1
|
Kamalakar A, Tobin B, Kaimari S, Robinson MH, Toma AI, Cha T, Chihab S, Moriarity I, Gautam S, Bhattaram P, Abramowicz S, Drissi H, Garcia A, Wood L, Goudy SL. Delivery of a Jagged1-PEG-MAL hydrogel with pediatric human bone cells regenerates critically sized craniofacial bone defects. eLife 2024; 13:RP92925. [PMID: 39401071 PMCID: PMC11473100 DOI: 10.7554/elife.92925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Current treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and costly. Conventional methods involve surgical correction, short-term stabilization, and long-term bone grafting, which may include problematic allografts and limited autografts. While bone morphogenetic protein 2 (BMP2) has been used for bone regeneration, it can cause bone overgrowth and life-threatening inflammation. Bone marrow-derived mesenchymal stem cell therapies, though promising, are not Food and Drug Administration approved and are resource intensive. Thus, there is a need for effective, affordable, and less side-effect-prone bone regenerative therapies. Previous research demonstrated that JAGGED1 induces osteoblast commitment in murine cranial neural crest cells through a NOTCH-dependent non-canonical pathway involving JAK2-STAT5. We hypothesize that delivery of JAGGED1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitutes an effective bone regenerative treatment. Delivering pediatric human bone-derived osteoblast-like cells to an in vivo murine bone loss model of a critically sized cranial defect, we identified that JAGGED1 promotes human pediatric osteoblast commitment and bone formation through p70 S6K phosphorylation. This approach highlights the potential of JAGGED1 and its downstream activators as innovative treatments for pediatric CF bone loss.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
| | - Brendan Tobin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemistry and Biomolecular Engineering, Georgia Tech College of EngineeringAtlantaUnited States
| | - Sundus Kaimari
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - M Hope Robinson
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
| | - Afra I Toma
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Timothy Cha
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
| | - Samir Chihab
- Department of Orthopedics, Emory UniversityAtlantaUnited States
| | - Irica Moriarity
- Neuroscience Program in College of Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Surabhi Gautam
- Department of Orthopedics, Emory UniversityAtlantaUnited States
| | - Pallavi Bhattaram
- Department of Orthopedics, Emory UniversityAtlantaUnited States
- The Atlanta Veterans Affairs Medical Center AtlantaAtlantaUnited States
| | - Shelly Abramowicz
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Emory UniversityAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopedics, Emory UniversityAtlantaUnited States
- The Atlanta Veterans Affairs Medical Center AtlantaAtlantaUnited States
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Andres Garcia
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of EngineeringAtlantaUnited States
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of EngineeringAtlantaUnited States
| | - Steven L Goudy
- Department of Pediatric Otolaryngology, Children’s Healthcare of AtlantaAtlantaUnited States
| |
Collapse
|
2
|
Wang SH, Lee DS, Kim TH, Kim JE, Kang TC. Reciprocal regulation of oxidative stress and mitochondrial fission augments parvalbumin downregulation through CDK5-DRP1- and GPx1-NF-κB signaling pathways. Cell Death Dis 2024; 15:707. [PMID: 39349423 PMCID: PMC11443148 DOI: 10.1038/s41419-024-07050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/02/2024]
Abstract
Loss of parvalbumin (PV) expressing neurons (PV neurons) is relevant to the underlying mechanisms of the pathogenesis of neurological and psychiatric diseases associated with the dysregulation of neuronal excitatory networks and brain metabolism. Although PV modulates mitochondrial morphology, volume and dynamics, it is largely unknown whether mitochondrial dynamics affect PV expression and what the molecular events are responsible for PV neuronal degeneration. In the present study, L-buthionine sulfoximine (BSO, an inhibitor of glutathione synthesis) did not degenerate PV neurons under physiological condition. However, BSO-induced oxidative stress decreased PV expression and facilitated cyclin-dependent kinase 