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Matea Rob
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Sarayu Ramakrishna
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - So Jung Park
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Xinyi Li
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
2
|
Rong J, Wang Y, Liu N, Shen L, Ma Q, Wang M, Han B. Chronic stress induces insulin resistance and enhances cognitive impairment in AD. Brain Res Bull 2024; 217:111083. [PMID: 39304000 DOI: 10.1016/j.brainresbull.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic stress can induce the cognitive impairment, and even promote the occurrence and development of Alzheimer's disease (AD). Evidence has suggested that chronic stress impacts on glucose metabolism, and both of these have been implicated in AD. Here we focused on the effect of insulin resistance in glucose metabolism, and further evaluated the changes in cognition and pathology. METHODS Male 9-month-old wild-type and APP/PS1 mice were randomly divided into 4 groups. Mice in the chronic unpredictable mild stress (CUMS) groups were exposed for 4 weeks. Homeostatic Model Assessment (HOMA) was utilized to evaluate insulin sensitivity. A total of eighty-four genes related to the insulin signaling pathway were examined for rapid screening. Additionally, the phosphorylated protein expressions of insulin receptors (IR), IR substrate 1 (IRS1), c-Jun N-terminal kinase (JNK), and amyloid were detected in the hippocampus. Cognitive function was assessed through ethological methods. Cognitive function was assessed using both the Morris water maze (MWM) and the Passive avoidance test (PAT). RESULTS Four weeks of CUMS exposure significantly increased the HOMA value, indicating reduced insulin sensitivity. The gene expressions of Insr and Lipe were downregulated. Additionally, the analysis revealed a significant interaction between the genotype (wild-type vs. APP/PS1) and CUMS treatment on the phosphorylated protein expressions of insulin receptor substrate 1 (IRS1). Specifically, CUMS exposure increased the inhibitory phosphorylation site (IRS1-pSer636) and decreased the excitatory phosphorylation site (IRS1-pTyr465) in the post-insulin receptor signaling pathway within the hippocampus of both wild-type and APP/PS1 mice. Moreover, CUMS exposure induced and exacerbated cognitive impairments in both wild-type and APP/PS1 mice, as assessed by the Morris water maze (MWM) and Passive avoidance test (PAT). However, there was no significant effect of CUMS on senile plaque deposition or levels of Aβ42 and Aβ40 in wild-type mice. CONCLUSIONS Chronic stress significantly affects hippocampal cognitive function through insulin resistance and exacerbates AD pathology. This study reveals the complex relationship between chronic stress, insulin resistance, and AD, providing new insights for developing interventions targeting chronic stress and insulin resistance.
Collapse
Affiliation(s)
- Jiaying Rong
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yanyong Wang
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Na Liu
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qinying Ma
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Mingwei Wang
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Bing Han
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Liu X, Chen J, Du Y, Tian Q, Wang L, Li W, Liu G, Tan Q, Wang J, Deng X. The changes of neurogenesis in the hippocampal dentate gyrus of SAMP8 mice and the effects of acupuncture and moxibustion. Brain Res 2024; 1831:148814. [PMID: 38395250 DOI: 10.1016/j.brainres.2024.148814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Influenced by the global aging population, the incidence of Alzheimer's disease (AD) has increased sharply. In addition to increasing β-amyloid plaque deposition and tau tangle formation, neurogenesis dysfunction has recently been observed in AD. Therefore, promoting regeneration to improve neurogenesis and cognitive dysfunction can play an effective role in AD treatment. Acupuncture and moxibustion have been widely used in the clinical treatment of neurodegenerative diseases because of their outstanding advantages such as early, functional, and benign two-way adjustment. It is urgent to clarify the effectiveness, greenness, and safety of acupuncture and moxibustion in promoting neurogenesis in AD treatment. METHODS Senescence-accelerated mouse prone 8 (SAMP8) mice at various ages were used as experimental models to simulate the pathology and behaviors of AD mice. Behavioral experiments, immunohistochemistry, Western blot, and immunofluorescence experiments were used for comparison between different groups. RESULTS Acupuncture and moxibustion could increase the number of PCNA+ DCX+ cells, Nissl bodies, and mature neurons in the hippocampal Dentate gyrus (DG) of SAMP8 mice, restore the hippocampal neurogenesis, delay the AD-related pathological presentation, and improve the learning and memory abilities of SAMP8 mice. CONCLUSION The pathological process underlying AD and cognitive impairment were changed positively by improving the dysfunction of neurogenesis. This indicates the promising role of acupuncture and moxibustion in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xinyuan Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China.
| | - Qing Tian
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Jingzhi Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xiaoni Deng
- Wuhan University of Bioengineering, Wuhan, Hubei 430030, China
| |
Collapse
|
4
|
Sola-Sevilla N, Puerta E. SIRT2 as a potential new therapeutic target for Alzheimer's disease. Neural Regen Res 2024; 19:124-131. [PMID: 37488853 PMCID: PMC10479864 DOI: 10.4103/1673-5374.375315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years, bringing a heavy burden to individuals and society due to the lack of an effective treatment. In this context, sirtuin 2, the sirtuin with the highest expression in the brain, has emerged as a potential therapeutic target for neurodegenerative diseases. This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology, microtubule stability, neuroinflammation, myelin formation, autophagy, and oxidative stress. The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease. However, its presence in different cell types and its enormous variety of substrates leads to apparently contradictory conclusions when it comes to understanding its specific functions. Further studies in sirtuin 2 research with selective sirtuin 2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target. This will contribute to the development of new treatment strategies, not only for Alzheimer's disease but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
5
|
Fujiwara M, Ferdousi F, Isoda H. Investigation into Molecular Brain Aging in Senescence-Accelerated Mouse (SAM) Model Employing Whole Transcriptomic Analysis in Search of Potential Molecular Targets for Therapeutic Interventions. Int J Mol Sci 2023; 24:13867. [PMID: 37762170 PMCID: PMC10530366 DOI: 10.3390/ijms241813867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
With the progression of an aging society, cognitive aging has emerged as a pressing concern necessitating attention. The senescence-accelerated mouse-prone 8 (SAMP8) model has proven instrumental in investigating the early stages of cognitive aging. Through an extensive examination of molecular changes in the brain cortex, utilizing integrated whole-genome transcriptomics, our principal aim was to uncover potential molecular targets with therapeutic applications and relevance to drug screening. Our investigation encompassed four distinct conditions, comparing the same strain at different time points (1 year vs. 16 weeks) and the same time point across different strains (SAMP8 vs. SAMR1), namely: physiological aging, accelerated aging, early events in accelerated aging, and late events in accelerated aging. Focusing on key functional alterations associated with aging in the brain, including neurogenesis, synapse dynamics, neurometabolism, and neuroinflammation, we identified candidate genes linked to these processes. Furthermore, employing protein-protein interaction (PPI) analysis, we identified pivotal hub genes involved in interactions within these functional domains. Additionally, gene-set perturbation analysis allowed us to uncover potential upstream genes or transcription factors that exhibited activation or inhibition across the four conditions. In summary, our comprehensive analysis of the SAMP8 mouse brain through whole-genome transcriptomics not only deepens our understanding of age-related changes but also lays the groundwork for a predictive model to facilitate drug screening for cognitive aging.
