1
|
Watkins BA, Mitchell AE, Shin AC, Dehghani F, Shen CL. Dietary flavonoid actions on senescence, aging, and applications for health. J Nutr Biochem 2025; 139:109862. [PMID: 39929283 DOI: 10.1016/j.jnutbio.2025.109862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/04/2025] [Accepted: 02/06/2025] [Indexed: 03/18/2025]
Abstract
Fruits and vegetables contain biologically active phenolic compounds that show mitigating effects against free radical damage and inflammation. The unique properties of phenolic compounds are protection against oxidative stress, and inception and potentiating of inflammation in the body. Aging is manifest with changes in epigenetic modifications and as with living systems undergo entropy. The gradual decline of body functions and in many cases with aging the cellular processes of senescence are contributors to age-related diseases. Herein the focus is on phenolic compounds as a diet approach to delay the negative consequences of aging. The actions of phenolic compounds on the biology of aging and senescence are presented. The phenolic compounds called flavonoids which are found in many fruits are potential antisenescence factors that benefit health by reducing damage to DNA and the senescence-associated phenotypic cell changes in healthy cells during aging. Flavonoids are proposed to delay and palliate aging where senescence is involved. The dietary sources of natural phenolic compounds afford protection in the aging process and include as some examples naringenin, hesperidin, quercetin, kaempferol, luteolin, genistein, epigallocatechin gallate, and resveratrol. Many of these compounds possess antisenescence effects. The purpose of the review is to discuss where food flavonoids interact with the targets of senescence and how these compounds can attenuate aging-related events. The goal is to provide greater insight into dietary flavonoids and how they improve health and lower the consequences of aging. A novel aspect of this review is the application of flavonoids to neuroprotective effects in brain to reduce pain and improve health with aging.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis CA.
| | - Alyson E Mitchell
- Department of Food Science and Technology, University of California, Davis, Davis CA
| | - Andrew C Shin
- Department of Nutritional Sciences, Neurobiology of Nutrition Laboratory, College of Health & Human Sciences, Texas Tech University, Lubbock, TX
| | - Fereshteh Dehghani
- Department of Nutritional Sciences, Neurobiology of Nutrition Laboratory, College of Health & Human Sciences, Texas Tech University, Lubbock, TX
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| |
Collapse
|
2
|
Li X, Su Q, Xue J, Wei S. Mechanisms, structure-activity relationships, and skin applications of natural polysaccharides in anti-aging: A review. Int J Biol Macromol 2025; 310:143320. [PMID: 40258559 DOI: 10.1016/j.ijbiomac.2025.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Natural polysaccharides, a class of biological macromolecules found in nature, have recently attracted considerable interest owing to their notable anti-aging capabilities. This article provides a comprehensive review of the intricate mechanisms through which natural polysaccharides combat aging, as well as their applications in addressing skin aging. Primarily, these polysaccharides manifest their anti-aging effects via diverse pathways, such as antioxidation, gut microbiota regulation, metabolic modulation, and immune system regulation. The anti-aging efficacy of natural polysaccharides is intrinsically linked to their structure-activity relationships, with critical determinants including molecular weight, monosaccharide composition, and chemical architecture. Polysaccharides with lower molecular weights typically demonstrate enhanced biological activity, whereas specific monosaccharide configurations and chemical modifications can markedly augment their anti-aging potential. The utilization of natural polysaccharides in skin aging holds significant promise, offering benefits such as anti-aging, wrinkle reduction, anti-glycation, and the facilitation of skin regeneration. In conclusion, this article synthesizes the advancements in research on natural polysaccharides within the anti-aging sector and forecasts future trajectories, to establish a robust foundation for the innovation of new polysaccharide-derived anti-aging formulations.
