1
|
Ancel L, Grison S, Gabillot O, Gueguen J, Svilar L, Guen BL, Gruel G, Benderitter M, Martin JC, Souidi M, Tamarat R, Flamant S, Benadjaoud MA. Metabolomics identifies plasma biomarkers of localized radiation injury. Sci Rep 2025; 15:2166. [PMID: 39819895 PMCID: PMC11739571 DOI: 10.1038/s41598-025-85717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
A radiological accident may result in the development of a local skin radiation injury (LRI) which may evolve, depending on the dose, from dry desquamation to deep ulceration and necrosis through unpredictable inflammatory waves. Therefore, early diagnosis of victims of LRI is crucial for improving medical care efficiency. This preclinical study aims to identify circulating metabolites as biomarkers associated with LRI using a C57BL/6J mouse model of hind limb irradiation. More precisely, two independent mice cohorts were used to conduct a broad-spectrum profiling study followed by a suspect screening analysis performed on plasma metabolites by mass spectrometry. An integrative analysis was conducted through a multi-block sparse partial least square discriminant analysis (sPLS-DA) to establish multi-scale correlations between specific metabolites levels and biological, physiological (injury severity), and functional parameters (skin perfusion). The identified biomarker signature consists in a 6-metabolite panel including putrescine, uracil, 2,3-dihydroxybenzoate, 3-hydroxybenzoate, L-alanine and pyroglutamate, that can discriminate mice according to radiation dose and injury severity. Our results demonstrate relevant molecular signature associated with LRI in mice and support the use of plasma metabolites as suitable molecular biomarkers for LRI prognosis and diagnosis.
Collapse
Affiliation(s)
- Lucie Ancel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Stéphane Grison
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTox, Fontenay-aux-Roses, 92260, France
| | - Olivier Gabillot
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Jules Gueguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Ljubica Svilar
- Centre Cardiovasculaire et Nutrition (C2VN), CRIBIOM, Aix Marseille Université, Marseille, 13007, France
| | - Bernard Le Guen
- Électricité de France (EDF), DPN, 1 place Pleyel, Saint Denis, 93382, France
| | - Gaëtan Gruel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, 92260, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, Fontenay-aux-Roses, 92260, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille Université, Marseille, 13007, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, Fontenay-aux-Roses, 92260, France
| | - Stéphane Flamant
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France.
| |
Collapse
|
2
|
Chen Z, Yang C, Ji J, Chen M, Han B. Umbilical Cord Blood-Derived Cells Can Reconstruct Hematopoiesis in an Aplastic Anemia Animal Model. Stem Cells Int 2024; 2024:4095268. [PMID: 39161367 PMCID: PMC11333133 DOI: 10.1155/2024/4095268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/16/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Objectives To explore the efficacy and the mechanism of the umbilical cord-derived cells combined with cyclosporine A (CsA) in treating aplastic anemia (AA) in mice. Methods Immune-mediated AA model mice were treated with CsA + UC mesenchymal stem cells (UC-MSC), CsA + umbilical cord blood regulatory T cells (UCB-Treg), UC-MSC, UCB-Treg, CsA alone, or blank control, respectively (n = 9 mice/group). CsA and the cell infusion was administered on d0. Routine peripheral blood testing was performed once weekly; bone marrow colony culture, bone marrow cell flow cytometry, peripheral blood T cell subsets, and serum inflammatory cytokines tests were performed on d14. Transcriptome sequencing was performed for cells from CsA + UC-MSC, CsA + UCB-Treg, and CsA groups to detect the possible related genes. Gene function cluster and signal pathway enrichment analysis were also performed. Results Blank control mice died due to pancytopenia within 21 days, whereas mice in other groups survived for >28 days. On d14, the CsA + UC-MSC and CsA + UCB-Treg groups had higher white blood cell (WBC) counts than the other groups (p < 0.05), along with higher burst-forming unit (BFU) and colony-forming unit-granulocyte, macrophage (CFU-GM) counts (p < 0.01). The CsA + UC-MSC group had the highest BFU count (p < 0.01). The CsA + UC-MSC and CsA + UCB-Treg groups exhibited the highest bone marrow CD34+ cell proportion (9.68% ± 1.35% and 8.17% ± 0.53%, respectively; p < 0.01). Tumor necrosis factor (TNF)-α and interleukin (IL)-2 levels in the CsA + UC-MSC group (p < 0.05) and TNF-α, interleukin-2, and interferon (INF)-γ levels in the CsA + UC-Treg group (p < 0.01) were lower than those in the CsA group. Compared with CsA treatment, CsA + UC-MSC significantly downregulated the histone methylation pathway (p < 0.05), whereas CsA + UCB-Treg significantly upregulated energy metabolism processes (p < 0.05). Treatment with CsA + UC-MSC upregulated superoxide dismutase activity compared with CsA + UCB-Treg treatment. Conclusions Adding UC-MSC or UCB-Treg to CsA markedly enhanced the reconstruction of hematopoiesis in AA mice, with UC-MSC eliciting greater efficiency than UCB-Treg. Accordingly, the addition of these cells could further improve immune abnormalities.