Collapse
Affiliation(s)
- Michitaka Fujiwara
- Graduate School of Environmental Science Program, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Farhana Ferdousi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| |
Collapse
|
6
|
Akbulut K, Keskin-Aktan A, Abgarmi S, Akbulut H. The role of SIRT2 inhibition on the aging process of brain in male rats. AGING BRAIN 2023; 4:100087. [PMID: 37519449 PMCID: PMC10372168 DOI: 10.1016/j.nbas.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background Though the exact mechanisms regarding brain aging and its relation to neurodegenerative disorders are not precise, oxidative stress, the key regulators of apoptosis and autophagy, such as bcl-2 and beclin 1, seem to be the potential players in the aging of the cerebral cortex and hippocampus. As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) has been associated to age-related diseases. However, the exact role of SIRT2 in brain aging is not well studied. The objective of the current study was to study the role of SIRT2 inhibition on brain aging through the neuroprotective mechanisms. Methods We tested the effects of AGK-2, a SIRT2 inhibitor, on oxidative stress parameters, apoptosis and autophagy regulators including bcl-2, bax, beclin1 in young and old rats. 24 Wistar albino rats (3 months-old and 22 months-old) were divided into four groups; Young-Control (4% DMSO+PBS), Young-AGK-2 (10 µM/bw, ip), Aged-Control, and Aged-AGK-2. Following the 30 days of drug administration period the rats were sacrificed and the cerebral cortex, hippocampus, and cerebellum were isolated. Total antioxidant status (TAS) and total oxidant status (TOS) were measured as oxidative stress parameters in all three brain regions. SIRT2, bcl-2, and bax protein expression levels were measured by western blot and gene expression level of beclin 1, Atg5, and SIRT2 by real-time PCR. Results The bcl-2, bcl-2/bax ratio, beclin 1, and TAS in the cerebral cortex of the aged group were significantly decreased; however, the TOS, oxidative stress index (OSI), and SIRT2 expression in the cerebral cortex and hippocampus increased. SIRT2 inhibition by AGK-2 reduced TOS and OSI levels in all brain regions and increased bcl-2, bcl-2/bax ratio. In aged animals, AGK-2 also increased the beclin 1 levels in the cortex and hippocampus. Conclusion Our results indicate that SIRT2 has an essential role in brain aging. The inhibition of SIRT2 by AGK-2 may increase cell survival and decrease aging related processes in the cerebral cortex and hippocampus via decreasing oxidative stress, and increasing bcl-2 and beclin 1 expression.
Collapse
Affiliation(s)
- K.G. Akbulut
- Department of Physiology, School of Medicine, Gazi University, Ankara, Turkey
| | - A. Keskin-Aktan
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - S.A. Abgarmi
- Department of Basic Oncology, Cancer Research Institute, Ankara University, Ankara, Turkey
- Department of Medical Oncology, School of Medicine, Ankara University Ankara, Turkey
| | - H. Akbulut
- Department of Basic Oncology, Cancer Research Institute, Ankara University, Ankara, Turkey
- Department of Medical Oncology, School of Medicine, Ankara University Ankara, Turkey
| |
Collapse
|
7
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
8
|
Bergamini G, Massinet H, Hart A, Durkin S, Pierlot G, Steiner MA. Probing the relevance of the accelerated aging mouse line SAMP8 as a model for certain types of neuropsychiatric symptoms in dementia. Front Psychiatry 2023; 14:1054163. [PMID: 36896346 PMCID: PMC9989166 DOI: 10.3389/fpsyt.2023.1054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION People with dementia (PwD) often present with neuropsychiatric symptoms (NPS). NPS are of substantial burden to the patients, and current treatment options are unsatisfactory. Investigators searching for novel medications need animal models that present disease-relevant phenotypes and can be used for drug screening. The Senescence Accelerated Mouse-Prone 8 (SAMP8) strain shows an accelerated aging phenotype associated with neurodegeneration and cognitive decline. Its behavioural phenotype in relation to NPS has not yet been thoroughly investigated. Physical and verbal aggression in reaction to the external environment (e.g., interaction with the caregiver) is one of the most prevalent and debilitating NPS occurring in PwD. Reactive aggression can be studied in male mice using the Resident-Intruder (R-I) test. SAMP8 mice are known to be more aggressive than the Senescence Accelerated Mouse-Resistant 1 (SAMR1) control strain at specific ages, but the development of the aggressive phenotype over time, is still unknown. METHODS In our study, we performed a longitudinal, within-subject, assessment of aggressive behaviour of male SAMP8 and SAMR1 mice at 4, 5, 6 and 7 months of age. Aggressive behaviour from video recordings of the R-I sessions was analysed using an in-house developed behaviour recognition software. RESULTS SAMP8 mice were more aggressive relative to SAMR1 mice starting at 5 months of age, and the phenotype was still present at 7 months of age. Treatment with risperidone (an antipsychotic frequently used to treat agitation in clinical practice) reduced aggression in both strains. In a three-chamber social interaction test, SAMP8 mice also interacted more fervently with male mice than SAMR1, possibly because of their aggression-seeking phenotype. They did not show any social withdrawal. DISCUSSION Our data support the notion that SAMP8 mice might be a useful preclinical tool to identify novel treatment options for CNS disorders associated with raised levels of reactive aggression such as dementia.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Helene Massinet
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Aaron Hart
- Scientific Computing Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Sean Durkin
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Gabin Pierlot
- Scientific Computing Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|
9
|
Shimada Y, Sato Y, Kumazoe M, Kitamura R, Fujimura Y, Tachibana H. Myricetin improves cognitive function in SAMP8 mice and upregulates brain-derived neurotrophic factor and nerve growth factor. Biochem Biophys Res Commun 2022; 616:33-40. [DOI: 10.1016/j.bbrc.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
10
|
Li MZ, Liu EJ, Zhou QZ, Li SH, Liu SJ, Yu HT, Pan QH, Sun F, He T, Wang WJ, Ke D, Feng YQ, Li J, Wang JZ. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling. Mil Med Res 2022; 9:38. [PMID: 35799293 PMCID: PMC9264508 DOI: 10.1186/s40779-022-00396-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autophagy dysfunction plays a crucial role in tau accumulation and neurodegeneration in Alzheimer's disease (AD). This study aimed to investigate whether and how the accumulating tau may in turn affect autophagy. METHODS The primary hippocampal neurons, N2a and HEK293T cells with tau overexpression were respectively starved and treated with vinblastine to study the effects of tau on the initiating steps of autophagy, which was analysed by Student's two-tailed t-test. The rapamycin and concanamycin A were employed to inhibit the mammalian target of rapamycin kinase complex 1 (mTORC1) activity and the vacuolar H+-ATPase (v-ATPase) activity, respectively, which were analysed by One-way ANOVA with post hoc tests. The Western blotting, co-immunoprecipitation and immunofluorescence staining were conducted to gain insight into the mechanisms underlying the tau effects of mTORC1 signaling alterations, as analysed by Student's two-tailed t-test or One-way ANOVA with post hoc tests. The autophagosome formation was detected by immunofluorescence staining and transmission electron microscopy. The amino acids (AA) levels were detected by high performance liquid chromatography (HPLC). RESULTS We observed that overexpressing human full-length wild-type tau to mimic AD-like tau accumulation induced autophagy deficits. Further studies revealed that the increased tau could bind to the prion-related domain of T cell intracellular antigen 1 (PRD-TIA1) and this association significantly increased the intercellular level of amino acids (Leucine, P = 0.0038; Glutamic acid, P = 0.0348; Alanine, P = 0.0037; Glycine, P = 0.0104), with concordant upregulation of mTORC1 activity [phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p-4EBP1), P < 0.0001; phosphorylated 70 kDa ribosomal protein S6 kinase 1 (p-p70S6K1), P = 0.0001, phosphorylated unc-51-like autophagy-activating kinase 1 (p-ULK1), P = 0.0015] and inhibition of autophagosome formation [microtubule-associated protein light chain 3 II (LC3 II), P = 0.0073; LC3 puncta, P < 0.0001]. As expected, this tau-induced deficit of autophagosome formation in turn aggravated tau accumulation. Importantly, we also found that blocking TIA1 and tau interaction by overexpressing PRD-TIA1, downregulating the endogenous TIA1 expression by shRNA, or downregulating tau protein level by a small proteolysis targeting chimera (PROTAC) could remarkably attenuate tau-induced autophagy impairment. CONCLUSIONS Our findings reveal that AD-like tau accumulation inhibits autophagosome formation and induces autophagy deficits by activating the TIA1/amino acid/mTORC1 pathway, and thus this work reveals new insight into tau-associated neurodegeneration and provides evidence supporting the use of new therapeutic targets for AD treatment and that of related tauopathies.