Collapse
Affiliation(s)
- Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Qingqi Su
- Skills Training Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
3
|
Yilmaz Y. Green Tea Mitigates the Hallmarks of Aging and Age-Related Multisystem Deterioration. Aging Dis 2025:AD.2025.0398. [PMID: 40249928 DOI: 10.14336/ad.2025.0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Aging is characterized by progressive multisystem deterioration driven by molecular and cellular mechanisms encapsulated in the twelve hallmarks of aging. Green tea (GT), derived from Camellia sinensis, has garnered significant scientific interest due to its rich polyphenolic composition, particularly epigallocatechin-3-gallate, and its pleiotropic health benefits. In this narrative review, we explored the multifaceted mechanisms through which GT may mitigate the aging hallmarks. Evidence from in vitro, animal, and human studies has shown that GT polyphenols can enhance DNA repair pathways, preserve telomere length, modulate epigenetic aging markers, improve proteostasis and autophagic flux, regulate nutrient-sensing networks, and rejuvenate mitochondrial function. Additionally, GT exhibits anti-inflammatory properties and may restore a physiological gut microbiota composition. Beyond molecular and cellular effects, GT consumption in humans has been associated with improved cognitive function, cardiovascular health, muscle preservation, and metabolic regulation in aging populations. Collectively, these findings highlight GT's potential as a naturally occurring geroscience intervention capable of addressing the interconnected network of aging processes more comprehensively than single-target pharmaceuticals. Future research should focus on optimizing dosing regimens, exploring synergies with other anti-aging strategies, and investigating personalized responses to GT interventions.
Collapse
|
4
|
Breeze B, Connell E, Wileman T, Muller M, Vauzour D, Pontifex MG. Menopause and Alzheimer's disease susceptibility: Exploring the potential mechanisms. Brain Res 2024; 1844:149170. [PMID: 39163895 DOI: 10.1016/j.brainres.2024.149170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's Disease (AD), responsible for 62% of all dementia cases, is a progressive neurodegenerative condition that leads to cognitive dysfunction. The prevalence of AD is consistently higher in women suggesting they are disproportionately affected by this disease. Despite this, our understanding of this female AD vulnerability remains limited. Menopause has been identified as a potential contributing factor to AD in women, with earlier menopause onset associated with greater AD risk. However, the underlying mechanisms responsible for this increased risk are not fully understood. This review examines the potential role of menopause in the development of Alzheimer's Disease providing a mechanistic overview of the available literature from hormones to pathology. While literature is now emerging that indicates a role of hormonal shifts, gut dysbiosis, lipid dysregulation and inflammation, more research is needed to fully elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; Quadram Institute Biosciences, Norwich NR4 7UQ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
5
|
Connell E, Le Gall G, McArthur S, Lang L, Breeze B, Pontifex MG, Sami S, Pourtau L, Gaudout D, Müller M, Vauzour D. (Poly)phenol-rich grape and blueberry extract prevents LPS-induced disruption of the blood-brain barrier through the modulation of the gut microbiota-derived uremic toxins. Neurochem Int 2024; 180:105878. [PMID: 39389472 DOI: 10.1016/j.neuint.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The dynamic protective capacity of (poly)phenols, attributed to their potent antioxidant and anti-inflammatory properties, has been consistently reported. Due to their capacity to alter gut microbiome composition, further actions of (poly)phenols may be exerted through the modulation of the microbiota-gut-brain axis. However, the underlying mechanisms remain poorly defined. Here, we investigated the protective effect of a (poly)phenol-rich grape and blueberry extract (Memophenol™), on the microbiota-gut-brain axis in a model of chronic low-grade inflammation (0.5 mg/kg/wk lipopolysaccharide (LPS) for 8 weeks). Dietary supplementation of male C57BL/6 J mice with Memophenol™ prevented LPS-induced increases in the microbe-derived uremia-associated molecules, indoxyl sulfate (IS) and trimethylamine N-oxide (TMAO). These changes coincided with shifts in gut microbiome composition, notably Romboutsia and Desulfovibrio abundance, respectively. In the brain, LPS exposure disrupted the marginal localisation of the endothelial tight junction ZO-1 and downregulated ZO-1 mRNA expression to an extent closely correlated with TMAO and IS levels; a process prevented by Memophenol™ intake. Hippocampal mRNA sequencing analysis revealed significant downregulation in regulatory pathways of neurodegeneration with Memophenol™ intake. These findings may indicate a novel protective role of the (poly)phenol-rich grape and blueberry extract on the endothelial tight junction component ZO-1, acting through modulation of gut microbial metabolism.