Collapse
Affiliation(s)
- Zesong Chen
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Department of OncologyCancer Hospital Chinese Academy of Medical SciencesShenzhen Hospital, Shenzhen, China
| | - Chen Yang
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jiang Ji
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Miao Chen
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bing Han
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Christy BA, Herzig MC, Wu X, Mohammadipoor A, McDaniel JS, Bynum JA. Cell Therapies for Acute Radiation Syndrome. Int J Mol Sci 2024; 25:6973. [PMID: 39000080 PMCID: PMC11241804 DOI: 10.3390/ijms25136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed.
Collapse
Affiliation(s)
- Barbara A Christy
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Maryanne C Herzig
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Xiaowu Wu
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Arezoo Mohammadipoor
- Hemorrhage and Vascular Dysfunction, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Jennifer S McDaniel
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - James A Bynum
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Surgery, UT Health San Antonio, San Antonio, TX 78229, USA
- Trauma Research and Combat Casualty Care Collaborative, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Hurley K, Clow R, Jadhav A, Azzam EI, Wang Y. Mitigation of acute radiation syndrome (ARS) with human umbilical cord blood. Int J Radiat Biol 2023; 100:317-334. [PMID: 37967239 DOI: 10.1080/09553002.2023.2277372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE The growing concern over potential unintended nuclear accidents or malicious activities involving nuclear/radiological devices cannot be overstated. Exposure to whole-body doses of radiation can result in acute radiation syndrome (ARS), colloquially known as "radiation sickness," which can severely damage various organ systems. Long-term health consequences, such as cancer and cardiovascular disease, can develop many years post-exposure. Identifying effective medical countermeasures and devising a strategic medical plan represents an urgent, unmet need. Various clinical studies have investigated the therapeutic use of umbilical cord blood (UCB) for a range of illnesses, including ARS. The objective of this review is to thoroughly discuss ARS and its sub-syndromes, and to highlight recent findings regarding the use of UCB for radiation injury. UCB, a rich source of stem cells, boasts numerous advantages over other stem cell sources, like bone marrow, owing to its ease of collection and relatively low risk of severe graft-versus-host disease. Preclinical studies suggest that treatment with UCB, and often UCB-derived mesenchymal stromal cells (MSCs), results in improved survival, accelerated hematopoietic recovery, reduced gastrointestinal tract damage, and mitigation of radiation-induced pneumonitis and pulmonary fibrosis. Interestingly, recent evidence suggests that UCB-derived exosomes and their microRNAs (miRNAs) might assist in treating radiation-induced damage, largely by inhibiting fibrotic pathways. CONCLUSION UCB holds substantial potential as a radiation countermeasure, and future research should focus on establishing treatment parameters for ARS victims.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Rachel Clow
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ashok Jadhav
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Edouard I Azzam
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