5 (CDK5) tyrosine (Y) 15 phosphorylation, dynamin-related protein 1 (DRP1)-mediated mitochondrial fission and glutathione peroxidase-1 (GPx1) downregulation in PV neurons. Co-treatment of roscovitine (a CDK5 inhibitor) or mitochondrial division inhibitor-1 (Mdivi-1, an inhibitor of mitochondrial fission) attenuated BSO-induced PV downregulation. WY14643 (an inducer of mitochondrial fission) reduced PV expression without affecting CDK5 Y15 phosphorylation. Following status epilepticus (SE), CDK5 Y15 phosphorylation and mitochondrial fission were augmented in PV neurons. These were accompanied by reduced GPx1-mediated inhibition of NF-κB p65 serine (S) 536 phosphorylation. N-acetylcysteine (NAC), roscovitine and Mdivi-1 ameliorated SE-induced PV neuronal degeneration by mitigating CDK5 Y15 hyperphosphorylation, aberrant mitochondrial fragmentation and reduced GPx1-mediated NF-κB inhibition. Furthermore, SN50 (a NF-κB inhibitor) alleviated SE-induced PV neuronal degeneration, independent of dysregulation of mitochondrial fission, CDK5 hyperactivation and GPx1 downregulation. These findings provide an evidence that oxidative stress may activate CDK5-DRP1- and GPx1-NF-κB-mediated signaling pathways, which would be possible therapeutic targets for preservation of PV neurons in various diseases.
Collapse
Affiliation(s)
- Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
3
|
Candelas A, Vianay B, Gelin M, Faivre L, Larghero J, Blanchoin L, Théry M, Brunet S. Heterotypic interaction promotes asymmetric division of human hematopoietic progenitors. Development 2024; 151:dev203088. [PMID: 39136544 DOI: 10.1242/dev.203088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.
Collapse
Affiliation(s)
- Adrian Candelas
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Benoit Vianay
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Matthieu Gelin
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Jerome Larghero
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Laurent Blanchoin
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Manuel Théry
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Stéphane Brunet
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| |
Collapse
|
4
|
Kamalakar A, Tobin B, Kaimari S, Robinson MH, Toma AI, Cha T, Chihab S, Moriarity I, Gautam S, Bhattaram P, Abramowicz S, Drissi H, García AJ, Wood LB, Goudy SL. Delivery of A Jagged1-PEG-MAL hydrogel with Pediatric Human Bone Cells Regenerates Critically-Sized Craniofacial Bone Defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561291. [PMID: 37873448 PMCID: PMC10592619 DOI: 10.1101/2023.10.06.561291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP2 application with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesize that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 and the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
| | - Brendan Tobin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biomolecular Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA
| | - Sundus Kaimari
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - M. Hope Robinson
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
| | - Afra I. Toma
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Timothy Cha
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
| | - Samir Chihab
- Department of Orthopedics, Emory University, Atlanta, GA, USA
| | - Irica Moriarity
- Neuroscience Program in College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Surabhi Gautam
- Department of Orthopedics, Emory University, Atlanta, GA, USA
| | - Pallavi Bhattaram
- Department of Orthopedics, Emory University, Atlanta, GA, USA
- The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA
| | - Shelly Abramowicz
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Emory University, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Cell biology, Emory University, Atlanta, GA, USA
- Department of Orthopedics, Emory University, Atlanta, GA, USA
- The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA
| | - Steven L. Goudy
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Department of Pediatric Otolaryngology, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
5
|
Wang L, Rivas R, Wilson A, Park YM, Walls S, Yu T, Miller AC. Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells. Cells 2023; 13:39. [PMID: 38201243 PMCID: PMC10778067 DOI: 10.3390/cells13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.
