1
|
Li J, Li W, Hu J, Li C, Cui X. Proso millet peroxidase-mediated degradation and detoxification of Rhodamine B in water. ENVIRONMENTAL TECHNOLOGY 2024; 45:3559-3569. [PMID: 37272148 DOI: 10.1080/09593330.2023.2220887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Enzymatic catalysis is a promising approach for the degradation of organic pollutants and peroxidases (PODs) are one of the most common enzyme classes used to degrade organic pollutants. Proso millet peroxidase (PmPOD) is a peroxidase extracted and purified from proso millet bran which is the by-product of proso millet processing. In this study, we investigated the effects of PmPOD on the degradation of typical organic pollutants (Rhodamine B (RhB), bisphenol A, sulfadiazine) for the first time. Moreover, we screened RhB as the substrate with the best degradation effect. The degradation rate of RhB catalyzed by PmPOD (10 nM) reached 99.46% in 30 min under the optimal conditions (pH 5, 30°C, and molar ratio of RhB, H2O2 and HOBT of 1:9.58:1.94 × 10-3). The reaction kinetics parameters of PmPOD-mediated RhB degradation Km, Vmax and kcat were 62.2, 935.7 and 9.357 × 104, respectively. High-performance liquid chromatography analyses confirmed that PmPOD transformed RhB into two new products. Furthermore, toxicological evaluation in Caenorhabditis elegans demonstrated that 10 μg/mL RhB significantly reduced the lifespan by 8.3%, reduced the motility and pharynx-pumping rate compared with the control group, while the 10 μg/mL RhB product had no significant effect on these indexes. These data indicated that the toxicity of RhB disappeared after catalytic degradation by PmPOD. Taken together, these data suggest that catalysis of PmPOD is an effective method for degradation and detoxification of RhB. This study provides a potential candidate method for the biological treatment of RhB, and improves the added value of proso millet bran.
Collapse
Affiliation(s)
- Jiao Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Wenyan Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Jianjian Hu
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Chen Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
2
|
Wan Y, Liu J, Mai Y, Hong Y, Jia Z, Tian G, Liu Y, Liang H, Liu J. Current advances and future trends of hormesis in disease. NPJ AGING 2024; 10:26. [PMID: 38750132 PMCID: PMC11096327 DOI: 10.1038/s41514-024-00155-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Hormesis, an adaptive response, occurs when exposure to low doses of a stressor potentially induces a stimulatory effect, while higher doses may inhibit it. This phenomenon is widely observed across various organisms and stressors, significantly advancing our understanding and inspiring further exploration of the beneficial effects of toxins at doses both below and beyond traditional thresholds. This has profound implications for promoting biological regulation at the cellular level and enhancing adaptability throughout the biosphere. Therefore, conducting bibliometric analysis in this field is crucial for accurately analyzing and summarizing its current research status. The results of the bibliometric analysis reveal a steady increase in the number of publications in this field over the years. The United States emerges as the leading country in both publication and citation numbers, with the journal Dose-Response publishing the highest number of papers in this area. Calabrese E.J. is a prominent person with significant contributions and influence among authors. Through keyword co-occurrence and trend analysis, current hotspots in this field are identified, primarily focusing on the relationship between hormesis, oxidative stress, and aging. Analysis of highly cited references predicts that future research trends may center around the relationship between hormesis and stress at different doses, as well as exploring the mechanisms and applications of hormesis. In conclusion, this review aims to visually represent hormesis-related research through bibliometric methods, uncovering emerging patterns and areas of focus within the field. It provides a summary of the current research status and forecasts trends in hormesis-related research.