Collapse
Affiliation(s)
- Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shi-Jie Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Hai-Tao Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi-Hang Pan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wei-Jin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Jun Li
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000 Jiangsu China
| |
Collapse
|
11
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, Diaz A, Lindenau K, Tu V, Krause GJ, Jafari M, Singh R, Muñoz J, Macian F, Cuervo AM. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol 2021; 23:1255-1270. [PMID: 34876687 PMCID: PMC8688252 DOI: 10.1038/s41556-021-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2021] [Indexed: 01/02/2023]
Abstract
Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.
Collapse
Affiliation(s)
- Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranee Aflakpui
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fernando Garcia
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Javier Muñoz
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Fernando Macian
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Li H, Ma J, Zhang J, Shi WY, Mei HN, Xing Y. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Thyroid Hormones Level and Cognition in the Recovery Stage of Stroke Patients with Cognitive Dysfunction. Med Sci Monit 2021; 27:e931914. [PMID: 34686649 PMCID: PMC8549488 DOI: 10.12659/msm.931914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background This single-center study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on modulation of thyroid hormone levels and cognition in the recovery stage of patients with cognitive dysfunction following stroke. Material/Methods Seventy post-stroke patients who had cognitive impairment were randomly assigned to either the rTMS group or the control (sham) group. Both groups were administered basic treatment, with the rTMS group receiving rTMS (1 Hz, 90% MT, 1000 pulse/20 min, once a day for 5 days, for a total of 20 times), the stimulation site was the contralateral dorsolateral prefrontal cortex (DLPFC), and the sham group receiving sham stimulation which had the same stimulation parameters and site, except that the coil plane was placed perpendicular to the surface of the scalp. Cognitive function assessment and thyroid function tests were performed before and after 4 weeks of treatment. Results Serum levels of triiodothyronine (T3), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) showed a positive correlation with Montreal Cognitive Assessment (MoCA) scale score of stroke patients in the recovery phase. The post-treatment change in the scores of MoCA and Modified Barthel Index (MBI) and scores of 3 cognitive domains (visuospatial function, memory, and attention), as well as serum T3, FT3, and TSH levels, were improved more significantly in the rTMS group, and T3 and FT3 levels significantly affected the MoCA scores within the reference range. Conclusions Serum T3, FT3, and TSH levels of stroke patients in the recovery phase were positively correlated with MoCA score. rTMS increased T3, FT3, and TSH levels and also improved MoCA and MBI of patients in the recovery phase of stroke.
Collapse
Affiliation(s)
- Hong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Jiang Ma
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Jun Zhang
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Wan-Ying Shi
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Hao-Nan Mei
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yan Xing
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
14
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
15
|
Wang K, Sun W, Xu J, Qin Q, Yu Z, Cheng R, Zhang L, Liu S, Zhou Z, Zhang Y, Cui Y. Yishen Huazhuo Decoction Induces Autophagy to Promote the Clearance of Aβ<sub>1-42</sub> in SAMP8 Mice: Mechanism Research of a Traditional Chinese Formula Against Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:276-289. [PMID: 32496993 DOI: 10.2174/1871527319666200604174223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/22/2020] [Accepted: 04/03/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Studies have found that autophagy could promote the clearance of Aβ. To promote and maintain the occurrence of autophagy in Alzheimer's Disease (AD) might be a potential way to reduce neuronal loss and improve the learning and memory of AD. OBJECTIVE To investigate the possible mechanisms of Yishen Huazhuo Decoction (YHD) against AD model. METHODS Forty 7-month-old male SAMP8 mice were randomly divided into model (P8) group and YHD group, 20 in each group, with 20 SAMR1 mice as control (R1) group. All mice were intragastrically administered for 4 weeks, YHD at the dosage of 6.24g/kg for YHD group, and distilled water for P8 group and R1 group. Morris Water Maze (MWM) test, Nissl's staining, TEM, TUNEL staining, immunofluorescence double staining, and western blot analysis were applied to learning and memory, structure and ultrastructure of neurons, autophagosome, apoptosis index, Aβ, LAMP1, and autophagy related proteins. RESULTS The escape latency time of YHD group was significantly shorter on the 4th and 5th day during MWM test than those in P8 group (P=0.011, 0.008<0.05), and the number of crossing platform in YHD group increased significantly (P=0.02<0.05). Nissl's staining showed that the number of neurons in YHD group increased significantly (P<0.0001). TEM showed in YHD group that the nucleus of neurons was slightly irregular, with slightly reduced organelles, partially fused and blurred cristae and membrane of mitochondria. The apoptosis index of YHD group showed a decreasing trend, without statistically significant difference (P=0.093>0.05), while Caspase3 expression in YHD group was significantly lower (P=0.044<0.05). YHD could promote the clearance of Aβ1-42 protein, improve the expression of Beclin-1 and p-Bcl2 proteins, reduce mTOR and p62 proteins. CONCLUSION YHD could induce autophagy initiation, increase the formation of autophagosomes and autolysosome, promote the degradation of autophagy substrates, thereby regulating autophagy, and promoting the clearance of Aβ1-42 to improve memory impairment in SAMP8 mice.
Collapse
Affiliation(s)
- Kai Wang
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Weiming Sun
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Jiachun Xu
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Qijing Qin
- International Zhuang Medical Hospital, Nanning, Guangxi, 530201, China
| | - Zhen Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruzhen Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Linlin Zhang
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Shuang Liu
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Zhen Zhou
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Yulian Zhang
- The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
| | - Yuanwu Cui
- Shenzhen Traditional Chinese Medicine Treatment Hospital, Shenzhen, 518100, China
| |
Collapse
|
16
|
Liu B, Liu J, Shi JS. SAMP8 Mice as a Model of Age-Related Cognition Decline with Underlying Mechanisms in Alzheimer's Disease. J Alzheimers Dis 2021; 75:385-395. [PMID: 32310176 DOI: 10.3233/jad-200063] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a highly age-related cognitive decline frequently attacking the elderly. Senescence-accelerated mouse-prone 8 (SAMP8) is an ideal model to study AD, displaying age-related learning and memory disorders. SAMP8 mice exhibit most features of pathogenesis of AD, including an abnormal expression of anti-aging factors, oxidative stress, inflammation, amyloid-β (Aβ) deposits, tau hyperphosphorylation, endoplasmic reticulum stress, abnormal autophagy activity, and disruption of intestinal flora. SAMP8 mice, therefore, have visualized the understanding of AD, and also provided effective ways to find new therapeutic targets. This review focused on the age-related pathogenesis in SAMP8 mice, to advance the understanding of age-related learning and memory decline and clarify the mechanisms. Furthermore, this review will provide extensive foundations for SAMP8 mice used in therapeutics for AD.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Dietary Protein Source Influences Brain Inflammation and Memory in a Male Senescence-Accelerated Mouse Model of Dementia. Mol Neurobiol 2020; 58:1312-1329. [PMID: 33169333 DOI: 10.1007/s12035-020-02191-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Dementia is a pathological condition characterized by a decline in memory, as well as in other cognitive and social functions. The cellular and molecular mechanisms of brain damage in dementia are not completely understood; however, neuroinflammation is involved. Evidence suggests that chronic inflammation may impair cognitive performance and that dietary protein source may differentially influence this process. Dietary protein source has previously been shown to modify systemic inflammation in mouse models. Thus, we aimed to investigate the effect of chronic dietary protein source substitution in an ageing and dementia male mouse model, the senescence-accelerated mouse-prone 8 (SAMP8) model. We observed that dietary protein source differentially modified memory as shown by inhibitory avoidance testing at 4 months of age. Also, dietary protein source differentially modified neuroinflammation and gliosis in male SAMP8 mice. Our results suggest that chronic dietary protein source substitution may influence brain ageing and memory-related mechanisms in male SAMP8 mice. Moreover, the choice of dietary protein source in mouse diets for experimental purposes may need to be carefully considered when interpreting results.