Collapse
Affiliation(s)
- Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Rafael Rivas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Angelo Wilson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Yu Min Park
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shannon Walls
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Tianzheng Yu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra C. Miller
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Radiation Science and Radiology, Uniformed Services University Health Sciences, Bethesda, MD 20889, USA
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Jaffery H, Huesa C, Chilaka S, Cole J, Doonan J, Akbar M, Dunning L, Tanner KE, van ‘t Hof RJ, McInnes IB, Carmody RJ, Goodyear CS. IĸB Protein BCL3 as a Controller of Osteogenesis and Bone Health. Arthritis Rheumatol 2023; 75:2148-2160. [PMID: 37410754 PMCID: PMC10952620 DOI: 10.1002/art.42639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE IĸB protein B cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signaling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance, and osteoarthritic pathology. METHODS To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and wild-type (WT) controls were characterized for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength, and turnover were assessed. A destabilization of the medial meniscus model of osteoarthritic osteophytogenesis was used to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength, and altered bone turnover. Molecular and cellular characterization of mesenchymal precursors showed that Bcl3-/- cells displayed an accelerated osteogenic transcriptional profile that led to enhanced differentiation into osteoblasts with increased functional activity, which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibited decreased pathological osteophyte formation (P < 0.05). CONCLUSION Cumulatively, these findings demonstrate that BCL3 controls developmental mineralization to enable appropriate bone formation, whereas in a pathological setting, it contributes to skeletal pathology.
Collapse
Affiliation(s)
- Hussain Jaffery
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Carmen Huesa
- School of Infection & Immunity, University of Glasgow, Glasgow and Institute of Biomedical & Environmental Health, University of the West of ScotlandPaisleyUK
| | | | - John Cole
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - James Doonan
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Moeed Akbar
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Lynette Dunning
- Institute of Biomedical & Environmental HealthUniversity of the West of ScotlandPaisleyUK
| | - Kathleen Elizabeth Tanner
- James Watt School of EngineeringUniversity of GlasgowGlasgowUK
- Present address:
School of Engineering and Materials Science and Institute of BioengineeringQueen Mary University of LondonLondonUK
| | - Rob J. van ‘t Hof
- Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Iain B. McInnes
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | | | |
Collapse
|
7
|
Bańkosz M, Urbaniak MM, Szwed A, Rudnicka K, Włodarczyk M, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B, Sobczak-Kupiec A. Physicochemical and biological analysis of composite biomaterials containing hydroxyapatite for biological applications. J Biomed Mater Res B Appl Biomater 2023; 111:2077-2088. [PMID: 37596849 DOI: 10.1002/jbm.b.35309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
8
|
Venugopal M, Nambiar J, Nair BG. Anacardic acid-mediated regulation of osteoblast differentiation involves mitigation of inflammasome activation pathways. Mol Cell Biochem 2020; 476:819-829. [PMID: 33090336 DOI: 10.1007/s11010-020-03947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1β and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.
Collapse
Affiliation(s)
- Meera Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Jyotsna Nambiar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525.
| |
Collapse
|
9
|
Li X, Cui W, Hull L, Smith JT, Kiang JG, Xiao M. Effects of Low-to-Moderate Doses of Gamma Radiation on Mouse Hematopoietic System. Radiat Res 2018; 190:612-622. [PMID: 30311842 DOI: 10.1667/rr15087.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, we investigated the effects of low-to-moderate doses of radiation in mice, given our limited understanding of the health risks associated with these exposures. Here, we demonstrate the different responses of the CD2F1 mouse hematopoietic system to low-to-moderate (0.5, 1, 3 or 5 Gy) doses of gamma radiation. After 3 and 5 Gy of 60Co total-body irradiation (TBI), mouse blood cell counts were decreased and maintained below baseline up to 28-42 days. In contrast, after 0.5 Gy TBI, lymphocyte and monocyte counts increased, and peaked from day 3 to day 14. Radiation doses at 0.5 and 1 Gy did not cause cell death or T-cell subpopulation changes in spleen and thymus, whereas the clonogenicity of mouse bone marrow (BM) progenitor cells was significantly suppressed on the first day after 0.5-5 Gy TBI, and these low levels were maintained up to 42 days. Although a transient recovery in total colony forming units (CFUs) was shown in mouse BM at days 14 and 21 after 0.5 Gy TBI, the early-stage multipotential progenitor colonies (CFU-GEMM) remained at a significantly low level compared to those of the sham-irradiated (0 Gy) controls. Consistently, the level of stem cell factor (SCF) in BM cells was decreased after low-to-moderate TBI. Serum from individual mice was collected after irradiation and 23 cytokines/chemokines were measured; massive releases of cytokines and chemokines were observed at day 3 postirradiation in a dose-dependent manner. When human hematopoietic CD34+ cells were cultured with the serum collected from mice irradiated at different doses, a significant decrease of CFU-GEMM colonies in the CD34+ cells was observed. Our data suggest that low-to-moderate doses of radiation induced cellular responses that are cell type-dependent. The early stage multipotential progenitor cells in mouse BM were the most sensitive cells even to low-dose irradiation compared to spleen and thymic cells, and 0.5 Gy TBI induced hematopoietic cell injury from day 1 to the end of our experiment, day 42 postirradiation. Radiation-induced decrease of SCF in mouse BM and increase in circulating pro-inflammatory factors may be responsible for the enhanced sensitivity of hematopoietic progenitor cells to radiation.