He C, Yang C, Zeng Q, Liu Z, Wang F, Chen Q, Liu T. Umbilical cord-derived mesenchymal stem cells cultured in the MCL medium for aplastic anemia therapy. Stem Cell Res Ther 2023; 14:224. [PMID: 37649079 PMCID: PMC10470151 DOI: 10.1186/s13287-023-03417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential that may be a treatment for aplastic anemia (AA). METHOD Umbilical cord-derived MSCs were cultured in three media (Mesencult-XF, MCL, and StemPro MSC SFM CTS). HGF, PGE2, ANG-1, TGF-β1, IFN-γ, and TNF-α were detected using ELISA. The AA mouse model was built via post-irradiation lymphocyte infusion. After different treatments, routine blood, VEGF, and Tregs were detected every week. On day 28, all mice were killed, and their femurs were stained with HE. RESULTS Umbilical cord-derived MSCs cultured in the three media all conformed to the general characteristics of MSCs. HGF secreted by MSCs in the Mesencult-XF, and MCL was greater than that in the StemPro MSC SFM CTS; ANG-1 and TGF-β1 in the MCL were more than that in Mesencult-XF and StemPro MSC SFM CTS; PGE2 in the MCL and StemPro MSC SFM CTS was more than that in the Mesencult-XF. MSCs in the MCL and StemPro MSC SFM CTS inhibited IFN-γ and TNF-α more than those in the Mesencult-XF. The peripheral blood cell in the AA groups was at a low level while that in the MSC group recovered rapidly. The Treg ratio and VEGF level in the MSC group were higher than those in the AA group. The bone marrow (BM) recovered significantly after MSC infusion. CONCLUSION MSCs in the MCL were advantageous in supporting hematopoiesis and modulating immunity and had the potential for effective treatment of AA.
Collapse
Affiliation(s)
- Chuan He
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Qiang Zeng
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Liu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China.
| | - Ting Liu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Hwang YJ, Shin DY, Kim MJ, Jang H, Kim S, Yang H, Jang WI, Park S, Shim S, Lee SB. StemRegenin 1 Mitigates Radiation-Mediated Hematopoietic Injury by Modulating Radioresponse of Hematopoietic Stem/Progenitor Cells. Biomedicines 2023; 11:biomedicines11030824. [PMID: 36979803 PMCID: PMC10045038 DOI: 10.3390/biomedicines11030824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hematopoietic injury resulting from the damage of hematopoietic stem/progenitor cells (HSPCs) can be induced by either nuclear accident or radiotherapy. Radiomitigation of HSPCs is critical for the development of medical countermeasure agents. StemRegenin 1 (SR1) modulates the maintenance and function of HSPCs under non-stress conditions. However, the impact of SR1 in radiation-induced hematopoietic injury both in vivo and in vitro remains unknown. In this study, we found that treatment with SR1 after irradiation of C57BL/6 mice significantly mitigates TBI-induced death (80% of SR1-treated mice survival vs. 30% of saline-treated mice survival) with enhanced recovery of peripheral blood cell counts, with the density and cell proliferation of bone marrow components as observed by Hematoxylin and Eosin (H&E) and Ki-67 staining. Interestingly, in vitro analysis of human HSPCs showed that SR1 enhanced the population of human HSPCs (CD34+) under both non-irradiating and irradiating conditions, and reduced radiation-induced DNA damage and apoptosis. Furthermore, SR1 attenuated the radiation-induced expression of a member of the pro-apoptotic BCL-2 family and activity of caspase-3. Overall, these results suggested that SR1 modulates the radioresponse of HSPCs and might provide a potential radiomitigator of hematopoietic injury, which contributes to increase the survival of patients upon irradiation.