Collapse
Affiliation(s)
- Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, London, E1 2AT, United Kingdom
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
6
|
Huang Z, Zhang L, Xuan J, Zhao T, Peng W. Antibacterial and Antiallergic Effects of Three Tea Extracts on Histamine-Induced Dermatitis. Pharmaceuticals (Basel) 2024; 17:1181. [PMID: 39338343 PMCID: PMC11435320 DOI: 10.3390/ph17091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent and recurrent inflammatory skin condition with a genetic basis. However, the fundamental reasons and mechanisms behind this phenomenon remain incompletely understood. While tea extracts are known to reduce histamine-induced skin allergies and inflammation, the specific mechanisms by which various types of Chinese tea provide their protective effects are still not fully elucidated. In this study, a model of skin itching induced by histamine is used to explore the functions and mechanisms of three types of tea extract (Keemun black tea (HC), Hangzhou green tea (LC), and Fujian white tea (BC)) in alleviating histamine-induced dermatitis. The components of three tea extracts are identified by UPLC-Q-TOF-MS, and we found that their main components are alkaloids, fatty acyls, flavonoids, organic acids, and phenols. The inhibitory effects of three types of tea extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in skin injury are investigated by MIC and flow cytometry. The three types of tea extract have an inhibitory effect on the growth of bacterial flora, with HC showing the best inhibitory activity. The effect of the three types of tea extract on histamine-induced dermatitis is also evaluated. Furthermore, itchy skin experiments, HE staining, toluidine blue staining, and immunohistochemical staining of mouse skin tissues were performed to determine the variations of scratching, epidermal thickness, mast cell number, IL-1β, and NGF content after the administration of the tea extracts. The three types of tea extracts all alleviate and inhibit skin itching, epidermal hyperplasia, and allergic dermatitis. BC effectively alleviates epidermal hyperplasia caused by skin allergies, and LC significantly downregulates NGF. HC reduces histamine-induced mast cell infiltration and downregulates IL-1β to alleviate skin itching. Consequently, tea emerges a potent natural product that can inhibit the growth of skin wound bacterial flora and exhibit skin repair effects on histamine-induced allergic dermatitis.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Lanyue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Tiantian Zhao
- Key Laboratory of Functional Foods, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| |
Collapse
|
7
|
Herrera-Pérez JJ, Hernández-Hernández OT, Flores-Ramos M, Cueto-Escobedo J, Rodríguez-Landa JF, Martínez-Mota L. The intersection between menopause and depression: overview of research using animal models. Front Psychiatry 2024; 15:1408878. [PMID: 39081530 PMCID: PMC11287658 DOI: 10.3389/fpsyt.2024.1408878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Menopausal women may experience symptoms of depression, sometimes even progressing clinical depression requiring treatment to improve quality of life. While varying levels of estrogen in perimenopause may contribute to an increased biological vulnerability to mood disturbances, the effectiveness of estrogen replacement therapy (ERT) in the relief of depressive symptoms remains controversial. Menopausal depression has a complex, multifactorial etiology, that has limited the identification of optimal treatment strategies for the management of this psychiatric complaint. Nevertheless, clinical evidence increasingly supports the notion that estrogen exerts neuroprotective effects on brain structures related to mood regulation. Indeed, research using preclinical animal models continues to improve our understanding of menopause and the effectiveness of ERT and other substances at treating depression-like behaviors. However, questions regarding the efficacy of ERT in perimenopause have been raised. These questions may be answered by further investigation using specific animal models of reduced ovarian function. This review compares and discusses the advantages and pitfalls of different models emulating the menopausal stages and their relationship with the onset of depressive-like signs, as well as the efficacy and mechanisms of conventional and novel ERTs in treating depressive-like behavior. Ovariectomized young rats, middle-to-old aged intact rats, and females treated with reprotoxics have all been used as models of menopause, with stages ranging from surgical menopause to perimenopause. Additionally, this manuscript discusses the impact of organistic and therapeutic variables that may improve or reduce the antidepressant response of females to ERT. Findings from these models have revealed the complexity of the dynamic changes occurring in brain function during menopausal transition, reinforcing the idea that the best approach is timely intervention considering the opportunity window, in addition to the careful selection of treatment according to the presence or absence of reproductive tissue. Additionally, data from animal models has yielded evidence to support new promising estrogens that could be considered as ERTs with antidepressant properties and actions in endocrine situations in which traditional ERTs are not effective.