Collapse
Affiliation(s)
- Yantong Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixuan Jia
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guijie Tian
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhuo Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Moskalev AA. Potential Geroprotectors - From Bench to Clinic. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1732-1738. [PMID: 38105194 DOI: 10.1134/s0006297923110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Geroprotectors are substances that slow down aging process and can be used for prevention of age-related diseases. Geroprotectors can improve functioning of various organ systems and enhance their homeostatic capabilities. We have developed a system of criteria for geroprotectors and proposed their classification based on the mechanisms of their action on the aging processes. Geroprotectors are required to reduce mortality, improve human aging biomarkers, have minimal side effects, and enhance quality of life. Additionally, there are approaches based on combining geroprotectors targeted to different targets and mechanisms of aging to achieve maximum effectiveness. Currently, numerous preclinical studies are being conducted to identify new molecular targets and develop new approaches to extend healthy aging, although the number of clinical trials is limited. Geroprotectors have the potential to become a new class of preventive medicines as they prevent onset of certain diseases or slow down their progression.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
4
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Oakley PA, Harrison DE. X-ray Hesitancy-Response to Jargin and Sohrabi. Dose Response 2020; 18:1559325820982425. [PMID: 33414696 PMCID: PMC7750766 DOI: 10.1177/1559325820982425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
|
6
|
Lee F, Lawrence DA. From Infections to Anthropogenic Inflicted Pathologies: Involvement of Immune Balance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 21:24-46. [PMID: 29252129 DOI: 10.1080/10937404.2017.1412212] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A temporal trend can be seen in recent human history where the dominant causes of death have shifted from infectious to chronic diseases in industrialized societies. Human influences in the current "Anthropocene" epoch are exponentially impacting the environment and consequentially health. Changing ecological niches are suggested to have created health transitions expressed as modifications of immune balance from infections inflicting pathologies in the Holocene epoch (12,000 years ago) to human behaviors inflicting pathologies beginning in the Anthropocene epoch (300 years ago). A review of human immune health and adaptations responding to environmental (biological, chemical, physical, and psychological) stresses, which are influenced by social conditions, emphasize the involvement of fluctuations in immune cell subsets affecting influential gene-environment interactions. The literature from a variety of fields (anthropological, immunological, and environmental) is incorporated to present an expanded perspective on shifts in diseases within the context of immune balance and function and environmental immunology. The influences between historical and contemporary human ecology are examined in relation to human immunity. Several examples of shifts in human physiology and immunity support the premise that increased incidences of chronic diseases are a consequence of human modification of environment and lifestyle. Although the development of better health care and a broader understanding of human health have helped with better life quality and expectancy, the transition of morbidity and mortality rates from infections to chronic diseases is a cause for concern. Combinations of environmental stressors/pollutants and human behaviors and conditions are modulating the immune-neuroendocrine network, which compromises health benefits.
Collapse
Affiliation(s)
- Florence Lee
- a Department of Anthropology , University at Albany , Albany , NY , USA
| | - David A Lawrence
- b Wadsworth Center/New York State Department of Health , Albany , NY , USA
- c Biomedical Sciences and Environmental Health Sciences , University at Albany, School of Public Health , Albany , NY , USA
| |
Collapse
|
7
|
Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis 2017; 8:354-363. [PMID: 28580190 PMCID: PMC5440114 DOI: 10.14336/ad.2016.1022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Although the geroprotectors discovery is a new biomedicine trend and more than 200 compounds can slow aging and increase the lifespan of the model organism, there are still no geroprotectors on the market. The reasons may be partly related to the lack of a unified concept of geroprotector, accepted by the scientific community. Such concept as a system of criteria for geroprotector identification and classification can form a basis for an analytical model of anti-aging drugs, help to consolidate the efforts of various research initiatives in this area and compare their results. Here, we review the existing classification and characteristics of geroprotectors based on their effect on the survival of a group of individuals or pharmaceutics classes, according to the proposed mechanism of their geroprotective action or theories of aging. After discussing advantages and disadvantages of these approaches, we offer a new concept based on the maintenance of homeostatic capacity because aging can be considered as exponential shrinkage of homeostatic capacity leading to the onset of age-related diseases and death. Besides, we review the most promising current screening approaches to finding new geroprotectors. Establishing the classification of existing geroprotectors based on physiology and current understanding of the nature of aging is essential for putting the existing knowledge into a single system. This system could be useful to formulate standards for finding and creating new geroprotectors. Standardization, in turn, would allow easier comparison and combination of experimental data obtained by different research groups.