Collapse
Affiliation(s)
- You Jung Hwang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Yeop Shin
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul 01812, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soyeon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyunwon Yang
- Biohealth Convergence, Seoul Women’s University, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| |
Collapse
|
7
|
Mesenchymal Stem Cells in Acquired Aplastic Anemia: The Spectrum from Basic to Clinical Utility. Int J Mol Sci 2023; 24:ijms24054464. [PMID: 36901900 PMCID: PMC10003043 DOI: 10.3390/ijms24054464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Aplastic anemia (AA), a rare but potentially life-threatening disease, is a paradigm of bone marrow failure syndromes characterized by pancytopenia in the peripheral blood and hypocellularity in the bone marrow. The pathophysiology of acquired idiopathic AA is quite complex. Mesenchymal stem cells (MSCs), an important component of the bone marrow, are crucial in providing the specialized microenvironment for hematopoiesis. MSC dysfunction may result in an insufficient bone marrow and may be associated with the development of AA. In this comprehensive review, we summarized the current understanding about the involvement of MSCs in the pathogenesis of acquired idiopathic AA, along with the clinical application of MSCs for patients with the disease. The pathophysiology of AA, the major properties of MSCs, and results of MSC therapy in preclinical animal models of AA are also described. Several important issues regarding the clinical use of MSCs are discussed finally. With evolving knowledge from basic studies and clinical applications, we anticipate that more patients with the disease can benefit from the therapeutic effects of MSCs in the near future.
Collapse
|
8
|
Li JP, Wu KH, Chao WR, Lee YJ, Yang SF, Chao YH. Alterations of mesenchymal stem cells on regulating Th17 and Treg differentiation in severe aplastic anemia. Aging (Albany NY) 2023; 15:553-566. [PMID: 36719260 PMCID: PMC9925683 DOI: 10.18632/aging.204500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Immune-mediated hematopoietic destruction is a key factor in idiopathic severe aplastic anemia (SAA). With great immunomodulatory functions, mesenchymal stem cells (MSCs) are important for bone marrow niche. While the underlying etiology of immunologic changes in SAA bone marrow remains unknown, dysfunctional MSCs are implicated as a major cause. To provide evidence for their defects in immunomodulation, alterations of SAA MSCs in regulating T cell differentiation were determined. During differentiation from CD4+ T cells into T helper 17 (Th17) cells under polarization conditions, impaired inhibition on IL-17 and IL-1β production was noted when cocultured with SAA MSCs compared to control MSCs (P < 0.05). After stimulation of Th17 activation, the percentage of IL-17-secreting cells was significantly increased in the SAA group (9.1 ± 1.5% vs 6.6 ± 0.4%, P < 0.01). Under regulatory T (Treg) polarization, a higher percentage of CD4+CD25+FoxP3+ Treg cells was detected when cocultured with SAA MSCs compared to control MSCs (8.1 ± 0.5% vs 5.8 ± 0.8%, P < 0.01). Inconsistently, transforming growth factor-β (TGF-β) concentrations in the culture supernatant were decreased and IL-1β concentrations were elevated in the SAA group. Our data indicated impaired inhibition of SAA MSCs on Th17 activation and aberrant regulation of SAA MSCs on Treg differentiation. Increased IL-17 and IL-1β levels with decreased TGF-β levels in the supernatant suggested the potential of SAA MSCs for triggering a hyperinflammatory environment. Dysfunctional MSCs could contribute to the lack of immunoprotection in the bone marrow, which may be associated with SAA.
