1
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. MicroRNA biogenesis pathway alterations in aging. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:486-501. [PMID: 39698023 PMCID: PMC11648461 DOI: 10.20517/evcna.2023.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 12/20/2024]
Abstract
Aging is characterized by genomic instability and dysregulation of gene expression. MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in post-transcriptional gene regulation. This work explores the impact of dysregulated miRNA biogenesis on the aging process. During aging, alterations in the transcription of primary miRNAs (pri-miRNAs) occur due to genomic changes, DNA damage, and epigenetic modifications. The microprocessor complex, comprising DGCR8 and Drosha proteins, is vital for pri-miRNA processing. Age-related changes in this complex affect miRNA biogenesis and miRNA expression profiles, linking these alterations with age-related conditions. Conversely, interventions like caloric restriction and mTOR inhibition enhance microprocessor activity, suggesting a connection between microprocessor function, aging-related pathways, and lifespan extension. Exportin-5 mediates the transport of pre-miRNAs from the nucleus to the cytoplasm. Although the role of miRNA export in aging is not well understood, accelerated export of pre-miRNAs is observed in response to DNA damage, and nucleocytoplasmic transport has been linked to cellular senescence. Dicer is responsible for processing pre-miRNAs into mature miRNAs. Reduced Dicer expression during aging is reported in various organisms and tissues and is associated with premature aging phenotypes. Conversely, the upregulation of Dicer improves stress resistance and metabolic adaptations induced by caloric restriction and exercise training. Understanding the role of miRNA biogenesis disruption in aging provides insights into the molecular mechanisms of aging and age-related diseases. Targeting this pathway may hold promise for therapeutic strategies and contribute to healthy aging.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia 46010, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia 46026, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia 46010, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia 46010, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, Valencia 46010, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia 46010, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia 46010, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia 46010, Spain
| |
Collapse
|
2
|
Lushchak O, Schosserer M, Grillari J. Senopathies-Diseases Associated with Cellular Senescence. Biomolecules 2023; 13:966. [PMID: 37371545 PMCID: PMC10296713 DOI: 10.3390/biom13060966] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence describes a stable cell cycle arrest state with a characteristic phenotype. Senescent cells accumulate in the human body during normal aging, limiting the lifespan and promoting aging-related, but also several non-related, pathologies. We propose to refer to all diseases whose pathogenesis or progression is associated with cellular senescence as "senopathies". Targeting senescent cells with senolytics or senomorphics is likely to mitigate these pathologies. Examples of senopathies include cardiovascular, metabolic, musculoskeletal, liver, kidney, and lung diseases and neurodegeneration. For all these pathologies, animal studies provide clear mechanistic evidence for a connection between senescent cell accumulation and disease progression. The major persisting challenge in developing novel senotherapies is the heterogeneity of senescence phenotypes, causing a lack of universal biomarkers and difficulties in discriminating senescent from non-senescent cells.
Collapse
Affiliation(s)
- Oleh Lushchak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
- Department of Biochemistry and Biotechnology, Precarpathian National University, 76000 Ivano-Frankivsk, Ukraine
- Research and Development University, 76018 Ivano-Frankivsk, Ukraine
| | - Markus Schosserer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
3
|
Estévez-Souto V, Da Silva-Álvarez S, Collado M. The role of extracellular vesicles in cellular senescence. FEBS J 2023; 290:1203-1211. [PMID: 35904466 DOI: 10.1111/febs.16585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, an evolutionarily conserved mechanism that prevents the proliferation of damaged cells, is a very relevant cellular response involved in both physiological and pathological conditions. Even though senescent cells are stably growth arrested, they exhibit a complex and poorly understood secretory phenotype, known as senescence-associated secretory phenotype, composed of soluble proteins and extracellular vesicles (EVs). Extracellular vesicles were initially described as a waste management mechanism to remove damaged components of cellular metabolism, but increasing evidence shows that EVs could also play important roles in intercellular communication. Recently, some studies showed that EVs could have fundamental functions during cellular senescence. Our purpose in this review is to clarify the increasing literature on the role of EVs in cellular senescence as key mediators in cell-to-cell communication.
Collapse
Affiliation(s)
- Valentín Estévez-Souto
- Laboratory of Cell Senescence, Cancer and Aging, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| | - Sabela Da Silva-Álvarez
- Laboratory of Cell Senescence, Cancer and Aging, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| |
Collapse
|
4
|
Small RNA sequencing of small extracellular vesicles secreted by umbilical cord mesenchymal stem cells following replicative senescence. Genes Genomics 2023; 45:347-358. [PMID: 35917089 DOI: 10.1007/s13258-022-01297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Umbilical cord mesenchymal stem cells (UCMSC) are subsets of multipotent stem cells involved in immune modulation, tissue regeneration, and antimicrobial defense. Cellular senescence is associated with the onset of aging-related diseases and small extracellular vesicles (sEVs) are important mediators of senescence and aging. OBJECTIVE However, little is known about the role and function of microRNAs (miRNAs) carried by UCMSC-derived sEVs. To analyze the expression profiles of miRNAs secreted by senescent UCMSC, small RNA sequencing of the miRNAs within the sEVs was performed in this study. METHODS UCMSC cultures underwent serial passaging beyond passage number 20 to achieve replicative senescence, which was confirmed by various methods, including increased senescence-associated β-gal staining and cytokine secretion levels. sEVs derived from non-senescent and senescent UCMSC were isolated and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblot analysis. RESULTS Small RNA sequencing of the miRNAs within the sEVs revealed senescence-associated differences in the miRNA composition, as shown by the upregulation of miR-122-5p and miR-146a-5p, and downregulation of miR-125b-5p and miR-29-3p. In addition, total RNA sequencing analysis showed that PENK, ITGA8, and TSIX were upregulated, whereas AKR1B10, UNC13D, and IL21R were downregulated by replicative senescence in UCMSC. In sEVs, upregulated genes were linked to downregulated miRNAs, and vice versa. In the gene-concept network analysis, five gynecologic terms were retrieved. CONCLUSIONS The study provides an insight into the cellular characteristics of UCMSC following replicative senescence and emphasizes the importance of monitoring passage numbers of UCMSC for further therapeutic use.
Collapse
|
5
|
Miclau K, Hambright WS, Huard J, Stoddart MJ, Bahney CS. Cellular expansion of MSCs: Shifting the regenerative potential. Aging Cell 2023; 22:e13759. [PMID: 36536521 PMCID: PMC9835588 DOI: 10.1111/acel.13759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.