Collapse
Affiliation(s)
- José Jaime Herrera-Pérez
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Olivia Tania Hernández-Hernández
- Consejo Nacional de Humanidades, Ciencias y Tecnologías Research Fellow. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Mónica Flores-Ramos
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa-Enríquez, Mexico
| | | | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
8
|
Chatterjee A, Kumar S, Roy Sarkar S, Halder R, Kumari R, Banerjee S, Sarkar B. Dietary polyphenols represent a phytotherapeutic alternative for gut dysbiosis associated neurodegeneration: A systematic review. J Nutr Biochem 2024; 129:109622. [PMID: 38490348 DOI: 10.1016/j.jnutbio.2024.109622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Globally, neurodegeneration and cerebrovascular disease are common and growing causes of morbidity and mortality. Pathophysiology of this group of diseases encompasses various factors from oxidative stress to gut microbial dysbiosis. The study of the etiology and mechanisms of oxidative stress as well as gut dysbiosis-induced neurodegeneration in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, autism spectrum disorder, and Huntington's disease has recently received a lot of attention. Numerous studies lend credence to the notion that changes in the intestinal microbiota and enteric neuroimmune system have an impact on the initiation and severity of these diseases. The prebiotic role of polyphenols can influence the makeup of the gut microbiota in neurodegenerative disorders by modulating intracellular signalling pathways. Metabolites of polyphenols function directly as neurotransmitters by crossing the blood-brain barrier or indirectly via influencing the cerebrovascular system. This assessment aims to bring forth an interlink between the consumption of polyphenols biotransformed by gut microbiota which in turn modulate the gut microbial diversity and biochemical changes in the brain. This systematic review will further augment research towards the association of dietary polyphenols in the management of gut dysbiosis-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Satish Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Ritabrata Halder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Rashmi Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India.
| |
Collapse
|
9
|
Láng L, McArthur S, Lazar AS, Pourtau L, Gaudout D, Pontifex MG, Müller M, Vauzour D. Dietary (Poly)phenols and the Gut-Brain Axis in Ageing. Nutrients 2024; 16:1500. [PMID: 38794738 PMCID: PMC11124177 DOI: 10.3390/nu16101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
As the population ages, the incidence of age-related neurodegenerative diseases is rapidly increasing, and novel approaches to mitigate this soaring prevalence are sorely needed. Recent studies have highlighted the importance of gut microbial homeostasis and its impact on brain functions, commonly referred to as the gut-brain axis, in maintaining overall health and wellbeing. Nonetheless, the mechanisms by which this system acts remains poorly defined. In this review, we will explore how (poly)phenols, a class of natural compounds found in many plant-based foods and beverages, can modulate the gut-brain axis, and thereby promote neural health. While evidence indicates a beneficial role of (poly)phenol consumption as part of a balanced diet, human studies are scarce and mechanistic insight is still lacking. In this regard, we make the case that dietary (poly)phenols should be further explored to establish their therapeutic efficacy on brain health through modulation of the gut-brain axis, with much greater emphasis on carefully designed human interventions.