Collapse
Affiliation(s)
- Ju-Pi Li
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan,Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Ru Chao
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan,Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Pre-Administration of PLX-R18 Cells Protects Mice from Radiation-Induced Hematopoietic Failure and Lethality. Genes (Basel) 2022; 13:genes13101756. [PMID: 36292639 PMCID: PMC9601513 DOI: 10.3390/genes13101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Acute Radiation Syndrome (ARS) is a syndrome involving damage to multiple organs caused by exposure to a high dose of ionizing radiation over a short period of time; even low doses of radiation damage the radiosensitive hematopoietic system and causes H-ARS. PLacenta eXpanded (PLX)-R18 is a 3D-expanded placenta-derived stromal cell product designated for the treatment of hematological disorders. These cells have been shown in vitro to secrete hematopoietic proteins, to stimulate colony formation, and to induce bone marrow migration. Previous studies in mice showed that PLX-R18 cells responded to radiation-induced hematopoietic failure by transiently secreting hematopoiesis related proteins to enhance reconstitution of the hematopoietic system. We assessed the potential effect of prophylactic PLX-R18 treatment on H-ARS. PLX-R18 cells were administered intramuscularly to C57BL/6 mice, −1 and 3 days after (LD70/30) total body irradiation. PLX R18 treatment significantly increased survival after irradiation (p < 0.0005). In addition, peripheral blood and bone marrow (BM) cellularity were monitored at several time points up to 30 days. PLX-R18 treatment significantly increased the number of colony-forming hematopoietic progenitors in the femoral BM and significantly raised peripheral blood cellularity. PLX-R18 administration attenuated biomarkers of bone marrow aplasia (EPO, FLT3L), sepsis (SAA), and systemic inflammation (sP-selectin and E-selectin) and attenuated radiation-induced inflammatory cytokines/chemokines and growth factors, including G-CSF, MIP-1a, MIP-1b, IL-2, IL-6 and MCP-1, In addition, PLX-R18 also ameliorated radiation-induced upregulation of pAKT. Taken together, prophylactic PLX-R18 administration may serve as a protection measure, mitigating bone marrow failure symptoms and systemic inflammation in the H-ARS model.
Collapse
|
10
|
Maurya DK, Bandekar M, Sandur SK. Soluble factors secreted by human Wharton’s jelly mesenchymal stromal/stem cells exhibit therapeutic radioprotection: A mechanistic study with integrating network biology. World J Stem Cells 2022; 14:347-361. [PMID: 35722198 PMCID: PMC9157603 DOI: 10.4252/wjsc.v14.i5.347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells (hWJ-MSCs) have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them. Recently, we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential. This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.
AIM To understand the radioprotective mechanism of soluble factors secreted by hWJ-MSCs and identification of their unique genes.
METHODS Propidium iodide staining, endogenous spleen colony-forming assay, and survival study were carried out for radioprotection studies. Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation. Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells, embryonic stem cells, and human fibroblasts. Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.
RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes. WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes. Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection. Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin (IL)1-α, IL1-β, IL-6, CXCL3, CXCL5, CXCL8, CXCL2, CCL2, FLT-1, and IL-33. It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources. Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.
CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- University of Mumbai, Kalina, Mumbai 400098, India
| | - Santosh Kumar Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
11
|
Kim MJ, Moon W, Heo J, Lim S, Lee SH, Jeong JY, Lee SJ. Optimization of adipose tissue-derived mesenchymal stromal cells transplantation for bone marrow repopulation following irradiation. World J Stem Cells 2022; 14:245-263. [PMID: 35432736 PMCID: PMC8968216 DOI: 10.4252/wjsc.v14.i3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone marrow (BM) suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation. Despite concerted efforts, there is no definitive treatment method available. Recent studies have reported using mesenchymal stromal cells (MSCs), but their therapeutic effects are contested. AIM We administered and examined the effects of various amounts of adipose-derived MSCs (ADSCs) in mice with radiation-induced BM suppression. METHODS Mice were divided into three groups: Normal control group, irradiated (RT) group, and stem cell-treated group following whole-body irradiation (WBI). Mouse ADSCs (mADSCs) were transplanted into the peritoneal cavity either once or three times at 5 × 105 cells/200 μL. The white blood cell count and the levels of, plasma cytokines, BM mRNA, and BM surface markers were compared between the three groups. Human BM-derived CD34+ hematopoietic progenitor cells were co-cultured with human ADSCs (hADSCs) or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro. RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants. Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells. Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice. CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Biochemistry, Cancer Research Institute Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Jeonghoon Heo
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Sangwook Lim
- Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Seung-Hyun Lee
- Department of General Surgery, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Cancer Research Institute Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Sang Joon Lee
- Department of Ophthalmology, Gospel Hospital, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea.