Collapse
|
18
|
Wan JZ, Wang R, Zhou ZY, Deng LL, Zhang CC, Liu CQ, Zhao HX, Yuan CF, He YM, Dun YY, Yuan D, Wang T. Saponins of Panax japonicus Confer Neuroprotection against Brain Aging through Mitochondrial Related Oxidative Stress and Autophagy in Rats. Curr Pharm Biotechnol 2020; 21:667-680. [PMID: 31840608 DOI: 10.2174/1389201021666191216114815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/31/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction play a vital role in the pathogenesis of brain aging. Saponins from Panax japonicus (SPJ) have attracted much attention for their potential to attenuate age-related oxidative stress as the main ingredient in rhizomes of Panax japonicus. OBJECTIVE This study aimed to investigate the neuroprotective effects of SPJ on natural aging rats as well as the underlying mechanisms regarding oxidative stress and mitochondrial pathway. METHODS Sprague-Dawley rats were divided into control groups (3-, 9-, 15- and 24-month old groups) and SPJ-treated groups. For SPJ-treated groups, SPJ were orally administrated to 18-month old rats at doses of 10 mg/kg, 30 mg/kg and 60 mg/kg once daily. Control groups were given the same volume of saline. After the treatment with SPJ or saline for six months, the cortex and hippocampus were rapidly harvested and deposited at -80°C after the rats were decapitated under anesthesia. The neuroprotective effects of SPJ were estimated by histopathological observation, TUNEL detection, biochemical determination and western blotting. RESULTS SPJ improved pathomorphological changes in neuronal cells and decreased apoptosis in the cortex and hippocampus of aging rats, increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase whereas, decreased malondialdehyde (MDA) contents in the cortex of aging rats. Furthermore, the SPJ increased silent mating type information regulation 2 homolog-1 (SIRT1) protein expression, decreased acetylated level of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in the cortex and hippocampus of aging rats, and reversed the aging-induced decline of Forkhead box O3 (Foxo3a), Superoxide Dismutase 2 (SOD2), microtubule-associated protein light chain 3 (LC3II) and Beclin1 levels in the cortex and hippocampus. CONCLUSION Our data showed that SPJ conferred neuroprotection partly through the regulation of oxidative stress and mitochondria-related pathways in aging rats.
Collapse
Affiliation(s)
- Jing-Zhi Wan
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Rui Wang
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Zhi-Yong Zhou
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Li-Li Deng
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Chang-Cheng Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Chao-Qi Liu
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Hai-Xia Zhao
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Cheng-Fu Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Yu-Min He
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Yao-Yan Dun
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Ting Wang
- College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China.,Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Lee JY, Kennedy BK, Liao CY. Mechanistic target of rapamycin signaling in mouse models of accelerated aging. J Gerontol A Biol Sci Med Sci 2020; 75:64-72. [PMID: 30900725 DOI: 10.1093/gerona/glz059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an essential nutrient-sensing kinase that integrates and regulates a number of fundamental cellular processes required for cell growth, cell motility, translation, metabolism, and autophagy. mTOR signaling has been implicated in the progression of many human diseases, and its dysregulation has been reported in several pathological processes, especially in age-related human diseases and mouse models of accelerated aging. In addition, many studies have demonstrated that the regulation of mTOR activity has a beneficial effect on longevity in several mouse models of aging. However, not all mouse models of accelerated aging show positive effects on aging-associated phenotypes in response to targeting mTOR signaling. Here, we review the effects of interventions that modulate mTOR signaling on aging-related phenotypes in different mouse models of accelerated aging and discuss their implications with respect to aging and aging-related disorders.
Collapse
Affiliation(s)
- Jin Young Lee
- Buck Institute for Research on Aging, Novato, California
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California
- Department of Biochemistry and Physiology, National University of Singapore, Singapore
- Centre for Healthy Ageing, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California
| |
Collapse
|
20
|
Lv LL, Liu B, Liu J, Li LS, Jin F, Xu YY, Wu Q, Liu J, Shi JS. Dendrobium nobile Lindl. Alkaloids Ameliorate Cognitive Dysfunction in Senescence Accelerated SAMP8 Mice by Decreasing Amyloid-β Aggregation and Enhancing Autophagy Activity. J Alzheimers Dis 2020; 76:657-669. [DOI: 10.3233/jad-200308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ling-Li Lv
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pharmacy, Guizhou College of Health Professions, Tongren, Guizhou, China
| | - Bo Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Sheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun-Yan Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
21
|
Su D, Li W, Chi H, Yang H, She X, Wang K, Gao X, Ma K, Zhang M, Cui B. Transcriptome analysis of the hippocampus in environmental noise-exposed SAMP8 mice reveals regulatory pathways associated with Alzheimer's disease neuropathology. Environ Health Prev Med 2020; 25:3. [PMID: 31918655 PMCID: PMC6953163 DOI: 10.1186/s12199-019-0840-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Chronic noise exposure is one environmental hazard that is associated with genetic susceptibility factors that increase Alzheimer’s disease (AD) pathogenesis. However, the comprehensive understanding of the link between chronic noise stress and AD is limited. Herein, we investigated the effects of chronic noise exposure on AD-like changes in senescence-accelerated mouse prone 8 (SAMP8). Methods A total of 30 male SAMP8 mice were randomly divided into the noise-exposed group, the control group, and aging group (positive controls), and mice in the exposure group were exposed to 98 dB SPL white noise for 30 consecutive days. Transcriptome analysis and AD-like neuropathology of hippocampus were examined by RNA sequencing and immunoblotting. Enzyme-linked immunosorbent assay and real-time PCR were used to further determine the differential gene expression and explore the underlying mechanisms of chronic noise exposure in relation to AD at the genome level. Results Chronic noise exposure led to amyloid beta accumulation and increased the hyperphosphorylation of tau at the Ser202 and Ser404 sites in young SAMP8 mice; similar observations were noted in aging SAMP8 mice. We identified 21 protein-coding transcripts that were differentially expressed: 6 were downregulated and 15 were upregulated after chronic noise exposure; 8 genes were related to AD. qPCR results indicated that the expression of Arc, Egr1, Egr2, Fos, Nauk1, and Per2 were significantly high in the noise exposure group. These outcomes mirrored the results of the RNA sequencing data. Conclusions These findings further revealed that chronic noise exposure exacerbated aging-like impairment in the hippocampus of the SAMP8 mice and that the protein-coding transcripts discovered in the study may be key candidate regulators involved in environment-gene interactions.
Collapse
Affiliation(s)
- Donghong Su
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wenlong Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huimin Chi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China.