Collapse
Affiliation(s)
- XiangHong Li
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Wanchang Cui
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Lisa Hull
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan T Smith
- b Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Juliann G Kiang
- b Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mang Xiao
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
10
|
Li C, Luo Y, Shao L, Meng A, Zhou D. NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system. Cell Biosci 2018; 8:33. [PMID: 29736233 PMCID: PMC5922011 DOI: 10.1186/s13578-018-0228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/12/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2-/- and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). METHODS The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2-/- mice were investigated in vitro. In addition, we exposed NOS2-/- mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. RESULTS Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2-/- mice in response to IR exposure in vitro. Exposure of WT mice and NOS2-/- mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2-/- mice. CONCLUSION These data suggest that IR induces BM suppression in a NOS2-independent manner.
Collapse
Affiliation(s)
- Chengcheng Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021 China
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Yi Luo
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Lijian Shao
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham, #607, Little Rock, AR 72205 USA
| | - Aimin Meng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021 China
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham, #607, Little Rock, AR 72205 USA
| |
Collapse
|
11
|
Malhotra P, Gupta AK, Singh D, Mishra S, Singh SK, Kumar R. N-Acetyl-tryptophan glucoside (NATG) protects J774A.1 murine macrophages against gamma radiation-induced cell death by modulating oxidative stress. Mol Cell Biochem 2018; 447:9-19. [PMID: 29372532 DOI: 10.1007/s11010-018-3289-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022]
Abstract
Immune system is amongst the most radiosensitive system to radiation-induced cellular and molecular damage. Present study was focused on the evaluation of radioprotective efficacy of a novel secondary metabolite, N-acetyl tryptophan glucoside (NATG), isolated from a radioresistant bacterium Bacillus sp. INM-1 using murine macrophage J774A.1 cells experimental model. Radioprotective efficacy of NATG against radiation-induced DNA damage and apoptosis was estimated using phosphatidyl-serine-externalization Annexin V-PI and Comet assay analysis. Radiation-induced cell death is the outcome of oxidative stress caused by free radicals. Therefore, perturbations in antioxidant enzymes i.e., superoxide dismutase (SOD), catalase, glutathione-s-transferase (GST) and GSH activities in irradiated and NATG pre-treated irradiated J774A.1 cells were studied. Results of the present study demonstrated that NATG pre-treated (0.25 µg/ml) irradiated (20 Gy) cells showed significant (p < 0.05) reduction in apoptotic cells index at 4-48 h as compared to radiation alone cells. Comet assay exhibited significant protection to radiation-induced DNA damage in J774A.1 cells. Significantly shortened DNA tail length, increased % Head DNA contents and lower olive tail moment was observed in NATG pre-treated irradiated cells as compared to radiation alone cells. Further, significant increase in catalase (~ 3.9 fold), SOD (67.52%), GST (~ 1.9 fold), and GSH (~ 2.5 fold) levels was observed in irradiated cells pre-treated with NATG as compared to radiation-alone cells. In conclusion, current study suggested that NATG pre-treatment to irradiated cells enhanced antioxidant enzymes in cellular milieu that may contribute to reduce oxidative stress and decrease DNA damage which resulted to significant reduction in the cell death of irradiated macrophages.