Collapse
Affiliation(s)
- Katherine Miclau
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - William S. Hambright
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Martin J. Stoddart
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
6
|
Janouskova O, Herma R, Semeradtova A, Poustka D, Liegertova M, Malinska HA, Maly J. Conventional and Nonconventional Sources of Exosomes-Isolation Methods and Influence on Their Downstream Biomedical Application. Front Mol Biosci 2022; 9:846650. [PMID: 35586196 PMCID: PMC9110031 DOI: 10.3389/fmolb.2022.846650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive study of extracellular vesicles (EVs), specifically exosomes (EXs) as biomarkers, important modulators of physiological or pathological processes, or therapeutic agents, relatively little is known about nonconventional sources of EXs, such as invertebrate or plant EXs, and their uses. Likewise, there is no clear information on the overview of storage conditions and currently used isolation methods, including new ones, such as microfluidics, which fundamentally affect the characterization of EXs and their other biomedical applications. The purpose of this review is to briefly summarize conventional and nonconventional sources of EXs, storage conditions and typical isolation methods, widely used kits and new "smart" technologies with emphasis on the influence of isolation techniques on EX content, protein detection, RNA, mRNA and others. At the same time, attention is paid to a brief overview of the direction of biomedical application of EXs, especially in diagnostics, therapy, senescence and aging and, with regard to the current situation, in issues related to Covid-19.
Collapse
Affiliation(s)
- Olga Janouskova
- Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista University in Ústí Nad Labem, Ústí Nad Labem, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
7
|
Lee JK, Oh SJ, Gim JA, Shin OS. miR-10a, miR-30c, and miR-451a encapsulated in small extracellular vesicles are pro-senescence factors in human dermal fibroblasts. J Invest Dermatol 2022; 142:2570-2579.e6. [PMID: 35483653 DOI: 10.1016/j.jid.2022.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022]
Abstract
Although small extracellular vesicles (sEV) have been reported to play an important role in cellular senescence and aging, little is known about the potential role and function of microRNAs (miRNAs) contained within the sEV. To determine senescence-associated factors secreted from sEV of human dermal fibroblasts (HDF), we isolated and characterized sEV from non-senescent vs. senescent HDF. Small RNA sequencing analysis identified many enriched miRNAs in sEV of senescent HDF, as shown by the upregulation of miR-10a, miR-30c, and miR-451a, and downregulation of miR-128, miR-184, miR-200c, and miR-125a. Overexpression of miR-10a, miR-30c, and miR-451a induced an aging phenotype in HDF, whereas inhibition of these miRNAs reduced senescent-like phenotypes in senescent HDF. Moreover, treatment with sEV or sEV-containing conditioned medium promoted cellular senescence in HDF, whereas sEV depletion abrogated pro-senescence effects of the senescent HDF secretome. Interestingly, pro-senescence sEV miRNAs were found to have an essential role in regulating reactive oxygen species production and mitophagy activation. Taken together, our results revealed miR-10a, miR-30c, and miR-451a as pro-senescence factors that are differentially expressed in sEV of senescent HDF, demonstrating the essential role of sEV miRNAs in the biological processes of aging.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Soo-Jin Oh
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea;.
| |
Collapse
|
8
|
Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, Miwa S. How good is the evidence that cellular senescence causes skin ageing? Ageing Res Rev 2021; 71:101456. [PMID: 34487917 PMCID: PMC8524668 DOI: 10.1016/j.arr.2021.101456] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Skin is the largest organ of the body with important protective functions, which become compromised with time due to both intrinsic and extrinsic ageing processes. Cellular senescence is the primary ageing process at cell level, associated with loss of proliferative capacity, mitochondrial dysfunction and significantly altered patterns of expression and secretion of bioactive molecules. Intervention experiments have proven cell senescence as a relevant cause of ageing in many organs. In case of skin, accumulation of senescence in all major compartments with ageing is well documented and might be responsible for most, if not all, the molecular changes observed during ageing. Incorporation of senescent cells into in-vitro skin models (specifically 3D full thickness models) recapitulates changes typically associated with skin ageing. However, crucial evidence is still missing. A beneficial effect of senescent cell ablation on skin ageing has so far only been shown following rather unspecific interventions or in transgenic mouse models. We conclude that evidence for cellular senescence as a relevant cause of intrinsic skin ageing is highly suggestive but not yet completely conclusive.
Collapse
Affiliation(s)
- Evon Low
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Ghazaleh Alimohammadiha
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Lucy A Smith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Lydia F Costello
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Satomi Miwa
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
9
|
Kerschan-Schindl K, Hackl M, Boschitsch E, Föger-Samwald U, Nägele O, Skalicky S, Weigl M, Grillari J, Pietschmann P. Diagnostic Performance of a Panel of miRNAs (OsteomiR) for Osteoporosis in a Cohort of Postmenopausal Women. Calcif Tissue Int 2021; 108:725-737. [PMID: 33427926 PMCID: PMC8166674 DOI: 10.1007/s00223-020-00802-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/03/2022]
Abstract
A specific signature of 19 circulating miRNAs (osteomiRs) has been reported to be associated with fragility fractures due to postmenopausal osteoporosis. However, it is unknown whether osteoporotic fractures or low BMD phenotypes are independently contributing to changes in osteomiR serum levels. The first aim was to characterize the abundance, sensitivity to hemolysis, and correlation of osteomiR serum levels, the second objective to evaluate the diagnostic accuracy of osteomiRs for osteoporosis according to the WHO criteria and on basis of major osteoporotic fracture history. Fifty postmenopausal women with osteoporosis (with or without fragility fracture) and 50 non-osteoporotic women were included in this cross-sectional study. The diagnostic performance of osteomiRs for osteoporosis based on the WHO definition or fracture history was evaluated using multiple logistic regression and receiver-operator curve (AUC) analysis. The osteomiR® signature is composed of four clusters of miRNAs providing good performance for the diagnosis of osteoporosis in postmenopausal women defined by WHO criteria (AUC = 0.830) and based on history of major osteoporotic fractures (AUC = 0.834). The classification performance for the WHO criteria and for fracture risk is driven by miR-375 and miR-203a, respectively. OsteomiRs, a signature of 19 emerging miRNA bone biomarkers, are measurable in human serum samples. They constitute a panel of independent bone and muscle biomarkers, which in combination could serve as diagnostic biomarkers for osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- K Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria.
| | - M Hackl
- TAmiRNA GmbH, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - E Boschitsch
- KLIMAX Menopause and Osteoporosis Clinic, Vienna, Austria
| | - U Föger-Samwald
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - O Nägele
- KLIMAX Menopause and Osteoporosis Clinic, Vienna, Austria
| | | | - M Weigl
- TAmiRNA GmbH, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - J Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1220, Vienna, Austria
| | - P Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
MiR-199-3p enhances muscle regeneration and ameliorates aged muscle and muscular dystrophy. Commun Biol 2021; 4:427. [PMID: 33782502 PMCID: PMC8007565 DOI: 10.1038/s42003-021-01952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Parabiosis experiments suggest that molecular factors related to rejuvenation and aging circulate in the blood. Here, we show that miR-199-3p, which circulates in the blood as a cell-free miRNA, is significantly decreased in the blood of aged mice compared to young mice; and miR-199-3p has the ability to enhance myogenic differentiation and muscle regeneration. Administration of miR-199 mimics, which supply miR-199-3p, to aged mice resulted in muscle fiber hypertrophy and delayed loss of muscle strength. Systemic administration of miR-199 mimics to mdx mice, a well-known animal model of Duchenne muscular dystrophy (DMD), markedly improved the muscle strength of mice. Taken together, cell-free miR-199-3p in the blood may have an anti-aging effect such as a hypertrophic effect in aged muscle fibers and could have potential as a novel RNA therapeutic for DMD as well as age-related diseases. The findings provide us with new insights into blood-circulating miRNAs as age-related molecules.