| |
Collapse
|
12
|
Treatment of Radiation Bone Injury with Transplanted hUCB-MSCs via Wnt/ β-Catenin. Stem Cells Int 2021; 2021:5660927. [PMID: 34876908 PMCID: PMC8645406 DOI: 10.1155/2021/5660927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
Radiation-induced bone injury (RIBI) is one of the complications after radiotherapy for malignant tumors. However, there are no effective measures for the treatment of RIBI in clinical practice, and the mechanism of RIBI is unclear. We use a single high-dose ionizing radiation (6Gy) to analyze the effect of radiotherapy on osteoblast function. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) were cocultured with irradiated osteoblasts to examine their therapeutic effects and mechanisms on osteoblast injury. The hUCB-MSC transplantation mouse model is used to confirm the in vivo role of hUCB-MSC treatment in radiation bone injury. Western blot analysis, qRT-PCR, immunohistochemistry, and immunofluorescence staining were used to analyze gene expression and angiogenesis. The apoptosis and migration of osteoblasts were measured by Hoechst staining, scratch test, and transwell. The differentiation of osteoblasts was measured by ALP and Alizarin red staining and transmission electron microscopy. The bone-related parameters of mice were evaluated by micro-CT analysis. We found that radiation can damage the DNA of osteoblasts; induce apoptosis; reduce the differentiation, migration, and adhesion of osteoblasts, leading to lipogenesis of bone marrow mesenchymal stem cells (BMSCs) and reducing the source of osteoblasts; and increase the number of osteoclasts in bone tissue, while MSC treatment prevents these changes. Our results reveal the inhibitory effect of radiation on osteoblast function. hUCB-MSCs can be used as a therapeutic target for the development of new therapeutic strategies for radiotherapy of bone injury diseases.
Collapse
|
13
|
Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res 2021; 55:595-625. [PMID: 34181503 DOI: 10.1080/10715762.2021.1876854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
14
|
Gorodetsky R, Aicher WK. Allogenic Use of Human Placenta-Derived Stromal Cells as a Highly Active Subtype of Mesenchymal Stromal Cells for Cell-Based Therapies. Int J Mol Sci 2021; 22:5302. [PMID: 34069909 PMCID: PMC8157571 DOI: 10.3390/ijms22105302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stromal cells (MSCs) from different sources, including bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has been proposed for various clinical purposes. Accumulated evidence suggests that the activity of the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The easily available fresh human placenta seems to represent a preferred source for harvesting abundant numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta (f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a very competent cell for therapy in humans or animal models. This review summarizes the therapeutic potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and anti-inflammatory effects and discusses clinical feasibility studies.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Center of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72076 Tuebingen, Germany
| |
Collapse
|
15
|
Bandekar M, Maurya DK, Sharma D, Sandur SK. Preclinical Studies and Clinical Prospects of Wharton's Jelly-Derived MSC for Treatment of Acute Radiation Syndrome. CURRENT STEM CELL REPORTS 2021; 7:85-94. [PMID: 33936933 PMCID: PMC8080090 DOI: 10.1007/s40778-021-00188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) have received widespread attention from researchers owing to the remarkable benefits offered by these cells over other stem cells. The primitive nature of WJ-MSCs, ease of isolation, differentiation ability, and immuno-modulatory nature make these cells superior to bone marrow MSCs and ideal to treat various human ailments. This review explores ability of WJ-MSCs to mitigate acute radiation syndrome caused by planned or unplanned radiation exposure. Recent Findings Recent reports suggest that WJ-MSCs home to damaged tissues in irradiated host and mitigate radiation induced damage to radiosensitive tissues such as hematopoietic and gastrointestinal systems. WJ-MSCs and conditioned media were found to protect mice from radiation induced mortality and also prevent radiation dermatitis. Local irradiation-induced lung toxicity in mice was significantly reduced by CXCR4 over-expressing WJ-MSCs. Summary Emerging evidences support safety and effectiveness of WJ-MSCs for treatment of acute radiation syndrome and lung injury after planned or accidental exposure. Additionally, conditioned media collected after culturing WJ-MSCs can also be used for mitigation of radiation dermatitis. Clinical translation of these findings would be possible after careful evaluation of resilience, effectiveness, and molecular mechanism of action of xenogeneic WJ-MSCs in non-human primates.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,University of Mumbai, Kalina, Mumbai, 400098 India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|