Collapse
Affiliation(s)
- Alexey Moskalev
- 1Laboratory of postgenomic studies, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,2Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,3Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | - Elizaveta Chernyagina
- 2Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Anna Kudryavtseva
- 1Laboratory of postgenomic studies, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail Shaposhnikov
- 3Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| |
Collapse
|
8
|
Calabrese V, Giordano J, Ruggieri M, Berritta D, Trovato A, Ontario M, Bianchini R, Calabrese E. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 2016; 94:1488-1498. [DOI: 10.1002/jnr.23893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- V. Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - J. Giordano
- Department of Clinical and Experimental Medicine, School of Medicine; University of Catania; Catania Italy
| | - M. Ruggieri
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
| | - D. Berritta
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - A. Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - M.L. Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - R. Bianchini
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
- Service of Child Neuropsychiatry, ASP Siracusa, Italy
| | - E.J. Calabrese
- Environmental Health Sciences Division, School of Public Health; University of Massachusetts; Amherst Massachusetts
| |
Collapse
|
9
|
Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I, Partridge L. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Rep 2016; 15:638-650. [PMID: 27068460 PMCID: PMC4850359 DOI: 10.1016/j.celrep.2016.03.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/31/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023] Open
Abstract
The quest to extend healthspan via pharmacological means is becoming increasingly urgent, both from a health and economic perspective. Here we show that lithium, a drug approved for human use, promotes longevity and healthspan. We demonstrate that lithium extends lifespan in female and male Drosophila, when administered throughout adulthood or only later in life. The life-extending mechanism involves the inhibition of glycogen synthase kinase-3 (GSK-3) and activation of the transcription factor nuclear factor erythroid 2-related factor (NRF-2). Combining genetic loss of the NRF-2 repressor Kelch-like ECH-associated protein 1 (Keap1) with lithium treatment revealed that high levels of NRF-2 activation conferred stress resistance, while low levels additionally promoted longevity. The discovery of GSK-3 as a therapeutic target for aging will likely lead to more effective treatments that can modulate mammalian aging and further improve health in later life.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Li Li
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Kerri J Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dobril K Ivanov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Cathy Slack
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Fiona Kerr
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Tobias Nespital
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Janet Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Ivana Bjedov
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany.
| |
Collapse
|
10
|
Coenzyme Q biosynthesis and its role in the respiratory chain structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1073-1078. [PMID: 26970214 DOI: 10.1016/j.bbabio.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/23/2023]
Abstract
Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
|
11
|
Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12:20. [PMID: 26543490 PMCID: PMC4634585 DOI: 10.1186/s12979-015-0046-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Sandro Dattilo
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Cesare Mancuso
- />Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Guido Koverech
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Paola Di Mauro
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Maria Laura Ontario
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | | | - Antonino Petralia
- />Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Luigi Maiolino
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Agostino Serra
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Edward J. Calabrese
- />Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Vittorio Calabrese
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| |
Collapse
|
12
|
Robertson LT, Treviño-Villarreal JH, Mejia P, Grondin Y, Harputlugil E, Hine C, Vargas D, Zheng H, Ozaki CK, Kristal BS, Simpson SJ, Mitchell JR. Protein and Calorie Restriction Contribute Additively to Protection from Renal Ischemia Reperfusion Injury Partly via Leptin Reduction in Male Mice. J Nutr 2015; 145:1717-27. [PMID: 26041674 PMCID: PMC4516761 DOI: 10.3945/jn.114.199380] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 05/15/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Short-term dietary restriction (DR) without malnutrition preconditions against surgical stress in rodents; however, the nutritional basis and underlying nutrient/energy-sensing pathways remain poorly understood. OBJECTIVES We investigated the relative contribution of protein restriction (PR) vs. calorie restriction (CR) to protection