Collapse
|
11
|
Connective Tissue and Fibroblast Senescence in Skin Aging. J Invest Dermatol 2021; 141:985-992. [PMID: 33563466 DOI: 10.1016/j.jid.2020.11.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that skin aging is significantly enforced by the accumulation of senescent dermal fibroblasts. Various stressors damaging macromolecules inside and outside fibroblasts are responsible. In addition, NK cells fail to adequately remove senescent (SEN) fibroblasts from tissues. SEN fibroblasts by the release of the proinflammatory, tissue degrading senescent-associated secretory phenotype factors and vesicles with distinct cargo impact on their endogenous niche and spread senescence and skin aging. In this review, we will further discuss less noticed facets, including the plasticity of distinct dermal fibroblast phenotypes, the underestimated impact of the extracellular matrix itself, and the depletion of fibroblast subsets on skin homeostasis and aging.
Collapse
|
12
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
13
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
14
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
15
|
Carracedo J, Alique M, Ramírez-Carracedo R, Bodega G, Ramírez R. Endothelial Extracellular Vesicles Produced by Senescent Cells: Pathophysiological Role in the Cardiovascular Disease Associated with all Types of Diabetes Mellitus. Curr Vasc Pharmacol 2020; 17:447-454. [PMID: 30124156 DOI: 10.2174/1570161116666180820115726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis. However, MVs produced by damage cell conveyed epigenetic signals, mainly involving microRNAs, which induce many of the injured responses in other vascular cells leading to the development of CVDs. Many studies strongly support that the quantification and characterization of the MVs released by senescent endothelial cells may be useful diagnostic tools in patients with CVDs, as well as a future therapeutic target for these diseases. In this review, we summarize the current knowledge linking senescence-associated MVs to the development of CVDs and discuss the roles of these MVs, in particular, in diabetic-associated increases the risk of CVDs.
Collapse
Affiliation(s)
- Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/ University Hospital Ramon y Cajal Research Unit (IRYCIS), Madrid, Spain
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| |
Collapse
|
16
|
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S. Circulating MicroRNA-19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation. J Bone Miner Res 2020; 35:306-316. [PMID: 31614022 DOI: 10.1002/jbmr.3892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Circulating microRNAs (miRNAs) play important roles in regulating gene expression and have been reported to be involved in various metabolic diseases, including osteoporosis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the role of circulating miRNAs in this process is poorly understood. Here we discovered that the level of circulating miR-19b was significantly lower in osteoporotic patients with vertebral compression fractures than that of healthy controls. The expression level of miR-19b was increased during osteoblastic differentiation of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells, and transfection with synthetic miR-19b could promote osteoblastic differentiation of hMSCs and MC3T3-E1 cells. PTEN (phosphatase and tensin homolog deleted from chromosome 10) was found to be directly repressed by miR-19b, with a concomitant increase in Runx2 expression and increased phosphorylation of AKT (protein kinase B, PKB). The expression level of circulating miR-19b in aged ovariectomized mice was significantly lower than in young mice. Moreover, the osteoporotic bone phenotype in aged ovariectomized mice was alleviated by the injection of chemically modified miR-19b (agomiR-19b). Taken together, our results show that circulating miR-19b plays an important role in enhancing osteoblastogenesis, possibly through regulation of the PTEN/pAKT/Runx2 pathway, and may be a useful therapeutic target in bone loss disorders, such as osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengge Sun
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tongling Huang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng Yang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - William Lu
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Min Guan
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
17
|
Mobarak H, Rahbarghazi R, Lolicato F, Heidarpour M, Pashazadeh F, Nouri M, Mahdipour M. Evaluation of the association between exosomal levels and female reproductive system and fertility outcome during aging: a systematic review protocol. Syst Rev 2019; 8:293. [PMID: 31775879 PMCID: PMC6882206 DOI: 10.1186/s13643-019-1228-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exosomes may have critical roles in the maternal-embryo cross-talk for the recognition and maintenance of pregnancy during maternal aging. Exosomes have the capability to carry developmental signaling molecules with the ability to modulate gene expressions and affect growth and regulation of embryo during pregnancy. Systematic review aims to evaluate age-related alterations in the exosomal content and functions that can influence the reproductive performance in human and animal models as conveyors of senescence signals. METHODS A literature search of electronic databases including MEDLINE (PubMed), Embase, ProQuest, Scopus, Google Scholar, WHO, SID, MAGIRAN, and Barakat will be conducted. Following the online search, articles will be screened by two independent reviewers according to inclusion and exclusion criteria. Eligible studies will be critically appraised by reviewers at the study level for methodological quality using Joanna Briggs Institute's standardized critical appraisal tools. The extracted data from selected studies will cover the study populations, methods, current evidence about the physiological role of extracellular vesicles and exosomes in reproductive system, relevant outcomes, and possible conclusions about the effectiveness of exposure. DISCUSSION Regarding the role of exosomes and their cargoes in the function of reproductive tract, the possible beneficial or adverse effects following exosomal administration from younger women to older women will be evaluated in the systematic review. As a result, exosome therapy could be suggested as a novel therapeutic agent if the favorable results are identified.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Francesca Lolicato
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166615739, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166615739, Iran.
| |
Collapse
|
18
|
Abstract
OBJECTIVE MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression. We aimed to determine the association between extracellular miRNAs and HIV infection. DESIGN Single-center, cross-sectional study. METHODS We analyzed the expression of 192 plasma-derived miRNAs in 69 HIV-infected individuals and 24 uninfected controls using TaqMan miRNA assays and a high-throughput Real-Time PCR instrument (Fluidigm). False discovery rate (FDR) was applied. RESULTS HIV-infected individuals and controls were similar in age, sex, and traditional risk factors. Among those with HIV, 72.5% were on antiretroviral therapy (ARVs) and 64% had an undetectable viral load. Twenty-nine miRNAs were differentially expressed in the plasma of HIV-infected individuals compared with controls (P < 0.05, FDR < 0.15). Nineteen miRNAs were differentially expressed among HIV+ subjects on ARVs, HIV+ subjects not on ARVs, and HIV- subjects (P < 0.05 and FDR < 0.15). Thirty-four miRNAs were differentially expressed between HIV- subjects and elite controllers (ie, suppressed viral loads despite the absence of ARVs; P < 0.05 and FDR < 0.15). These 34 miRNAs included miRs-29c, 146b, 223, and 382, which were previously reported to have intracellular roles in HIV latency, as well as miRs-126, 145, and let-7, which were previously shown to be differentially expressed in coronary artery disease among uninfected individuals. CONCLUSIONS We demonstrate a unique expression profile of 29 miRNAs in HIV+ subjects and 34 miRNAs in elite controllers as compared to HIV- subjects. These miRNA signatures may be useful in further elucidating mechanisms of viral and immunological control and may have diagnostic or prognostic value in HIV-associated coronary artery disease.