Collapse
Affiliation(s)
- Poonam Malhotra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Ashutosh K Gupta
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Saurabh Mishra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Shravan K Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India. .,Radiation Biotechnology Group, Radiation Biosciences Division, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
12
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
13
|
Mishra S, Patel DD, Bansal DD, Kumar R. Semiquinone glucoside derivative provides protection against γ-radiation by modulation of immune response in murine model. ENVIRONMENTAL TOXICOLOGY 2016; 31:478-488. [PMID: 25361477 DOI: 10.1002/tox.22061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Present study was undertaken to evaluate radioprotective and immunomodulatory activities of a novel semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 in C57 BL/6 mice. Whole body survival study was performed to evaluate in vivo radioprotective efficacy of SQGD. To observe effect of SQGD on immunostimulation, Circulatory cytokine (i.e., interleukin-2 (IL-2), IFN-γ, IL-10, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage colony stimulating factor (M-CSF) expression was analyzed in serum of irradiated and SQGD treated mice at different time intervals using ELISA assay. Results of the present investigation indicated that SQGD pre-treatment (-2 h) to lethally irradiated mice provide ∼ 83% whole body survival compared with irradiated mice where no survival was observed at 30(th) post irradiation day. Significant (p < 0.05) induction in IL-2 and IFN-γ expression was observed at all tested time intervals with SQGD pre-treated irradiated mice as compared with irradiated mice alone. However, sharp increase in IL-10 expression was observed in irradiated mice which were found to be subsidized in irradiated mice pre-treated with SQGD. Similarly, significant (p < 0.05%) induction in G-CSF, M-CSF and GM-CSF expression was observed in irradiated mice treated with SQGD as compared with irradiated control mice at tested time intervals. In conclusion, SQGD pre-treatment to irradiated mice enhanced expression of IL-12 and IFN-γ while down-regulated IL-10 expression and thus modulates cytoprotective pro-inflammatory TH1 type immune response in irradiated mice. Further, SQGD pre-treatment to irradiated mice accelerate G-CSF, GM-CSF and M-CSF expression suggesting improved haematopoiesis and enhanced cellular immune response in immuno-compromised irradiated mice that may contribute to in vivo radiation protection.
Collapse
Affiliation(s)
- S Mishra
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Patel
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Bansal
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - R Kumar
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
14
|
Ha CT, Li XH, Fu D, Moroni M, Fisher C, Arnott R, Srinivasan V, Xiao M. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP). PLoS One 2014; 9:e109249. [PMID: 25290447 PMCID: PMC4188589 DOI: 10.1371/journal.pone.0109249] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL)-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines’ expression and secretion in CD2F1 mouse bone marrow (BM), spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy) at different time points using the enzyme-linked immune sorbent assay (ELISA), immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI). However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5–24 fold) and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs) and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2–4 days post-irradiation and in minipig plasma 1–3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.
Collapse
Affiliation(s)
- Cam T. Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Xiang-Hong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Maria Moroni
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carolyn Fisher
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Robert Arnott
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Venkataraman Srinivasan
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Shin HJ, Kim H, Heo RW, Kim HJ, Choi WS, Kwon HM, Roh GS. Tonicity-responsive enhancer binding protein haplodeficiency attenuates seizure severity and NF-κB-mediated neuroinflammation in kainic acid-induced seizures. Cell Death Differ 2014; 21:1095-106. [PMID: 24608792 DOI: 10.1038/cdd.2014.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 12/21/2022] Open
Abstract
Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood-brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/-) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/-) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/-) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target.