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
22
|
Li G, Zeng L, Cheng H, Han J, Zhang X, Xie H. Acupuncture Administration Improves Cognitive Functions and Alleviates Inflammation and Nuclear Damage by Regulating Phosphatidylinositol 3 Kinase (PI3K)/Phosphoinositol-Dependent Kinase 1 (PDK1)/Novel Protein Kinase C (nPKC)/Rac 1 Signaling Pathway in Senescence-Accelerated Prone 8 (SAM-P8) Mice. Med Sci Monit 2019; 25:4082-4093. [PMID: 31152645 PMCID: PMC6559003 DOI: 10.12659/msm.913858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-associated neurodegenerative disorder. This study aimed to investigate effects of acupuncture administration on cognitive function and associated mechanisms. MATERIAL AND METHODS Senescence-accelerated prone 8 (SAM-P8) mice were randomly divided into 3 groups: the SAM-P8 group (P8-CN), the SAM-P8 administrating with acupuncture (P8-Acup) group, and the SAM-P8 administrating without acupuncture (P8-Sham) group. Morris water maze test was conducted to evaluate cognitive functions (memory and learning ability). PDK1, nPKC, and Rac1 inhibitors were used to treat SAM-P8 mice. Transmission electron microscope analysis was used to examine nuclear damage hippocampal tissues. Hematoxylin and eosin (H&E) staining was employed to evaluate inflammation. Western blot was used to detect PI3K, PDK1, nPKC, and Rac 1 expression in hippocampal tissues. RESULTS Acupuncture administration significantly reduced PI3K, PDK1, nPKC, and Rac 1 levels compared to P8-CN group (P<0.05). Both acupuncture and enzyme inhibitors (NSC23766, Rottlerin, OSU03012) significantly improved cognitive functions, reduced inflammation, and alleviated nuclear damages of SAM-P8 mice compared to P8-CN group (P<0.05). Acupuncture significantly enhanced effects of inhibitors on inflammation and nuclear damages compared to inhibitor treatment single (P<0.05). Acupuncture significantly enhanced down-regulative effects of OSU03012 on PI3K and PDK1 levels, increased down-regulative effects of Rottlerin on nPKC and Rac 1 levels and enhanced effects of Rottlerin on Rac 1 compared to P8-CN group (P<0.05). CONCLUSIONS Acupuncture administration improved cognitive functions and alleviated inflammatory response and nuclear damage of SAM-P8 mice, by downregulating PI3K/PDK1/nPKC/Rac 1 signaling pathway. This study could provide potential insight for treating cognitive dysfunction and aging of AD patients.
Collapse
Affiliation(s)
- Guomin Li
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Lirong Zeng
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Haiyan Cheng
- Department of Traditional Chinese Medicine, Hubei Jianghan Oilfield General Hospital, Jianghan, Hubei, China (mainland)
| | - Jingxian Han
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xuezhu Zhang
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Hui Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| |
Collapse
|
23
|
Chen FJ, Liu B, Wu Q, Liu J, Xu YY, Zhou SY, Shi JS. Icariin Delays Brain Aging in Senescence-Accelerated Mouse Prone 8 (SAMP8) Model via Inhibiting Autophagy. J Pharmacol Exp Ther 2019; 369:121-128. [PMID: 30837279 DOI: 10.1124/jpet.118.253310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/06/2019] [Indexed: 11/22/2022] Open
Abstract
Icariin (ICA), a major flavonoid extracted from the Chinese tonic herb Epimedium, exerts beneficial effects in a variety of age-dependent diseases, such as Alzheimer's disease (AD). However, the antiaging mechanisms remain unclear. The senescence-accelerated mouse-prone 8 (SAMP8) model has been used to study age-related neurodegenerative changes associated with aging and the pathogenesis of AD. Hence, the current study was designed to examine the effect of ICA on age-related cognitive decline in SAMP8 mice and explore the role of autophagy in the ICA-mediated neuroprotection. SAMP8 mice were administered with ICA starting at 5 months of age, and the treatment lasted for 3 consecutive months. Morris water maze was used to evaluate cognitive function. The senescence-associated β-galactosidase staining was used to determine the number of senescence cells. The neuronal morphologic changes were examined via Nissl staining. The hippocampal neuronal ultrastructure was examined by transmission electron microscopy. The expression of autophagy protein was examined by Western blot. ICA-treated SAMP8 mice exhibited a robust improvement in spatial learning and memory function. Meanwhile, ICA reduced the number of senescence cells in the brains of SAMP8 mice, inhibited neuronal loss, and reversed neuronal structural changes in the hippocampi of SAMP8 mice. Moreover, ICA treatment also decreased the formation of autophagosomes in the hippocampus of SAMP8 mice, and reduced the expression of autophagy-related proteins LC3-II and p62. These results demonstrate that ICA possesses the ability to delay brain aging in SAMP8 mice, and the mechanisms are possibly mediated through the regulation of autophagy.
Collapse
Affiliation(s)
- Fa-Ju Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| | - Bo Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| | - Yun-Yan Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| | - Shao-Yu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
24
|
Majd S, Power J, Majd Z. Alzheimer's Disease and Cancer: When Two Monsters Cannot Be Together. Front Neurosci 2019; 13:155. [PMID: 30881282 PMCID: PMC6407038 DOI: 10.3389/fnins.2019.00155] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and cancer are among the leading causes of human death around the world. While neurodegeneration is the main feature of AD, the most important characteristic of malignant tumors is cell proliferation, placing these two diseases in opposite sides of cell division spectrum. Interestingly, AD and cancer's pathologies consist of a remarkable common feature and that is the presence of active cell cycle in both conditions. In an in vitro model of primary adult neuronal culture, we previously showed that treating cell with beta amyloid forced neurons to start a cell cycle. Instead of cell division, however, neuronal cell cycle was aborted and a massive neurodegeneration was left behind as the consequence. A high level of cell cycle entry, which is a requirement for cancer pathogenesis, was reported in clinically diagnosed cases of AD, leading to neurodegeneration. The diverse clinical manifestation of a similar etiology, have puzzled researchers for many years. In fact, the evidence showed an inverse association between AD and cancer prevalence, suggesting that switching pathogenesis toward AD protects patients against cancer and vice versa. In this mini review, we discussed the possibility of involvement of cell proliferation and survival dysregulation as the underlying mechanism of neurodegeneration in AD, and the leading event to develop both disorders' pathology. As examples, the role of phosphoinositide 3 kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in cell cycle re-entry and blocking autophagy are discussed as potential common intracellular components between AD and cancer pathogenesis, with diverse clinical diagnosis.
Collapse
Affiliation(s)
- Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - John Power
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Zohreh Majd
- Psychosomatische Tagesklinik, Passau, Germany
| |
Collapse
|
25
|
Singh AK, Singh S, Tripathi VK, Bissoyi A, Garg G, Rizvi SI. Rapamycin Confers Neuroprotection Against Aging-Induced Oxidative Stress, Mitochondrial Dysfunction, and Neurodegeneration in Old Rats Through Activation of Autophagy. Rejuvenation Res 2019; 22:60-70. [DOI: 10.1089/rej.2018.2070] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, , India
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, , India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, , India
| | - Vinay Kumar Tripathi
- Department of Animal Science and Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Akalabya Bissoyi
- Department of Biomedical Engineering, National Institute of Technology, Raipur, , India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, , India
| | | |
Collapse
|
26
|
Abstract
Autophagy is a conserved process that degrades intracellular components through lysosomes, thereby maintaining energy homeostasis and renewal of organelles. Mounting evidence indicates that autophagy plays a key role in aging and aging-related diseases. Enhanced autophagy can delay aging and prolong life span. The absence of autophagy leads to the accumulation of mutant and misfolded proteins in the cell, which is the basis for the emergence and development of neurodegenerative diseases and other aging-related diseases. It will be of importance to develop approaches to extend the lifespan and improve the health of elderly individuals through the modulation of autophagy.