Collapse
|
19
|
D'Anca M, Fenoglio C, Serpente M, Arosio B, Cesari M, Scarpini EA, Galimberti D. Exosome Determinants of Physiological Aging and Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:232. [PMID: 31555123 PMCID: PMC6722391 DOI: 10.3389/fnagi.2019.00232] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023] Open
Abstract
Aging is consistently reported as the most important independent risk factor for neurodegenerative diseases. As life expectancy has significantly increased during the last decades, neurodegenerative diseases became one of the most critical public health problem in our society. The most investigated neurodegenerative diseases during aging are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD). The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and blood. Recently, exosomes emerged as novel biological source with increasing interest for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular vesicles (EVs; 30-100 nm in size) released by all cell types which originate from the endosomal compartment. They constitute important vesicles for the release and transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially considered with merely waste disposal function, instead exosomes have been recently recognized as fundamental mediators of intercellular communication. They can move from the site of release by diffusion and be retrieved in several body fluids, where they may dynamically reflect pathological changes of cells present in inaccessible sites such as the brain. Multiple evidence has implicated exosomes in age-associated neurodegenerative processes, which lead to cognitive impairment in later life. Critically, consolidated evidence indicates that pathological protein aggregates, including Aβ, tau, and α-synuclein are released from brain cells in association with exosomes. Importantly, exosomes act as vehicles between cells not only of proteins but also of nucleic acids [DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially influencing gene expression in target cells. In this framework, exosomes could contribute to elucidate the molecular mechanisms underneath neurodegenerative diseases and could represent a promising source of biomarkers. Despite the involvement of exosomes in age-associated neurodegeneration, the study of exosomes and their genetic cargo in physiological aging and in neurodegenerative diseases is still in its infancy. Here, we review, the current knowledge on protein and ncRNAs cargo of exosomes in normal aging and in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marianna D'Anca
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Maria Serpente
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Geriatrics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Angelo Scarpini
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Terlecki-Zaniewicz L, Lämmermann I, Latreille J, Bobbili MR, Pils V, Schosserer M, Weinmüllner R, Dellago H, Skalicky S, Pum D, Almaraz JCH, Scheideler M, Morizot F, Hackl M, Gruber F, Grillari J. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging (Albany NY) 2019; 10:1103-1132. [PMID: 29779019 PMCID: PMC5990398 DOI: 10.18632/aging.101452] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.
Collapse
|
21
|
Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, Mahdipour M. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. Biofactors 2019; 45:293-303. [PMID: 30788863 DOI: 10.1002/biof.1497] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
An alternative mechanism of cell-to-cell communication via extracellular vesicles (EVs) has recently raised increasing attention. EVs are spherical structures comprising exosomes and microvesicles, capable of transferring regulatory molecules and genetic information from one cell to another. EVs act as modulators which can alter a wide spectrum of functions at the cellular level in the recipient cells, taking part in a variety of biological processes in both physiological and pathological conditions. Alteration in EVs content, notably exosomes, was reported during cellular senescence and in patients with age-related diseases. Most studies reported regulating the impacts of exosomes on fertility and pregnancy outcomes via their capability in carrying developmental signaling molecules like proteins, RNA cargos, influencing gene expressions, affecting growth, and development of embryos during aging. Alterations in the exosomal content and functions can influence the reproductive performance in human and animals as conveyors of senescence signals from outside of the cells. This review aimed to summarize evidence on the role of EVs on modulating fertility, early embryonic development, maternal-embryo crosstalk for the recognition, and maintenance of pregnancy during maternal aging. Advanced clinical studies are required to strengthen the findings that the benefit of exosomes can be extended to subjects undergoing reproductive aging. © 2019 BioFactors, 45(3):293-303, 2019.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Francesca Lolicato
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
23
|
Prolonged Waking and Recovery Sleep Affect the Serum MicroRNA Expression Profile in Humans. Clocks Sleep 2018; 1:75-86. [PMID: 33089155 PMCID: PMC7509676 DOI: 10.3390/clockssleep1010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) are small, abundant, non-coding RNA fragments that regulate gene expression and silencing at the post-transcriptional level. The miRNAs each control various downstream targets and play established roles in different biological processes. Given that miRNAs were recently proposed to contribute to the molecular control of sleep-wake regulation in animal models and narcoleptic patients, we investigated the impact of acute sleep deprivation on blood miRNA expression in healthy adult men of two different age groups. Twenty-two young (mean age: 24 ± 3 years) and nine older (65 ± 1 years) volunteers completed a controlled in-lab study, consisting of 8 h baseline sleep, followed by 40 h of extended wakefulness, and a 10-h recovery sleep opportunity. At the same circadian time in all three conditions (at 4:23 p.m. ± 23 min), qPCR expression profiling of 86 miRNAs was performed in blood serum. Thirteen different miRNAs could be reliably quantified and were analyzed using mixed-model ANOVAs. It was found that miR-30c and miR-127 were reliably affected by previous sleep and wakefulness, such that expression of these miRNAs was upregulated after extended wakefulness and normalized after recovery sleep. Together with previous findings in narcolepsy patients, our preliminary data indicate that miR-30c and its target proteins may provide a biomarker of elevated sleep debt in humans.
Collapse
|
24
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
25
|
Hou A, Chen P, Tang H, Meng H, Cheng X, Wang Y, Zhang Y, Peng J. Cellular senescence in osteoarthritis and anti-aging strategies. Mech Ageing Dev 2018; 175:83-87. [DOI: 10.1016/j.mad.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
26
|
Alique M, Ruíz-Torres MP, Bodega G, Noci MV, Troyano N, Bohórquez L, Luna C, Luque R, Carmona A, Carracedo J, Ramírez R. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany NY) 2017; 9:778-789. [PMID: 28278131 PMCID: PMC5391231 DOI: 10.18632/aging.101191] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2017] [Indexed: 11/25/2022]
Abstract
Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - María Piedad Ruíz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá. Alcalá de Henares, Madrid, Spain
| | - María Victoria Noci
- Unidad de Anestesia, Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Nuria Troyano
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Lourdes Bohórquez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, E14014, Córdoba, Andalucía, Spain
| | - Andrés Carmona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Julia Carracedo
- Departamento de Fisiología Animal (II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Institute of Investigation, Hospital 12 de Octubre, Madrid, Spain.,These senior authors contributed equally to this paper
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These senior authors contributed equally to this paper
| |
Collapse
|
27
|
Smith-Vikos T, Liu Z, Parsons C, Gorospe M, Ferrucci L, Gill TM, Slack FJ. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY) 2017; 8:2971-2987. [PMID: 27824314 PMCID: PMC5191881 DOI: 10.18632/aging.101106] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
In C. elegans, miRNAs are genetic biomarkers of aging. Similarly, multiple miRNAs are differentially expressed between younger and older persons, suggesting that miRNA-regulated biological mechanisms affecting aging are evolutionarily conserved. Previous human studies have not considered participants' lifespans, a key factor in identifying biomarkers of aging. Using PCR arrays, we measured miRNA levels from serum samples obtained longitudinally at ages 50, 55, and 60 from 16 non-Hispanic males who had documented lifespans from 58 to 92. Numerous miRNAs showed significant changes in expression levels. At age 50, 24 miRNAs were significantly upregulated, and 73 were significantly downregulated in the long-lived subgroup (76-92 years) as compared with the short-lived subgroup (58-75 years). In long-lived participants, the most upregulated was miR-373-5p, while the most downregulated was miR-15b-5p. Longitudinally, significant Pearson correlations were observed between lifespan and expression of nine miRNAs (p value<0.05). Six of these nine miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) were also significantly up- or downregulated when comparing long-lived and short-lived participants. Twenty-four validated targets of these miRNAs encoded aging-associated proteins, including PARP1, IGF1R, and IGF2R. We propose that the expression profiles of the six miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, and 1225-3p) may be useful biomarkers of aging.