Collapse
Affiliation(s)
- Léonie Láng
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - Simon McArthur
- Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London E1 2AT, UK;
| | - Alpar S. Lazar
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Line Pourtau
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - David Gaudout
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| |
Collapse
|
10
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
11
|
Salvi J, Andreoletti P, Audinat E, Balland E, Ben Fradj S, Cherkaoui-Malki M, Heurtaux T, Liénard F, Nédélec E, Rovère C, Savary S, Véjux A, Trompier D, Benani A. Microgliosis: a double-edged sword in the control of food intake. FEBS J 2024; 291:615-631. [PMID: 35880408 DOI: 10.1111/febs.16583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 02/16/2024]
Abstract
Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.
Collapse
Affiliation(s)
- Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Audinat
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Eglantine Balland
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Selma Ben Fradj
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | | | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fabienne Liénard
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Anne Véjux
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing 2023; 20:67. [PMID: 38001481 PMCID: PMC10668412 DOI: 10.1186/s12979-023-00383-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
TLR4, a transmembrane receptor, plays a central role in the innate immune response. TLR4 not only engages with exogenous ligands at the cellular membrane's surface but also interacts with intracellular ligands, initiating intricate intracellular signaling cascades. Through MyD88, an adaptor protein, TLR4 activates transcription factors NF-κB and AP-1, thereby facilitating the upregulation of pro-inflammatory cytokines. Another adapter protein linked to TLR4, known as TRIF, autonomously propagates signaling pathways, resulting in heightened interferon expression. Recently, TLR4 has garnered attention as a significant factor in the regulation of symptoms in aging-related disorders. The persistent inflammatory response triggered by TLR4 contributes to the onset and exacerbation of these disorders. In addition, alterations in TLR4 expression levels play a pivotal role in modifying the manifestations of age-related diseases. In this review, we aim to consolidate the impact of TLR4 on cellular senescence and aging-related ailments, highlighting the potential of TLR4 as a novel therapeutic target that extends beyond immune responses.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, 24414, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
14
|
Zou YF, JiZe XP, Li CY, Zhang CW, Fu YP, Yin ZQ, Li YP, Song X, Li LX, Zhao XH, Feng B, Huang C, Ye G, Tang HQ, Li NY, Chen J, Chen XF, Tian ML. Polysaccharide from aerial part of Chuanminshen violaceum alleviates oxidative stress and inflammatory response in aging mice through modulating intestinal microbiota. Front Immunol 2023; 14:1159291. [PMID: 37153605 PMCID: PMC10162438 DOI: 10.3389/fimmu.2023.1159291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning-Yuan Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Xiang Q, Liu Y, Wu Z, Wang R, Zhang X. New hints for improving sleep: Tea polyphenols mediate gut microbiota to regulate circadian disturbances. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Qiao Xiang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| |
Collapse
|
16
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|
18
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
19
|
Guo X, Dong Z, Li Q, Wan D, Zhong J, Dongzhi D, Huang M. Flavonoids from Rhododendron nivale Hook. f delay aging via modulation of gut microbiota and glutathione metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154270. [PMID: 35760023 DOI: 10.1016/j.phymed.2022.154270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhododendron nivale Hook. f (R.n), one of the four Manna Stash used in Tibetan medicine to delay aging, possesses anti-aging pharmacological activity. However, which R.n ingredients contain anti-aging properties and the underlying mechanisms involved are unclear. HYPOTHESIS/PURPOSE Based on interactions between gut microbiota and natural medicines and the important role of gut microbiota in anti-aging, the study investigated the hypothesis that R.n possesses anti-aging properties and the interaction of gut microbiota with R.n is responsible for its anti-aging effects. STUDY DESIGN The primary active ingredients