Collapse
Affiliation(s)
- Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Zheng-Hong Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Chronic noise exposure exacerbates AD-like neuropathology in SAMP8 mice in relation to Wnt signaling in the PFC and hippocampus. Sci Rep 2018; 8:14622. [PMID: 30279527 PMCID: PMC6168589 DOI: 10.1038/s41598-018-32948-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022] Open
Abstract
Non-genetic environmental hazards are thought to be associated with genetic susceptibility factors that increase Alzheimer’s disease (AD) pathogenesis. Aging and chronic noise exposure have been considered important factors in the AD. Here, we investigated the impact of chronic noise exposure on the AD-like neuropathology in the senescence-accelerated prone mouse (SAMP8) and the underlying mechanisms of such effects. We examined the consequences of AD-like neuropathology in 3-month-old SAMP8 mice using low- and high-intensity noise exposure and 8-month-old SAMP8 mice as aging positive controls. Immunoblotting and immunohistochemistry were conducted to examine AD-like pathological changes and potential mechanisms. Chronic noise exposure led to progressive overproduction of Aβ and increased the hyperphosphorylation of tau at Ser396, Thr205, and Thr231 sites in the hippocampus and the prefrontal cortex (PFC) in young SAMP8 mice, similar to that observed in aging SAMP8 mice. Both noise exposure and aging could cause a significant downregulation in Wnt signaling expression. These findings demonstrate that chronic noise stress exacerbated AD-like neuropathology, possibly by disrupting Wnt signaling and triggering aberrant tau hyperphosphorylation and Aβ in the PFC and hippocampus.
Collapse
|
28
|
Garg G, Singh S, Singh AK, Rizvi SI. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration. Appl Physiol Nutr Metab 2018; 43:437-444. [DOI: 10.1139/apnm-2017-0578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
29
|
Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging (Albany NY) 2017; 8:1083-101. [PMID: 27060109 PMCID: PMC4931855 DOI: 10.18632/aging.100924] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1−/−) mice. Col6a1−/− neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1−/− mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Silvia Castagnaro
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| |
Collapse
|
30
|
Structural characterization of a pectic polysaccharide from Codonopsis pilosula and its immunomodulatory activities in vivo and in vitro. Int J Biol Macromol 2017; 104:1359-1369. [DOI: 10.1016/j.ijbiomac.2017.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 06/05/2017] [Indexed: 01/05/2023]
|
31
|
Koda T, Takanari J, Kitadate K, Imai H. Enzyme-treated Asparagus Extract (ETAS) Enhances Memory in Normal Rats and Induces Neurite-outgrowth in PC12 Cells. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Enzyme-treated asparagus extract (ETAS) contains various phytochemicals. It has been reported that ETAS protected early cognitive impairment of SAMP8 mice and Aβ-induced reduction of PC12 cell viability. In addition, ETAS had several functions on healthy people. The purpose of the present study was to investigate the effects of ETAS on normal memory function of rats and neurite-outgrowth of PC12 cells. ETAS significantly accelerated learning acquisition in in vivo and neurite-outgrowth in in vitro study. In conclusion, ETAS affected on memory function in early stage in normal rats. The basis of this effect may induce neurite-outgrowth in neurons.
Collapse
Affiliation(s)
- Tomoko Koda
- Division of Nursing, Faculty of Nursing, Tokyo Healthcare University, Tokyo 152-8558, Japan
| | - Jun Takanari
- Amino Up Chemical Co., Ltd., Hokkaido 004-0839, Japan
| | | | - Hideki Imai
- Division of Nursing, Faculty of Nursing, Tokyo Healthcare University, Tokyo 152-8558, Japan
| |
Collapse
|
32
|
Wang Y, Ma Q, Ma X, Zhang Z, Liu N, Wang M. Role of mammalian target of rapamycin signaling in autophagy and the neurodegenerative process using a senescence accelerated mouse-prone 8 model. Exp Ther Med 2017; 14:1051-1057. [PMID: 28810557 PMCID: PMC5526151 DOI: 10.3892/etm.2017.4618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is an inhibitor of autophagy, which is an intracellular system involved in the degradation of long-lived proteins and organelles in lysosomes. Recent evidence suggests that the steady incline in mTOR function during aging may be associated with the cognitive decline related to aging and may also promote development of Tau pathology. At present, the senescence accelerated mouse prone 8 (SAMP8) is an experimental model that has been proposed for the study of age-related neurodegenerative changes associated with aging. In the present study, mTOR signaling in the hippocampus of SAMP8 newborn mice and in the control-strain SAMR1 mice was investigated. Consequently, hyper phosphorylated Tau (pS199 or pS396) and upregulated mTOR activity were observed in SAMP8 when compared with SAMR1; however, 0.5 µM rapamycin administration significantly reduced the levels of phosphorylated Tau and p70S6K (pT389) in SAMP8 mice. Related to these findings, SAMP8 exhibited an increase in the neuronal loss of hippocampus that was associated with lower levels of anti-apoptotic proteins. These results indicate that mTOR signaling participates in the neurodegenerative process and rapamycin administration may protect neurons of SAMP8 mice and may have a potential role in curing cognitive decline.
Collapse
Affiliation(s)
- Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Qinying Ma
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Xiaowei Ma
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Zhongxia Zhang
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Na Liu
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
33
|
Lumkwana D, du Toit A, Kinnear C, Loos B. Autophagic flux control in neurodegeneration: Progress and precision targeting—Where do we stand? Prog Neurobiol 2017; 153:64-85. [DOI: 10.1016/j.pneurobio.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/09/2023]
|
34
|
Zhang S, Zhu D, Li H, Zhang H, Feng C, Zhang W. Analyses of mRNA Profiling through RNA Sequencing on a SAMP8 Mouse Model in Response to Ginsenoside Rg1 and Rb1 Treatment. Front Pharmacol 2017; 8:88. [PMID: 28289387 PMCID: PMC5326756 DOI: 10.3389/fphar.2017.00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Ginsenoside Rg1 and Rb1 are the major ingredients in two medicines called QiShengLi (Z20027165) and QiShengJing (Z20027164) approved by China. These ingredients are believed to mitigate forgetfulness. Numerous studies have confirmed that GRg1 and GRb1 offer protection against Alzheimer's disease (AD), and our morris water maze (MWM) experiment also indicated that GRg1 and GRb1 may attenuate memory deficits in the 7-month-old SAMP8 mice; however, comprehensive understanding of their roles in AD remains limited. This study systematically explored the mechanism at the genome level of the anti-AD effects of GRg1 and GRb1 in a senescence-accelerated mouse prone 8 (SAMP8) model through deep RNA sequencing. A total of 74,885 mRNA transcripts were obtained. Expression analysis showed that 1,780 mRNA transcripts were differentially expressed in SAMP8 mice compared with the SAMP8+GRg1 mice. Moreover, 1,066 significantly dysregulated mRNA transcripts were identified between SAMP8 and SAMP8+GRb1 mice. Analyses according to gene ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that oral administration of GRg1 and GRb1 improved the learning performance of the SAMP8 mouse model from various aspects, such as nervous system development and mitogen-activated protein kinase signaling pathway. The most probable AD-related transcriptional responses after medication were predicted and discussed in detail. This study is the first to provide a systematic dissection of mRNA profiling in SAMP8 mouse brain in response to GRg1 and GRb1 treatment. We explained their efficacy thoroughly from the source (gene-level explanation). The findings serve as a theoretical basis for the exploration of GRg1 and GRb1 as functional drugs with anti-AD activity.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Dina Zhu
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Hong Li
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Haijing Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Chengqiang Feng
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Wensheng Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China; National and Local United Engineering Research Center for Sanqi Resources Protection and Utilization TechnologyKunming, China
| |
Collapse
|
35
|
Singhrao SK, Chukkapalli S, Poole S, Velsko I, Crean SJ, Kesavalu L. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE -/- mice brains. J Oral Microbiol 2017; 9:1270602. [PMID: 28326151 PMCID: PMC5328363 DOI: 10.1080/20002297.2016.1270602] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Abstract
This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sim K Singhrao
- Dementia and Neurodegeneration Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Sasanka Chukkapalli
- Department of Periodontology, University of Florida , Gainesville , FL , USA
| | - Sophie Poole
- Dementia and Neurodegeneration Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Irina Velsko
- Department of Periodontology, University of Florida , Gainesville , FL , USA
| | - St John Crean
- Dementia and Neurodegeneration Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Lakshmyya Kesavalu