from renal ischemia reperfusion injury (IRI) and changes in organ-autonomous nutrient/energy-sensing pathways and hormones underlying beneficial effects. METHODS Mice were preconditioned on experimental diets lacking total calories (0-50% CR) or protein/essential amino acids (EAAs) vs. complete diets consumed ad libitum (AL) for 1 wk before IRI. Renal outcome was assessed by serum markers and histology and integrated over a 2-dimensional protein/energy landscape by geometric framework analysis. Changes in renal nutrient/energy-sensing signal transduction and systemic hormones leptin and adiponectin were also measured. The genetic requirement for amino acid sensing via general control non-derepressible 2 (GCN2) was tested with knockout vs. control mice. The involvement of the hormone leptin was tested by injection of recombinant protein vs. vehicle during the preconditioning period. RESULTS CR-mediated protection was dose dependent up to 50% with maximal 2-fold effect sizes. PR benefits were abrogated by EAA re-addition and additive with CR, with maximal benefits at any given amount of CR occurring with a protein-free diet. GCN2 was not required for functional benefits of PR. Activation and repression of nutrient/energy-sensing kinases, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1), respectively, on PR reflected a state of negative energy balance, paralleled by 13% weight loss and an 87% decrease in leptin, independent of calorie intake. Recombinant leptin administration partially abrogated benefits of dietary preconditioning against renal IRI. CONCLUSIONS In male mice, PR and CR both contributed to the benefits of short-term DR against renal IRI independent of GCN2 but partially dependent on reduced circulating leptin and coincident with AMPK activation and mTORC1 repression.
Collapse
Affiliation(s)
| | | | - Pedro Mejia
- Departments of Genetics and Complex Diseases and
| | - Yohann Grondin
- Environmental Health, Harvard School of Public Health, Boston, MA
| | | | | | | | | | | | - Bruce S Kristal
- Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
| | | | | |
Collapse
|
13
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
14
|
Lee DH, Jacobs DR. Hormesis and public health: can glutathione depletion and mitochondrial dysfunction due to very low-dose chronic exposure to persistent organic pollutants be mitigated? J Epidemiol Community Health 2014; 69:294-300. [DOI: 10.1136/jech-2014-203861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis. Exp Gerontol 2014; 56:89-98. [DOI: 10.1016/j.exger.2014.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/15/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022]
|
16
|
We are ageing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:808307. [PMID: 25045704 PMCID: PMC4090574 DOI: 10.1155/2014/808307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 02/01/2023]
Abstract
Ageing and longevity is unquestioningly complex. Several thoughts and mechanisms of ageing such as pathways involved in oxidative stress, lipid and glucose metabolism, inflammation, DNA damage and repair, growth hormone axis and insulin-like growth factor (GH/IGF), and environmental exposure have been proposed. Also, some theories of ageing were introduced. To date, the most promising leads for longevity are caloric restriction, particularly target of rapamycin (TOR), sirtuins, hexarelin and hormetic responses. This review is an attempt to analyze the mechanisms and theories of ageing and achieving longevity.
Collapse
|
17
|
Wiemer M, Osiewacz HD. Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina. MICROBIAL CELL 2014; 1:225-240. [PMID: 28357247 PMCID: PMC5349155 DOI: 10.15698/mic2014.07.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aging of biological systems is influenced by various factors, conditions and
processes. Among others, processes allowing organisms to deal with various types
of stress are of key importance. In particular, oxidative stress as the result
of the generation of reactive oxygen species (ROS) at the mitochondrial
respiratory chain and the accumulation of ROS-induced molecular damage has been
strongly linked to aging. Here we view the impact of ROS from a different angle:
their role in the control of gene expression. We report a genome-wide
transcriptome analysis of the fungal aging model Podospora anserina
grown on medium containing paraquat (PQ). This treatment leads to an
increased cellular generation and release of H2O2, a
reduced growth rate, and a decrease in lifespan. The combined challenge by PQ
and copper has a synergistic negative effect on growth and lifespan. The data
from the transcriptome analysis of the wild type cultivated under PQ-stress and
their comparison to those of a longitudinal aging study as well as of a
copper-uptake longevity mutant of P. anserina revealed that
PQ-stress leads to the up-regulation of transcripts coding for components
involved in mitochondrial remodeling. PQ also affects the expression of
copper-regulated genes suggesting an increase of cytoplasmic copper levels as it
has been demonstrated earlier to occur during aging of P.
anserina and during senescence of human fibroblasts. This effect
may result from the induction of the mitochondrial permeability transition pore
via PQ-induced ROS, leading to programmed cell death as part of an evolutionary
conserved mechanism involved in biological aging and lifespan control.