Collapse
Affiliation(s)
- H J Shin
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - R W Heo
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H J Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - W S Choi
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H M Kwon
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - G S Roh
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| |
Collapse
|
16
|
Kim WI, Ryu HJ, Kim JE, Seo CH, Lee BC, Choi IG, Kang TC. Differential nuclear factor-kappa B phosphorylation induced by lipopolysaccharide in the hippocampus of P2X7 receptor knockout mouse. Neurol Res 2013; 35:369-81. [DOI: 10.1179/1743132812y.0000000137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Won Il Kim
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| | - Hea Jin Ryu
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| | | | - Boung Chul Lee
- Department of PsychiatryHangang Sacred Heart Hospital, Hallym University, Seoul, Korea
| | - Ihn-Geun Choi
- Department of PsychiatryHangang Sacred Heart Hospital, Hallym University, Seoul, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| |
Collapse
|
17
|
Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci Rep 2013; 3:1038. [PMID: 23301159 PMCID: PMC3539147 DOI: 10.1038/srep01038] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/14/2012] [Indexed: 11/08/2022] Open
Abstract
Accidental or therapeutic total body exposure to ionizing radiation has profound pathophysiological consequences including acute radiation syndrome. Currently only investigational drugs are available in case of radiological or nuclear accidents or terrorism. Lack of selective radioprotectants for normal tissues also limits the therapeutic doses that can be delivered to treat cancers. CD47 is a receptor for the secreted protein thrombospondin-1. Blockade of thrombospondin-1 or CD47 provides local radioprotection of soft tissues and bone marrow. We now report that suppression of CD47 using an antisense morpholino increases survival of mice exposed to lethal total body irradiation. Increased survival is associated with increased peripheral circulating blood cell counts and increased proliferative capacity of bone marrow derived cells. Moreover, CD47 blockade decreased cell death while inducing a protective autophagy response in radiosensitive gastrointestinal tissues. Thus, CD47 is a new target for radiomitigation that prevents both hematopoietic and gastrointestinal radiation syndromes.
Collapse
|
18
|
Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation. PLoS One 2012; 7:e48700. [PMID: 23144934 PMCID: PMC3492427 DOI: 10.1371/journal.pone.0048700] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/28/2012] [Indexed: 02/02/2023] Open
Abstract
We recently demonstrated that a novel cell stress response gene REDD1 protects human fetal osteoblast cell line (hFOB) cells from γ-radiation-induced premature senescence. Here we show that levels of endogenous REDD1 are very low in human hematopoietic progenitor CD34+ cells regardless of radiation, but highly expressed in differentiated hematopoietic cells (14 day cultured CD34+ cells) in response to radiation, which might be associated with radiation tolerance of the latter cells. To further understand the mechanisms of radiation-induced damage in different cells, microRNA (miRNA)-arrays were performed using purified miRNAs from CD34+ and hFOB cells before and post-irradiation and real-time reverse transcription (RT)-PCR was used to validate the expression profiles of miRNAs in the radiation-damaged cells. The results indicate that γ-radiation downregulated 16 miRNAs in CD34+ cells and 14 in hFOB cells. Radiation-induced upregulation was observed for 15 miRNAs in CD34+ cells and 18 miRNAs in hFOB cells. The profiles of radiation-induced miRNA expression were completely different in CD34+ vs. hFOB cells. Radiation up-regulated miRNA (miR)-30b, miR-30c and miR-30d in CD34+ cells, whereas it inhibited miR-30c expression in hFOB cells. Since miR-30 has potential target sites located in the 3'untranslated region (UTR) of the REDD1 gene and radiation regulated miR-30c expression in both CD34+ and hFOB cells, we further explored the effects of miR-30c on REDD1 expression using miR-30c inhibitor and precursor (pre-miR-30c). The results show that pre-miR-30c transfection suppressed REDD1 expression in 14 day cultured CD34+ cells and hFOB cells and resulted in hFOB cell death. In contrast, inhibition of miR-30c expression significantly enhanced clonogenicity in CD34+ cells. Our data suggest that CD34+ and hFOB cells have different miRNA expression patterns after irradiation and miR-30c plays a key role in radiation-induced cell damage which might be through regulation of REDD1 expression.