- Department of Periodontology, University of Florida, Gainesville, FL, USA; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Ntsapi C, Loos B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp Gerontol 2016; 83:97-111. [DOI: 10.1016/j.exger.2016.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/07/2023]
|
37
|
Han B, Yu L, Geng Y, Shen L, Wang H, Wang Y, Wang J, Wang M. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice. J Alzheimers Dis 2016; 53:1539-52. [PMID: 27392857 DOI: 10.3233/jad-160189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jinhua Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
38
|
Liu H, Qiu H, Xiao Q, Le W. Chronic Hypoxia-Induced Autophagy Aggravates the Neuropathology of Alzheimer's Disease through AMPK-mTOR Signaling in the APPSwe/PS1dE9 Mouse Model. J Alzheimers Dis 2016; 48:1019-32. [PMID: 26444766 DOI: 10.3233/jad-150303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with the accumulation of senile plaques and neurofibrillary tangles in the brain. Autophagy is the key machinery for mammalian cells to degrade damaged organelles and abnormal proteins. Enormous evidence suggests that the autophagy pathway is impaired in AD. Our previous study revealed that hypoxia induced autophagic activation leading to more amyloid-β production in vitro. In this study, we investigated whether autophagic dysfunction is involved in the hypoxia mediated-pathogenesis of AD. We used APPSwe/PS1dE9 transgenic (Tg) mice and wildtype (Wt) littermates. We documented that chronic hypoxia caused more and larger senile plaques in the brains of Tg mice. In addition, chronic hypoxia induced activation of autophagy in the brains of both Wt and Tg mice, and compared to the normal autophagic flux in Wt mice, the autophagic flux was impaired in the brains of H-Tg mice with a large amount of autophagic vacuole accumulation and significant high level of P62. In an in vitro study, we showed that hypoxia-induced autophagy significantly elevated the level of hAβ42. Furthermore, we found that chronic hypoxia activated AMPK and further inhibited the mTOR signaling pathway, while inhibition of AMPK attenuated autophagy induction through the enhancement of mTOR phosphorylation. In short, our study provides new insight into the mechanism underlying chronic hypoxia-mediated AD pathogenesis.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Qiu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Xiao
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Translational Research on Neurological Diseases, the 1st Affiliated Hospital, Dalian Medical University, Dalian, China.,Collaborative Innovation Center for Brain Science, the 1st Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Sreedhar R, Giridharan VV, Arumugam S, Karuppagounder V, Palaniyandi SS, Krishnamurthy P, Quevedo J, Watanabe K, Konishi T, Thandavarayan RA. Role of MAPK-mediated endoplasmic reticulum stress signaling in the heart during aging in senescence-accelerated prone mice. Biofactors 2016; 42:368-75. [PMID: 27087487 DOI: 10.1002/biof.1280] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
Heart failure is typically related to aging as there is a definite relationship between age-related changes in the heart and the pathogenesis of heart failure. We have previously reported the involvement of p38 mitogen-activated protein kinase protein in cardiac function using animal models of heart failure. To further understand its relationship with aging-induced heart failure, we have compared its expression in the hearts of senescence accelerated-prone (SAMP8) mice and their control (SAMR1) with normal aging behavior. We have identified its activation along with reduced expression of 14-3-3η protein in SAMP8 mice hearts than in SAMR1 mice. To reveal the downstream signaling, we have measured the endoplasmic reticulum stress marker proteins along with some inflammatory and apoptosis markers and identified a significant increase in SAMP8 mice hearts than that of SAMR1. In addition, we have performed comet assay and revealed a significant DNA damage in the cardiomyocytes of SAMP8 mice when compared with SAMR1 mice. All these results demonstrate the role of 14-3-3η protein and the downstream mitogen-activated protein kinase-mediated endoplasmic reticulum stress, and apoptosis and DNA damage in aging-induced cardiac malfunction in SAMP8 mice. Thus targeting this signaling might be effective in treating age-related cardiac dysfunction. © 2016 BioFactors, 42(4):368-375, 2016.
Collapse
Affiliation(s)
- Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Vijayasree V Giridharan
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Tetsuya Konishi
- NUPALS Liaison R/D Center, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- International Collaborative Research Center, Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, China
| | - Rajarajan A Thandavarayan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| |
Collapse
|
40
|
Amemori T, Jendelova P, Ruzicka J, Urdzikova LM, Sykova E. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci 2015; 16:26417-51. [PMID: 26556341 PMCID: PMC4661820 DOI: 10.3390/ijms161125961] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. The risk of AD increases with age. Although two of the main pathological features of AD, amyloid plaques and neurofibrillary tangles, were already recognized by Alois Alzheimer at the beginning of the 20th century, the pathogenesis of the disease remains unsettled. Therapeutic approaches targeting plaques or tangles have not yet resulted in satisfactory improvements in AD treatment. This may, in part, be due to early-onset and late-onset AD pathogenesis being underpinned by different mechanisms. Most animal models of AD are generated from gene mutations involved in early onset familial AD, accounting for only 1% of all cases, which may consequently complicate our understanding of AD mechanisms. In this article, the authors discuss the pathogenesis of AD according to the two main neuropathologies, including senescence-related mechanisms and possible treatments using stem cells, namely mesenchymal and neural stem cells.
Collapse
Affiliation(s)
- Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Lucia Machova Urdzikova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| |
Collapse
|
41
|
Autophagy in axonal degeneration in glaucomatous optic neuropathy. Prog Retin Eye Res 2015; 47:1-18. [PMID: 25816798 DOI: 10.1016/j.preteyeres.2015.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 01/07/2023]
Abstract
The role of autophagy in retinal ganglion cell (RGC) death is still controversial. Several studies focused on RGC body death, although the axonal degeneration pathway in the optic nerve has not been well documented in spite of evidence that the mechanisms of degeneration of neuronal cell bodies and their axons differ. Axonal degeneration of RGCs is a hallmark of glaucoma, and a pattern of localized retinal nerve fiber layer defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. As models of preceding axonal degeneration, both the tumor necrosis factor (TNF) injection model and hypertensive glaucoma model may be useful in understanding the mechanism of axonal degeneration of RGCs, and the concept of axonal protection can be an attractive approach to the prevention of neurodegenerative optic nerve disease. Since mitochondria play crucial roles in glaucomatous optic neuropathy and can themselves serve as a part of the autophagosome, it seems that mitochondrial function may alter autophagy machinery. Like other neurodegenerative diseases, optic nerve degeneration may exhibit autophagic flux impairment resulting from elevated intraocular pressure, TNF, traumatic injury, ischemia, oxidative stress, and aging. As a model of aging, we used senescence-accelerated mice to provide new insights. In this review, we attempt to describe the relationship between autophagy and recently reported noteworthy factors including Nmnat, ROCK, and SIRT1 in the degeneration of RGCs and their axons and propose possible mechanisms of axonal protection via modulation of autophagy machinery.
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
43
|
Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res Rev 2014; 18:16-28. [PMID: 25062811 DOI: 10.1016/j.arr.2014.07.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/02/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Processing of misfolded proteins is important in order for the cell to maintain its normal functioning and homeostasis. Three systems control the quality of proteins: chaperone-mediated refolding, proteasomal degradation of ubiquitinated proteins, and finally, when the two others fail, aggrephagy, as selective form of autophagy, degrades ubiquitin-labelled aggregated cargos. In this route misfolded proteins gradually form larger aggregates, aggresomes and they eventually become double membrane-wrapped organelles called autophagosomes, which become degraded when they fuse to lysosomes, for reuse by the cell. The stages, the main molecules participating in the process, and the regulation of aggrephagy are discussed here, as is the role of protein aggregation in protein accumulation diseases. In particular, we emphasize that both Alzheimer's disease and age-related macular degeneration, two of the most common pathologies in the aged, are characterized by altered protein clearance and deposits. Based on the hypothesis that manipulations of autophagy may be potentially useful in these and other aggregation-related diseases, we will discuss some promising therapeutic strategies to counteract protein aggregates-induced cellular toxicity.