Collapse
Affiliation(s)
- Thalyana Smith-Vikos
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Current address: Graduate School of Arts and Sciences, Columbia University, New York, NY 10027, USA
| | - Zuyun Liu
- Yale School of Medicine, Department of Internal Medicine, New Haven, CT 06510, USA
| | | | - Myriam Gorospe
- Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Thomas M Gill
- Yale School of Medicine, Department of Internal Medicine, New Haven, CT 06510, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
28
|
Davis C, Dukes A, Drewry M, Helwa I, Johnson MH, Isales CM, Hill WD, Liu Y, Shi X, Fulzele S, Hamrick MW. MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Eng Part A 2017; 23:1231-1240. [PMID: 28363268 PMCID: PMC5689127 DOI: 10.1089/ten.tea.2016.0525] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
Microvesicle- and exosome-mediated transport of microRNAs (miRNAs) represents a novel cellular and molecular pathway for cell-cell communication. In this study, we tested the hypothesis that these extracellular vesicles (EVs) and their miRNAs might change with age, contributing to age-related stem cell dysfunction. EVs were isolated from the bone marrow interstitial fluid (supernatant) of young (3-4 months) and aged (24-28 months) mice to determine whether the size, concentration, and miRNA profile of EVs were altered with age in vivo. Results show that EVs isolated from bone marrow are CD63 and CD9 positive, and the concentration and size distribution of bone marrow EVs are similar between the young and aged mice. Bioanalyzer data indicate that EVs from both young and aged mice are highly enriched in miRNAs, and the miRNA profile of bone marrow EVs differs significantly between the young and aged mice. Specifically, the miR-183 cluster (miR-96/-182/-183) is highly expressed in aged EVs. In vitro assays demonstrate that aged EVs are endocytosed by primary bone marrow stromal cells (BMSCs), and these aged EVs inhibit the osteogenic differentiation of young BMSCs. Transfection of BMSCs with miR-183-5p mimic reduces cell proliferation and osteogenic differentiation, increases senescence, and decreases protein levels of the miR-183-5p target heme oxygenase-1 (Hmox1). In vitro assays utilizing H2O2-induced oxidative stress show that H2O2 treatment of BMSCs increases the abundance of miR-183-5p in BMSC-derived EVs, and Amplex Red assays demonstrate that H2O2 is elevated in the bone marrow microenvironment with age. Together, these data indicate that aging and oxidative stress can significantly alter the miRNA cargo of EVs in the bone marrow microenvironment, which may in turn play a role in stem cell senescence and osteogenic differentiation by reducing Hmox1 activity.
Collapse
Affiliation(s)
- Colleen Davis
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Amy Dukes
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Michelle Drewry
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Inas Helwa
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Maribeth H Johnson
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Carlos M Isales
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - William D Hill
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Xingming Shi
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Sadanand Fulzele
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
29
|
Dumache R, Rogobete AF, Sandesc D, Bedreag OH, Ciocan V, Muresan C, Stan AT, Sandesc M, Dinu A, Popovici SE, Enache A. Use of Circulating and Cellular miRNAs Expression in Forensic Sciences. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The current practice in the field of forensic medicine imposes the use of modern investigation techniques. The complexity of laboratory investigation methods needed for a final result of the investigation in forensic medicine needed new biomarkers of higher specificity and selectivity. Such biomarkers are the microRNAs (miRNAs), short, non-coding RNAs composed of 19–24 nucleotides. Their characteristics, such as high stability, selectivity, and specificity for biological fluids, differ from tissue to tissue and for certain pathologies, turning them into the ideal candidate for laboratory techniques used in forensic medicine. In this paper, we wish to highlight the biochemical properties and the usefulness of miRNAs in forensic medicine.
Collapse
Affiliation(s)
- Raluca Dumache
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Alexandru Florin Rogobete
- Faculty of Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
- Clinic of Anesthesia and Intensive Care , “Pius Brinzeu” Emergency County Hospital , Timișoara , Romania
| | - Dorel Sandesc
- Faculty of Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
- Clinic of Anesthesia and Intensive Care , “Pius Brinzeu” Emergency County Hospital , Timișoara , Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
- Clinic of Anesthesia and Intensive Care , “Pius Brinzeu” Emergency County Hospital , Timișoara , Romania
| | - Veronica Ciocan
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Camelia Muresan
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Adrian Tudor Stan
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Mihai Sandesc
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Anca Dinu
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Sonia Elena Popovici
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Alexandra Enache
- Department of Forensic Medicine , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| |
Collapse
|
30
|
Bobbili MR, Mader RM, Grillari J, Dellago H. OncomiR-17-5p: alarm signal in cancer? Oncotarget 2017; 8:71206-71222. [PMID: 29050357 PMCID: PMC5642632 DOI: 10.18632/oncotarget.19331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Soon after microRNAs entered the stage as novel regulators of gene expression, they were found to regulate -and to be regulated by- the development, progression and aggressiveness of virtually all human types of cancer. Therefore, miRNAs in general harbor a huge potential as diagnostic and prognostic markers as well as potential therapeutic targets in cancer. The miR-17-92 cluster was found to be overexpressed in many human cancers and to promote unrestrained cell growth, and has therefore been termed onco-miR-1. In addition, its expression is often dysregulated in many other diseases. MiR-17-5p, its most prominent member, is an essential regulator of fundamental cellular processes like proliferation, autophagy and apoptosis, and its deficiency is neonatally lethal in the mouse. Many cancer types are associated with elevated miR-17-5p expression, and the degree of overexpression might correlate with cancer aggressiveness and responsiveness to chemotherapeutics - suggesting miR-17-5p to be an alarm signal. Liver, gastric or colorectal cancers are examples where miR-17-5p has been observed exclusively as an oncogene, while, in other cancer types, like breast, prostate and lung cancer, the role of miR-17-5p is not as clear-cut, and it might also act as tumor-suppressor. However, in all cancer types studied so far, miR-17-5p has been found at elevated levels in the circulation. In this review, we therefore recapitulate the current state of knowledge about miR-17-5p in the context of cancer, and suggest that elevated miR-17-5p levels in the plasma might be a sensitive and early alarm signal for cancer ('alarmiR'), albeit not a specific alarm for a specific type of tumor.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,TAmiRNA GmbH, Vienna, Austria
| |
Collapse
|
31
|
Olivieri F, Capri M, Bonafè M, Morsiani C, Jung HJ, Spazzafumo L, Viña J, Suh Y. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 2017; 165:162-170. [PMID: 27986629 PMCID: PMC5481482 DOI: 10.1016/j.mad.2016.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are currently conceived as those endowed with the strongest ability to provide information about the trajectories of healthy and unhealthy aging. We review the available data on miRNAs in aging and underpin the evidence suggesting that circulating miRNAs (and cognate shuttles), especially those involved in the regulation of inflammation (inflamma-miRs) may constitute biomarkers capable of reliably depicting healthy and unhealthy aging trajectories.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Miriam Capri
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy; CIG, Interdepartmental Center "L. Galvani", Alma Mater Studiorum, Pzza Porta S. Donato, 1, Bologna, Italy.
| | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy
| | - Cristina Morsiani
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy; CIG, Interdepartmental Center "L. Galvani", Alma Mater Studiorum, Pzza Porta S. Donato, 1, Bologna, Italy
| | - Hwa Jin Jung
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Liana Spazzafumo
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia. INCLIVA Avda, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
32
|
Tang X, Lin J, Wang G, Lu J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One 2017. [PMID: 28628652 PMCID: PMC5476290 DOI: 10.1371/journal.pone.0179860] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dickkopf-1 (DKK1) is a powerful antagonist of canonical WNT signaling pathway, and is regarded as a biomarker for osteoporosis. Its expression is highly correlated with bone mass and osteoblasts maturation. In this study, mouse primary bone marrow cells and osteoblast cell lines were used. Luciferase reporter assay and western blotting methods were employed to validate if miRNA-433-3p epigenetically regulated DKK1 translation. Rat bone marrow derived osteoblasts were infected with lentivirus vector in which miR-433-3p was constructed. The authors constructed lentivirus mediated miRNA-433-3p stable expression and examined the alkaline phosphatase (ALP) activity and mineral deposition level in vitro. In situ hybridization method was used to observe miR-433-3p in primary osteoblasts. We built up an OVX rat model to mimic postmenopausal osteoporosis, and found aberrant circulating miR-433-3p and miR-106b, which were not reported previously. Results showed that miR-433-3p potentially regulated DKK1 mRNA, Furthermore, the correlation of serum DKK1 with circulating miR-433-3p level was significant (r = 0.7520, p = 0.046). In the luciferase reporter assay, we found that miR-433-3p siRNA decreased luminescence signal, indicating direct regulation of miR-433-3p on DKK1 mRNA. When the miR-433-3p binding site in DKK1 3’UTR was mutant, such reduction was prohibited. Western blotting result validated that miR-433-3p inhibited over 90% of DKK1 protein expression. Similarly, the change of protein expression was not observed in mutant group. The stable expression of lentivirus mediated miR-433-3p increased ALP activity and mineralization both in human and rat derived immortalized cells. We found that primary osteoblasts had higher miR-433-3p level compared with immortal cells through real-time PCR, as well as in situ hybridization experiment. Conclusively, our findings further emphasized the vital role of miR-433-3p in DKK1/WNT/β-catenin pathway through decreasing DKK1 expression and inducing osteoblasts differentiation.
Collapse
Affiliation(s)
- Xiaolin Tang
- Department of Medical Science, Shunde Polytechnic, Foshan, China
- * E-mail:
| | - Jiantao Lin
- Traditional Chinese Medicine and New Drug Research Institute, Guangdong Medical University, Dongguan, China
| | - Guanhai Wang
- Traditional Chinese Medicine and New Drug Research Institute, Guangdong Medical University, Dongguan, China
| | - Jianlin Lu
- Department of Medical Science, Shunde Polytechnic, Foshan, China
| |
Collapse
|
33
|
Endothelial Cell-derived Extracellular Vesicles Size-dependently Exert Procoagulant Activity Detected by Thromboelastometry. Sci Rep 2017. [PMID: 28623360 PMCID: PMC5473891 DOI: 10.1038/s41598-017-03159-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells (ECs) are major modulators of hemostasis by expressing and releasing pro- and anticoagulant mediators into the circulation. Previous studies showed that cultured ECs release procoagulant mediators into cell culture supernatants as evidenced by the reduction of viscoelastic clotting time. This effect was reversed with an anti-tissue factor antibody. Here, we aimed to investigate whether tissue factor (TF) was released by endothelial-derived extracellular vesicles (EVs) and which portion of the released vesicles displays the most prominent procoagulant properties. After stimulation of ECs with tumor-necrosis factor-α (TNF-α) the supernatants of EC cultures were subjected to differential centrifugation steps to collect larger and smaller EVs which were then characterised by nanoparticle tracking analysis (NTA) and flow cytometry. Mixed with fresh human blood and analysed by thromboelastometry EVs exerted a significant procoagulant stimulus, which could be partly reversed by addition of an anti-TF antibody. Moreover, TF activity was confirmed in the centrifuged fractions. In summary, our results provide evidence of the procoagulant potential of smaller and larger endothelial-derived EV fractions detected by thromboelastometry. The observed effect is most likely due to the release of TF-bearing EVs of different dimensions, which are released upon TNF-α stimulation of endothelial cell cultures.
Collapse
|
34
|
Hromada C, Mühleder S, Grillari J, Redl H, Holnthoner W. Endothelial Extracellular Vesicles-Promises and Challenges. Front Physiol 2017; 8:275. [PMID: 28529488 PMCID: PMC5418228 DOI: 10.3389/fphys.2017.00275] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.
Collapse
Affiliation(s)
- Carina Hromada
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Severin Mühleder
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue RegenerationVienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Life SciencesVienna, Austria.,Evercyte GmbHVienna, Austria
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| |
Collapse
|
35
|
Romano GL, Platania CBM, Drago F, Salomone S, Ragusa M, Barbagallo C, Di Pietro C, Purrello M, Reibaldi M, Avitabile T, Longo A, Bucolo C. Retinal and Circulating miRNAs in Age-Related Macular Degeneration: An In vivo Animal and Human Study. Front Pharmacol 2017; 8:168. [PMID: 28424619 PMCID: PMC5371655 DOI: 10.3389/fphar.2017.00168] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023] Open
Abstract
Age related macular degeneration (AMD) is the leading cause of blindness among people aged 50 and over. Retinal deposition of amyloid-β (Aβ) aggregates in AMD patients has suggested a potential link between AMD and Alzheimer's disease (AD). We have evaluated the differential retinal expression profile of miRNAs in a rat model of AMD elicited by Aβ. A serum profile of miRNAs in AMD patients has been also assessed using single TaqMan assay. Analysis of retina from rats intravitreally injected with Aβ revealed that miR-27a, miR-146a, and miR-155 were up-regulated in comparison to control rats. Seven miRNA (miR-9, miR-23a, miR-27a, miR-34a, miR-126, miR-146a, and miR-155) have been found to be dysregulated in serum of AMD patients in comparison to control group. Analysis of pathways has revealed that dysregulated miRNAs, both in the AMD animal model and in AMD patients, can target genes regulating pathways linked to neurodegeneration and inflammation, reinforcing the hypothesis that AMD is a protein misfolding disease similar to AD. In fact, miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155 have been found to be dysregulated both in AMD and AD. In conclusion, we suggest that miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155 represent potential biomarkers and new pharmacological targets for AMD.