Collapse
|
19
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
20
|
Li XH, Ha CT, Fu D, Xiao M. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence. PLoS One 2012; 7:e36604. [PMID: 22629318 PMCID: PMC3356368 DOI: 10.1371/journal.pone.0036604] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/03/2012] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1) was highly expressed in human osteoblast cell line (hFOB) cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR) and p21 expression and protected these cells from radiation-induced premature senescence (PS). The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP) after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB) interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.
Collapse
Affiliation(s)
- Xiang Hong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Cam T. Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ryu H, Kim JE, Yeo SI, Kim MJ, Jo SM, Kang TC. RelA/p65-serine 536 nuclear factor-kappa B phosphorylation is related to vulnerability to status epilepticus in the rat hippocampus. Neuroscience 2011; 187:93-102. [DOI: 10.1016/j.neuroscience.2011.04.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 01/03/2023]
|
22
|
Nishikawa T, Izumo K, Miyahara E, Horiuchi M, Okamoto Y, Kawano Y, Takeuchi T. Benzene induces cytotoxicity without metabolic activation. J Occup Health 2011; 53:84-92. [PMID: 21325737 DOI: 10.1539/joh.10-002-oa] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Benzene has been consistently associated with hematological disorders, including acute myeloid leukemia and aplastic anemia, but the mechanisms causing these disorders are still unclear. Various metabolites of benzene lead to toxicity through the production of reactive oxygen species (ROS), the inhibition of topoisomerase and DNA damage. However, benzene itself is considered to have no mutagenic or cytotoxic activity. In this study, we investigated the effects of benzene itself on a human myeloid cell line with or without benzene metabolizing enzyme inhibitors. METHODS A human myeloid cell line, HL-60, was exposed to benzene with or without cytochrome P450 2E1 or myeloperoxidase inhibitor. Cytotoxicity was evaluated in terms of global DNA methylation levels, induction of apoptosis, and ROS production. RESULTS Benzene did not change global DNA methylation levels. However, benzene itself increased the levels of apoptosis and ROS. This cytotoxicity did not change with the addition of benzene metabolizing enzyme inhibitors. Benzene itself increased the mRNA levels of oxidative stress-related genes and transcription factors of activator protein-1. CONCLUSIONS Benzene did not influence global DNA methylation in HL-60 cells, but had cytotoxic effects and changed gene expression levels. To elucidate the mechanisms of benzene toxicity, benzene itself as well as benzene metabolites must be investigated.
Collapse
Affiliation(s)
- Takuro Nishikawa
- Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Bauerle KT, Schweppe RE, Haugen BR. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion. Mol Cancer 2010; 9:117. [PMID: 20492683 PMCID: PMC2887796 DOI: 10.1186/1476-4598-9-117] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/21/2010] [Indexed: 01/28/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα). These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C), which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested. Conclusions These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our findings suggest that other important molecular processes play a critical role in defining the extent of NF-κB function within cancer cells.
Collapse
Affiliation(s)
- Kevin T Bauerle
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Research Complex I, South Tower, Mail Stop 8106, 12801 East 17th Avenue, PO Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
24
|
Abstract
Nuclear factor kappaB (NF-kappaB) is a set of multifunctional transcription factors that regulate expression of genes involved in numerous normal cellular activities. They also are activated in many inflammatory and neoplastic conditions in which their expression may be stimulated by proinflammatory cytokines. NF-kappaB, in turn, regulates the expression of cytokines and so can mediate autocrine self-amplifying cycles of cytokine release and NF-kappaB activation, leading to maintenance of inflammatory reactions beyond the initial stimulus, as seen in rheumatoid arthritis and asthma. Since discovery of the requirement of NF-kappaB for basal and cytokine-induced osteoclast formation in the mid-1990s, much has been learned about the role of NF-kappaB in bone. NF-kappaB has roles in skeletal development, endochondral ossification, osteoclast and osteoblast functions, and common bone diseases. NF-kappaB inhibitors have been developed, but none have made it to clinical trials for the treatment of common bone diseases. Here we review the roles for NF-kappaB in bone and in common bone diseases.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA.
| | | | | |
Collapse
|