Collapse
|
44
|
Wang H, Lian K, Han B, Wang Y, Kuo SH, Geng Y, Qiang J, Sun M, Wang M. Age-related alterations in the metabolic profile in the hippocampus of the senescence-accelerated mouse prone 8: a spontaneous Alzheimer's disease mouse model. J Alzheimers Dis 2014; 39:841-8. [PMID: 24284365 DOI: 10.3233/jad-131463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD.
Collapse
Affiliation(s)
- Hualong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Kaoqi Lian
- The School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Bing Han
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yanyong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, PR China
| | - Jing Qiang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Meiyu Sun
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mingwei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
45
|
Caldeira C, Oliveira AF, Cunha C, Vaz AR, Falcão AS, Fernandes A, Brites D. Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci 2014; 8:152. [PMID: 24917789 PMCID: PMC4040822 DOI: 10.3389/fncel.2014.00152] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 01/25/2023] Open
Abstract
Age-related neurodegenerative diseases have been associated with chronic neuroinflammation and microglia activation. However, cumulative evidence supports that inflammation only occurs at an early stage once microglia change the endogenous characteristics with aging and switch to irresponsive/senescent and dystrophic phenotypes with disease progression. Thus, it will be important to have the means to assess the role of reactive and aged microglia when studying advanced brain neurodegeneration processes and age-associated related disorders. Yet, most studies are done with microglia from neonates since there are no adequate means to isolate degenerating microglia for experimentation. Indeed, only a few studies report microglia isolation from aged animals, using either short-term cultures or high concentrations of mitogens in the medium, which trigger microglia reactivity. The purpose of this study was to develop an experimental process to naturally age microglia after isolation from neonatal mice and to characterize the cultured cells at 2 days in vitro (DIV), 10 DIV, and 16 DIV. We found that 2 DIV (young) microglia had predominant amoeboid morphology and markers of stressed/reactive phenotype. In contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased matrix metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor (TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced senescence associated beta-galactosidase activity and elevated miR-146a expression, are suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data indicate that the model represent an opportunity to understand and control microglial aging, as well as to explore strategies to recover microglia surveillance function.
Collapse
Affiliation(s)
- Cláudia Caldeira
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz - Cooperativa de Ensino Superior, CRL, Campus Universitário Monte de Caparica, Portugal
| | - Ana F Oliveira
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Carolina Cunha
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Ana R Vaz
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Ana S Falcão
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Dora Brites
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| |
Collapse
|
46
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
47
|
Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, Yu X, Cheng S, Yan R, Wang Q, Liu DH, Deng W, Lai Y, Zhou JH, Zhang SX, Lin WW, Chen DF. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 2014; 1552:41-54. [DOI: 10.1016/j.brainres.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 12/14/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
|
48
|
Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL. Early and sustained altered expression of aging-related genes in young 3xTg-AD mice. Cell Death Dis 2014; 5:e1054. [PMID: 24525730 PMCID: PMC3944230 DOI: 10.1038/cddis.2014.11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological condition associated with a genetic profile that is still not completely understood. In this study, using a whole gene microarray approach, we investigated age-dependent gene expression profile changes occurring in the hippocampus of young and old transgenic AD (3xTg-AD) and wild-type (WT) mice. The aim of the study was to assess similarities between aging- and AD-related modifications of gene expression and investigate possible interactions between the two processes. Global gene expression profiles of hippocampal tissue obtained from 3xTg-AD and WT mice at 3 and 12 months of age (m.o.a.) were analyzed by hierarchical clustering. Interaction among transcripts was then studied with the Ingenuity Pathway Analysis (IPA) software, a tool that discloses functional networks and/or pathways associated with sets of specific genes of interest. Cluster analysis revealed the selective presence of hundreds of upregulated and downregulated transcripts. Functional analysis showed transcript involvement mainly in neuronal death and autophagy, mitochondrial functioning, intracellular calcium homeostasis, inflammatory response, dendritic spine formation, modulation of synaptic functioning, and cognitive decline. Thus, overexpression of AD-related genes (such as mutant APP, PS1, and hyperphosphorylated tau, the three genes that characterize our model) appears to favor modifications of additional genes that are involved in AD development and progression. The study also showed overlapping changes in 3xTg-AD at 3 m.o.a. and WT mice at 12 m.o.a., thereby suggesting altered expression of aging-related genes that occurs earlier in 3xTg-AD mice.
Collapse
Affiliation(s)
- V Gatta
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Department of Psychological Sciences, ‘G. d'Annunzio' University, Chieti, Italy
| | - M D'Aurora
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Department of Neuroscience and Imaging, ‘G. d'Annunzio' University, Chieti, Italy
| | - A Granzotto
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
| | - L Stuppia
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Department of Psychological Sciences, ‘G. d'Annunzio' University, Chieti, Italy
| | - S L Sensi
- Department of Neuroscience and Imaging, ‘G. d'Annunzio' University, Chieti, Italy
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Departments of Neurology and Pharmacology, University of California-Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
49
|
Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging. Neurobiol Aging 2014; 35:96-108. [DOI: 10.1016/j.neurobiolaging.2013.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/28/2013] [Accepted: 07/04/2013] [Indexed: 01/25/2023]
|
50
|
Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 2013; 30:853-62. [PMID: 24985004 DOI: 10.1016/j.nut.2013.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Oxidative damage to lipids, proteins, and nucleic acids in the brain often causes progressive neuronal degeneration and death that are the focal traits of chronic and acute pathologies, including those involving cognitive decline. The aim of this study was to investigate the specific effects of both Euterpe oleracea and Euterpe precatoria açaí fruit pulp on restoring stressor-induced calcium dysregulation, stunted growth of basal dendrites, and autophagy inhibition using embryonic hippocampal and HT22 hippocampal neurons. METHODS Water-soluble whole fruit pulp extracts from two açaí species were applied to rat primary neurons and HT22 hippocampal neurons with varied time and concentrations. Recovery of neurons from dopamine-induced Ca(2+) dysregulation was measured by live cell imaging using fluorescent microscopy. The effect of açaí fruit pulp extracts on neurons following chemically-induced autophagy inhibition was measured using both immunofluorescence and immunohistochemical techniques. RESULTS It has been postulated that at least part of the loss of cognitive function in aging may depend on a dysregulation in calcium ion (Ca(2+)) homeostasis and a loss of autophagy function in the brain, which affects numerous signaling pathways and alters protein homeostasis. In the present study, polyphenol-rich fruit pulp extracts from two species of açaí, Euterpe precatoria and Euterpe oleracea, when applied to rat hippocampal primary neuronal cells (E18), caused a significant (P < 0.05) recovery of depolarized brain cells from dopamine-induced Ca(2+) influx. Autophagy, a protein homeostasis mechanism in brain, when blocked by known inhibitors such as bafilomycin A1 or wortmannin, caused a significant reduction in the growth of primary basal dendrites in rodent primary hippocampal neurons and significant accumulation of polyubiquitinated proteins in mouse HT22 hippocampal neurons in culture. However, pretreatment with açaí extracts up to 1 mg/mL significantly increased the length of basal dendrites and attenuated the inhibitor-induced autophagy dysfunction. Açaí extracts activated the phosphorylation of mammalian target of rapamycin, increased the turnover of autophagosomes and MAP1 B LC3-II, and decreased accumulation of LC3-ubiquitin binding P62/SQSTM1. CONCLUSION Although the polyphenol profile of Euterpe precatoria showed substantially higher concentrations of major flavonoids han Euterpe oleracea, the relative effects were essentially similar for both species. The study adds to growing evidence that supports the putative health effects of açaí fruit species on brain cells.
Collapse
|