Collapse
Affiliation(s)
- Matthias Wiemer
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro AT, Cuzzocrea S, Calabrese EJ, Calabrese V. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol 2014; 5:120. [PMID: 24959146 PMCID: PMC4050335 DOI: 10.3389/fphar.2014.00120] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process.
Collapse
Affiliation(s)
- Carolin Cornelius
- Department of Chemistry, University of Catania Catania, Italy ; Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Guido Koverech
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Rosalia Crupi
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Angela Koverech
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Francesca Lodato
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Maria Scuto
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Angela T Salinaro
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy ; University of Manchester Manchester, UK
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts Amherst, MA, USA
| | | |
Collapse
|
19
|
Abstract
This paper assesses the hormesis dose response concept, including its historical
foundations, frequency, generality, quantitative features, mechanistic basis and
biomedical, pharmaceutical and environmental health implications. The hormetic
dose response is highly generalizable, being independent of biology model (i.e.
common from plants to humans), level of biological organization (i.e. cell,
organ and organism), endpoint, inducing agent and mechanism, providing the first
general and quantitative description of plasticity. The hormetic dose response
describes the limits to which integrative endpoints (e.g. cell proliferation,
cell migration, growth patterns, tissue repair, aging processes, complex
behaviors such as anxiety, learning, memory, and stress, preconditioning
responses, and numerous adaptive responses) can be modulated (i.e., enhanced or
diminished) by pharmaceutical, chemical and physical means. Thus, the hormesis
concept is a fundamental concept in biology with a wide range of biological
implications and biomedical applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344; Amherst, MA 01003 USA
| |
Collapse
|
20
|
Abstract
The relationship between the dose of an effector and the biological response frequently is not described by a linear function and, moreover, in some cases the dose-response relationship may change from positive/adverse to adverse/positive with increasing dose. This complicated relationship is called "hormesis". This paper provides a short analysis of the concept along with a description of used approaches to characterize hormetic relationships. The whole hormetic curve can be divided into three zones: I - a lag-zone where no changes are observed with increasing dose; II - a zone where beneficial/adverse effects are observed, and III - a zone where the effects are opposite to those seen in zone II. Some approaches are proposed to analyze the molecular components involved in the development of the hormetic character of dose-response relationships with the use of specific genetic lines or inhibitors of regulatory pathways. The discussion is then extended to suggest a new parameter (half-width of the hormetic curve at zone II) for quantitative characterization of the hormetic curve. The problems limiting progress in the development of the hormesis concept such as low reproducibility and predictability may be solved, at least partly, by deciphering the molecular mechanisms underlying the hormetic dose-effect relationship.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine
| |
Collapse
|
21
|
Schiavi A, Ventura N. The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 2014; 56:147-53. [PMID: 24607515 DOI: 10.1016/j.exger.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/07/2023]
Abstract
Mitochondria are highly dynamic organelles which play a central role in cellular homeostasis. Mitochondrial dysfunction leads to life-threatening disorders and accelerates the aging process. Surprisingly, on the other hand, a mild reduction of mitochondria functionality can have pro-longevity effects in organisms spanning from yeast to mammals. Autophagy is a fundamental cellular housekeeping process that needs to be finely regulated for proper cell and organism survival, as underlined by the fact that both its over- and its defective activation have been associated with diseases and accelerated aging. A reciprocal interplay exists between mitochondria and autophagy, which is needed to constantly adjust cellular energy metabolism in different pathophysiological conditions. Here we review general features of mitochondrial function and autophagy with particular focus on their crosstalk and its possible implication in the aging process.