Collapse
Affiliation(s)
- Giovanni L Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Chiara B M Platania
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Antonio Longo
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| |
Collapse
|
36
|
Prattichizzo F, Micolucci L, Cricca M, De Carolis S, Mensà E, Ceriello A, Procopio AD, Bonafè M, Olivieri F. Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech Ageing Dev 2017; 168:44-53. [PMID: 28259747 DOI: 10.1016/j.mad.2017.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Abstract
Exosomes are nanovesicles formed by inward budding of endosomal membranes. They exert complex immunomodulatory effects on target cells, acting both as antigen-presenting vesicles and as shuttles for packets of information such as proteins, coding and non-coding RNA, and nuclear and mitochondrial DNA fragments. Albeit different, all such functions seem to be encompassed in the adaptive mechanism mediating the complex interactions of the organism with a variety of stressors, providing both for defense and for the evolution of symbiotic relationships with others organisms (gut microbiota, bacteria, and viruses). Intriguingly, the newly deciphered human virome and exosome biogenesis seem to share some physical-chemical characteristics and molecular mechanisms. Exosomes are involved in immune system recognition of self from non-self throughout life: they are therefore ideal candidate to modulate inflamm-aging, the chronic, systemic, age-related pro-inflammatory status, which influence the development/progression of the most common age-related diseases (ARDs). Not surprisingly, recent evidence has documented exosomal alteration during aging and in association with ARDs, even though data in this field are still limited. Here, we review current knowledge on exosome-based trafficking between immune cells and self/non-self cells (i.e. the virome), sketching a nano-perspective on inflamm-aging and on the mechanisms involved in health maintenance throughout life.
Collapse
Affiliation(s)
- Francesco Prattichizzo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Luigina Micolucci
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Ceriello
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy.
| |
Collapse
|
37
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
38
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
39
|
Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med 2016; 21:1033-1041. [PMID: 27878944 PMCID: PMC5387131 DOI: 10.1111/jcmm.13039] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Pathological destructive bone diseases are primarily caused by the failure of a lifelong self-renewal process of the skeletal system called bone remodelling. The mechanisms underlying this process include enhanced osteoclast activity and decreased generation of the osteoblast lineage. Intercellular interaction and crosstalk among these cell types are crucial for the maintenance of bone remodelling, either through the secretion of growth factors or direct cell-cell physical engagement. Recent studies have revealed that exosomes derived from bone cells, including osteoclasts, osteoblasts and their precursors, play pivotal roles on bone remodelling by transferring biologically active molecules to target cells, especially in the processes of osteoclast and osteoblast differentiation. Here, we review the contents of bone-derived exosomes and their functions in the regulatory processes of differentiation and communication of osteoclasts and osteoblasts. In addition, we highlight the characteristics of microRNAs of bone-derived exosomes involved in the regulation of bone remodelling, as well as the potential clinical applications of bone-derived exosomes in bone remodelling disorders.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanyu Chen
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Cosín-Tomás M, Antonell A, Lladó A, Alcolea D, Fortea J, Ezquerra M, Lleó A, Martí MJ, Pallàs M, Sanchez-Valle R, Molinuevo JL, Sanfeliu C, Kaliman P. Plasma miR-34a-5p and miR-545-3p as Early Biomarkers of Alzheimer’s Disease: Potential and Limitations. Mol Neurobiol 2016; 54:5550-5562. [DOI: 10.1007/s12035-016-0088-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/30/2016] [Indexed: 01/16/2023]
|
41
|
Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016; 432:83-95. [PMID: 26525415 DOI: 10.1016/j.mce.2015.10.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine.
Collapse
Affiliation(s)
| | - Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Johannes Grillari
- Evercyte GmbH, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria.
| |
Collapse
|
42
|
Prattichizzo F, Giuliani A, De Nigris V, Pujadas G, Ceka A, La Sala L, Genovese S, Testa R, Procopio AD, Olivieri F, Ceriello A. Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity? Diabetes Obes Metab 2016; 18:855-67. [PMID: 27161301 PMCID: PMC5094499 DOI: 10.1111/dom.12688] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.
Collapse
Affiliation(s)
- F Prattichizzo
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - V De Nigris
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - G Pujadas
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - A Ceka
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - L La Sala
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - S Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - R Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - A D Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - A Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| |
Collapse
|
43
|
Dellago H, Bobbili MR, Grillari J. MicroRNA-17-5p: At the Crossroads of Cancer and Aging - A Mini-Review. Gerontology 2016; 63:20-28. [PMID: 27577994 DOI: 10.1159/000447773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
The miR-17-92 cluster, led by its most prominent member, miR-17-5p, has been identified as the first miRNA with oncogenic potential. Thus, the whole cluster containing miR-17-5p has been termed oncomiR-1. It is strongly expressed in embryonic stem cells and has essential roles in vital processes like cell cycle regulation, proliferation and apoptosis. The importance of miR-17-5p for fundamental biological processes is underscored by the fact that a miR17-deficient mouse is neonatally lethal. Recently, miR-17-5p was identified in the context of aging, since it is comprised in a common signature of miRNAs that is downregulated in several models of aging research. Recently, miR-17-5p turned out to be the first 'longevimiR' in an animal model, extending the lifespan of a transgenic miR-17-5p-overexpressing mouse. Here, we summarize the current status of research on miR-17-5p with emphasis on its role in cellular senescence, aging and cancer, which points to a pleiotropic function of miR-17-5p regulating multiple targets involved in autophagy, cell cycle regulation and apoptosis in a tissue-dependent fashion. In addition, its elevated presence in serum or plasma of a wide range of tumor patients suggests using it as an 'alarmiR', a general indicator of a potential tumor pathology. However, amounts of circulating miR-17-5p of healthy individuals as reference values are still missing, before any miRNA can be classified as such an 'alarmiR'. In conclusion, miR-17-5p is at the crossroads of aging, longevity and cancer and might represent a promising biomarker or even therapeutic tool and target in this context.