of R.n and their target function and pathway enrichment were explored. An aging mouse model was used to clarify the underlying anti-aging mechanisms of R.n. METHODS Chromatography, spectroscopy, nuclear magnetic technology, and pharmacology were used to reveal the major active ingredients of ethanol extract residues of R.n (RNEA). The target function and pathway enrichment of these active ingredients were explored. Plasma metabolomics coupled with intestinal flora evaluation and bioinformatics analysis was used to clarify the underlying anti-aging mechanisms of RNEA. RESULTS Myricetin-3-β-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-β-D-galactoside, and diplomorphanin B were separated and identified from RNEA. The network pharmacology study revealed that the active ingredients' target function and pathway enrichment focused mainly on the glutathione antioxidant system. In a D-galactose-induced mouse model of aging, RNEA was shown to possess suitable anti-aging pharmacological activity, as indicated by the amelioration of memory loss and weakened superoxide dismutase and glutathione peroxidase activities. Plasma metabolomics coupled with intestinal flora examination and bioinformatics analysis revealed that RNEA could regulate the expression of glutathione-related enzymes and ameliorate D-galactose-induced imbalances in methionine, glycine, and serine, and betaine and galactose metabolism. The results showed that RNEA reshaped the disordered intestinal flora and mitigated the D-galactose-mediated decline in glutathione oxidase expression, further confirming that the anti-aging effect of RNEA was closely related to regulation of the glutathione antioxidant system. CONCLUSION RNEA, consisting of myricetin-3-β-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-β-D-galactoside, and diplomorphanin B, possesses anti-aging activity. The anti-aging effect of RNEA might be due to reshaping intestinal flora homeostasis, increasing the expression of glutathione peroxidase 4 in the intestines and liver, enhancing glutathione peroxidase activity, and reinforcing the glutathione antioxidant system.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qien Li
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Digao Wan
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Jiangbin Zhong
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Duojie Dongzhi
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
20
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
21
|
Yousefi-Ahmadipour A, Sartipi M, Khodadadi H, Shariati-Kohbanani M, Arababadi MK. Toll-like receptor 4 and the inflammation during aging. JOURNAL OF GERONTOLOGY AND GERIATRICS 2022. [DOI: 10.36150/2499-6564-n471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Tea polyphenols improve the memory in aging ovariectomized rats by regulating brain glucose metabolism in vivo and in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Shabbir U, Tyagi A, Elahi F, Aloo SO, Oh DH. The Potential Role of Polyphenols in Oxidative Stress and Inflammation Induced by Gut Microbiota in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1370. [PMID: 34573002 PMCID: PMC8472599 DOI: 10.3390/antiox10091370] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Gut microbiota (GM) play a role in the metabolic health, gut eubiosis, nutrition, and physiology of humans. They are also involved in the regulation of inflammation, oxidative stress, immune responses, central and peripheral neurotransmission. Aging and unhealthy dietary patterns, along with oxidative and inflammatory responses due to gut dysbiosis, can lead to the pathogenesis of neurodegenerative diseases, especially Alzheimer's disease (AD). Although the exact mechanism between AD and GM dysbiosis is still unknown, recent studies claim that secretions from the gut can enhance hallmarks of AD by disturbing the intestinal permeability and blood-brain barrier via the microbiota-gut-brain axis. Dietary polyphenols are the secondary metabolites of plants that possess anti-oxidative and anti-inflammatory properties and can ameliorate gut dysbiosis by enhancing the abundance of beneficial bacteria. Thus, modulation of gut by polyphenols can prevent and treat AD and other neurodegenerative diseases. This review summarizes the role of oxidative stress, inflammation, and GM in AD. Further, it provides an overview on the ability of polyphenols to modulate gut dysbiosis, oxidative stress, and inflammation against AD.
Collapse
Affiliation(s)
| | | | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (U.S.); (A.T.); (F.E.); (S.O.A.)
| |
Collapse
|