Collapse
Affiliation(s)
- Alfonso Schiavi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
22
|
Abstract
Hormesis in ageing is probably represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Mild stress and hormetins may act on bifurcation points in the complex network of cell signaling and transcription factors, often turning homeodynamics to health or survival. Several signaling pathways activated by diverse stimuli and by stress response converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. NF-κB behaves as a chaotic oscillator and it is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. NF-κB is closely related to other important upstream signaling networks, creating chaotic oscillators with other receptor-related kinases and targeting hubs for hormesis. The great bulk of natural hormetins acts on these signaling pathways, while NF-κB appears as a key regulatory factor in this context. Due to its tight relationship with main signaling system NF-κB plays a fundamental role in stress response, apoptosis and autophagy and appears to be a possible target for hormesis in ageing.
Collapse
|
23
|
Menendez JA, Joven J, Aragonès G, Barrajón-Catalán E, Beltrán-Debón R, Borrás-Linares I, Camps J, Corominas-Faja B, Cufí S, Fernández-Arroyo S, Garcia-Heredia A, Hernández-Aguilera A, Herranz-López M, Jiménez-Sánchez C, López-Bonet E, Lozano-Sánchez J, Luciano-Mateo F, Martin-Castillo B, Martin-Paredero V, Pérez-Sánchez A, Oliveras-Ferraros C, Riera-Borrull M, Rodríguez-Gallego E, Quirantes-Piné R, Rull A, Tomás-Menor L, Vazquez-Martin A, Alonso-Villaverde C, Micol V, Segura-Carretero A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013; 12:555-78. [PMID: 23370395 DOI: 10.4161/cc.23756] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao H. Hurdles to clear before clinical translation of ischemic postconditioning against stroke. Transl Stroke Res 2013; 4:63-70. [PMID: 23524538 DOI: 10.1007/s12975-012-0243-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ischemic postconditioning has been established for its protective effects against stroke in animal models. It is performed after post-stroke reperfusion and refers to a series of induced ischemia or a single brief one. This review article addresses major hurdles in clinical translation of ischemic postconditioning to stroke patients, including potential hazards, the lack of well-defined protective paradigms, and the paucity of deeply-understood protective mechanisms. A hormetic model, often used in toxicology to describe a dose-dependent response to a toxic agent, is suggested to study both beneficial and detrimental effects of ischemic postconditioning. Experimental strategies are discussed, including how to define the hazards of ischemic (homologous) postconditioning and the possibility of employing non-ischemic (heterologous) postconditioning to facilitate clinical translation. This review concludes that a more detailed assessment of ischemic postconditioning and studies of a broad range of heterologous postconditioning models are warranted for future clinical translation.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5327, USA
| |
Collapse
|
25
|
Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE. Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 2012; 47:581-7. [PMID: 22613270 DOI: 10.1016/j.exger.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 12/01/2022]
Abstract
Increased lifespan can be associated with greater resistance to many different stressors, most notably thermal stress. Such hormetic effects have also been found in C. elegans where short-term exposure to heat lengthens the lifespan. Genetic investigations have been carried out using mutation perturbations in a single genotype, the wild type Bristol N2. Yet, induced mutations do not yield insight regarding the natural genetic variation of thermal tolerance and lifespan. We investigated the genetic variation of heat-shock recovery, i.e. hormetic effects on lifespan and associated quantitative trait loci (QTL) in C. elegans. Heat-shock resulted in an 18% lifespan increase in wild type CB4856 whereas N2 did not show a lifespan elongation. Using recombinant inbred lines (RILs) derived from a cross between wild types N2 and CB4856 we found natural variation in stress-response hormesis in lifespan. Approx. 28% of the RILs displayed a hormesis effect in lifespan. We did not find any hormesis effects for total offspring. Across the RILs there was no relation between lifespan and offspring. The ability to recover from heat-shock mapped to a significant QTL on chromosome II which overlapped with a QTL for offspring under heat-shock conditions. The QTL was confirmed by introgressing relatively small CB4856 regions into chromosome II of N2. Our observations show that there is natural variation in hormetic effects on C. elegans lifespan for heat-shock and that this variation is genetically determined.
Collapse
Affiliation(s)
- Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|