Collapse
Affiliation(s)
- Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | | |
Collapse
|
44
|
Panagiotou N, Wayne Davies R, Selman C, Shiels PG. Microvesicles as Vehicles for Tissue Regeneration: Changing of the Guards. CURRENT PATHOBIOLOGY REPORTS 2016; 4:181-187. [PMID: 27882267 PMCID: PMC5101251 DOI: 10.1007/s40139-016-0115-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Microvesicles (MVs) have been recognised as mediators of stem cell function, enabling and guiding their regenerative effects. RECENT FINDINGS MVs constitute one unique size class of extracellular vesicles (EVs) directly shed from the cell plasma membrane. They facilitate cell-to-cell communication via intercellular transfer of proteins, mRNA and microRNA (miRNA). MVs derived from stem cells, or stem cell regulatory cell types, have proven roles in tissue regeneration and repair processes. Their role in the maintenance of healthy tissue function throughout the life course and thus in age related health span remains to be elucidated. SUMMARY Understanding the biogenesis and mechanisms of action of MVs may enable the development of cell-free therapeutics capable of assisting in tissue maintenance and repair for a variety of age-related degenerative diseases. This review critically evaluates recent work published in this area and highlights important new findings demonstrating the use of MVs in tissue regeneration.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| | - R. Wayne Davies
- School of Informatics, Institute of Neural and Adaptive Computation, Informatics Forum, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB UK
| | - Colin Selman
- Graham Kerr, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
| | - Paul G. Shiels
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| |
Collapse
|
45
|
Urbanelli L, Buratta S, Sagini K, Tancini B, Emiliani C. Extracellular Vesicles as New Players in Cellular Senescence. Int J Mol Sci 2016; 17:ijms17091408. [PMID: 27571072 PMCID: PMC5037688 DOI: 10.3390/ijms17091408] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell senescence is associated with the secretion of many factors, the so-called "senescence-associated secretory phenotype", which may alter tissue microenvironment, stimulating the organism to clean up senescent cells and replace them with newly divided ones. Therefore, although no longer dividing, these cells are still metabolically active and influence the surrounding tissue. Much attention has been recently focused not only on soluble factors released by senescent cells, but also on extracellular vesicles as conveyors of senescence signals outside the cell. Here, we give an overview of the role of extracellular vesicles in biological processes and signaling pathways related to senescence and aging.
Collapse
Affiliation(s)
- Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
46
|
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) is a common neurological disorder among HIV-infected patients despite the availability of combination antiretroviral therapy. Host-encoded microRNAs (miRNA) regulate both host and viral gene expression contributing to HAND pathogenesis and can also serve as disease biomarkers. Herein, plasma miRNA profiles were investigated in HIV/AIDS patients with HAND. METHODS Discovery and Validation Cohorts comprising HIV/AIDS patients were studied that included patients with and without HAND (non-HAND). Plasma miRNA levels were measured by array hybridization and verified by quantitative real-time reverse transcriptase PCR (qRT-PCR). Multiple bioinformatic and biostatistical analyses were applied to the data from each cohort. RESULTS Expression analyses identified nine miRNAs in the Discovery Cohort (HAND, n = 22; non-HAND, n = 25) with increased levels (≥two-fold) in the HAND group compared with the non-HAND group (P < 0.05). In the Validation Cohort (HAND, n = 12; non-HAND, n = 12) upregulation (≥two-fold) of three miRNAs (miR-3665, miR-4516 and miR-4707-5p) was observed in the HAND group that were also increased in the Discovery Cohort's HAND patients, which were verified subsequently by qRT-PCR. Receiver-operating characteristic curve analyses for the three miRNAs also pointed to the diagnosis of HAND (area under curve, 0.87, P < 0.005). Bioinformatics tools predicted that all three miRNAs targeted sequences of genes implicated in neural development, cell death, inflammation, cell signalling and cytokine functions. CONCLUSION Differentially expressed plasma-derived miRNAs were detected in HIV/AIDS patients with HAND that were conserved across different patient cohorts and laboratory methods. Plasma-derived miRNAs might represent biomarkers for HAND and also provide insights into disease mechanisms.
Collapse
|
47
|
Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, Micutkova L, Fortschegger K, Maier AB, Westendorp R, Resch H, Wolbank S, Redl H, Jansen‐Dürr P, Pietschmann P, Grillari‐Voglauer R, Grillari J. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 2016; 15:744-54. [PMID: 27146333 PMCID: PMC4933673 DOI: 10.1111/acel.12484] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 11/29/2022] Open
Abstract
Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor-age-dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR-31 as a crucial component. We demonstrated that miR-31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled-3. Therefore, we suggest that microvesicular miR-31 in the plasma of elderly might play a role in the pathogenesis of age-related impaired bone formation and that miR-31 might be a valuable plasma-based biomarker for aging and for a systemic environment that does not favor cell-based therapies whenever osteogenesis is a limiting factor.
Collapse
Affiliation(s)
- Sylvia Weilner
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
- Evercyte GmbHMuthgasse 181190ViennaAustria
| | - Elisabeth Schraml
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
| | - Matthias Wieser
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- ACIBMuthgasse 181190ViennaAustria
| | - Paul Messner
- Department of NanoBiotechnologyVienna Institute of BioTechnologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Karl Schneider
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
| | - Klemens Wassermann
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
| | - Lucia Micutkova
- Institute of Biomedical Aging ResearchAustrian Academy of SciencesViennaAustria
| | - Klaus Fortschegger
- Children's Cancer Research Institute (CCRI)St. Anna KinderkrebsforschungViennaAustria
| | - Andrea B. Maier
- Department of Medicine and Aged CareRoyal Melbourne HospitalUniversity of MelbourneMelbourneAustralia
- Department of Human Movement SciencesMOVE Research Institute AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rudi Westendorp
- Department of public health and center for healthy aginguniversity of CopenhagenDenmark
| | - Heinrich Resch
- Department of Medicine 2St. Vincent Hospital1060ViennaAustria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Pidder Jansen‐Dürr
- Institute of Biomedical Aging ResearchAustrian Academy of SciencesViennaAustria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy ResearchCenter of PathophysiologyInfectiology and ImmunologyMedical University of Vienna1090ViennaAustria
| | - Regina Grillari‐Voglauer
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Evercyte GmbHMuthgasse 181190ViennaAustria
- ACIBMuthgasse 181190ViennaAustria
| | - Johannes Grillari
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Evercyte GmbHMuthgasse 181190ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
48
|
Abstract
Aging is a universal phenomenon in metazoans, characterized by a general decline of the organism physiology associated with an increased risk of mortality and morbidity. Aging of an organism correlates with a decline in function of its cells, as shown for muscle, immune, and neuronal cells. As the DNA content of most cells within an organism remains largely identical throughout the life span, age-associated transcriptional changes must be achieved by epigenetic mechanisms. However, how aging may impact on the epigenetic state of cells is only beginning to be understood. In light of a growing number of studies demonstrating that noncoding RNAs can provide molecular signals that regulate expression of protein-coding genes and define epigenetic states of cells, we hypothesize that noncoding RNAs could play a direct role in inducing age-associated profiles of gene expression. In this context, the role of long noncoding RNAs (lncRNAs) as regulators of gene expression might be important for the overall transcriptional landscape observed in aged human cells. The possible functions of lncRNAs and other noncoding RNAs, and their roles in the regulation of aging-related cellular pathways will be analyzed.
Collapse
|
49
|
Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2. Stem Cells Int 2016; 2016:8357567. [PMID: 27239205 PMCID: PMC4864545 DOI: 10.1155/2016/8357567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
Hepatic stellate cells (HSCs), previously described for liver-specific mesenchymal stem cells (MSCs), appear to contribute to liver regeneration. Microvesicles (MVs) are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP) or H2O2 treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in culture medium were also assessed. Results showed that (1) HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2) HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3) HSC-MVs dose-dependently inhibited the APAP/H2O2 induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury.
Collapse
|
50
|
Taormina G, Mirisola MG. Longevity: epigenetic and biomolecular aspects. Biomol Concepts 2016; 6:105-17. [PMID: 25883209 DOI: 10.1515/bmc-2014-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity.
Collapse
|