16
|
Rühle A, Grosu AL, Nicolay NH. The Particle Radiobiology of Multipotent Mesenchymal Stromal Cells: A Key to Mitigating Radiation-Induced Tissue Toxicities in Cancer Treatment and Beyond? Front Oncol 2021; 11:616831. [PMID: 33912447 PMCID: PMC8071947 DOI: 10.3389/fonc.2021.616831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent stromal cells that have gained attention for the treatment of irradiation-induced normal tissue toxicities due to their regenerative abilities. As the vast majority of studies focused on the effects of MSCs for photon irradiation-induced toxicities, little is known about the regenerative abilities of MSCs for particle irradiation-induced tissue damage or the effects of particle irradiation on the stem cell characteristics of MSCs themselves. MSC-based therapies may help treat particle irradiation-related tissue lesions in the context of cancer radiotherapy. As the number of clinical proton therapy centers is increasing, there is a need to decidedly investigate MSC-based treatments for particle irradiation-induced sequelae. Furthermore, therapies with MSCs or MSC-derived exosomes may also become a useful tool for manned space exploration or after radiation accidents and nuclear terrorism. However, such treatments require an in-depth knowledge about the effects of particle radiation on MSCs and the effects of MSCs on particle radiation-injured tissues. Here, the existing body of evidence regarding the particle radiobiology of MSCs as well as regarding MSC-based treatments for some typical particle irradiation-induced toxicities is presented and critically discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
17
|
Chinnapaka S, Yang KS, Samadi Y, Epperly MW, Hou W, Greenberger JS, Ejaz A, Rubin JP. Allogeneic adipose-derived stem cells mitigate acute radiation syndrome by the rescue of damaged bone marrow cells from apoptosis. Stem Cells Transl Med 2021; 10:1095-1114. [PMID: 33724714 PMCID: PMC8235137 DOI: 10.1002/sctm.20-0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Acute radiation syndrome (ARS) is the radiation toxicity that can affect the hematopoietic, gastrointestinal, and nervous systems upon accidental radiation exposure within a short time. Currently, there are no effective and safe approaches to treat mass population exposure to ARS. Our study aimed to evaluate the therapeutic potential of allogeneic adipose‐derived stem cells (ASCs) for total body irradiation (TBI)‐induced ARS and understand the underlying mitigation mechanism. We employed 9.25 Gy TBI dose to C57BL/6 mice and studied the effect of allogeneic ASCs on mice survival and regeneration of the hematopoietic system. Our results indicate that intraperitoneal‐injected ASCs migrated to the bone marrow, rescued hematopoiesis, and improved the survival of irradiated mice. Our transwell coculture results confirmed the migration of ASCs to irradiated bone marrow and rescue hematopoietic activity. Furthermore, contact coculture of ASCs improved the survival and hematopoiesis of irradiated bone marrow in vitro. Irradiation results in DNA damage, upregulation of inflammatory signals, and apoptosis in bone marrow cells, while coculture with ASCs reduces apoptosis via activation of DNA repair and the antioxidation system. Upon exposure to irradiated bone marrow cells, ASCs secrete prosurvival and hematopoietic factors, such as GM‐CSF, MIP1α, MIP1β, LIX, KC, 1P‐10, Rantes, IL‐17, MCSF, TNFα, Eotaxin, and IP‐10, which reduces oxidative stress and rescues damaged bone marrow cells from apoptosis. Our findings suggest that allogeneic ASCs therapy is effective in mitigating TBI‐induced ARS in mice and may be beneficial for clinical adaptation to treat TBI‐induced toxicities. Further studies will help to advocate the scale‐up and adaptation of allogeneic ASCs as the radiation countermeasure.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine S Yang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yasamin Samadi
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Zorina TD. New Insights on the Role of the Mesenchymal-Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells Dev 2020; 30:2-16. [PMID: 33231142 DOI: 10.1089/scd.2020.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoreductive protocols are integral both as conditioning regimens for bone marrow (BM) transplantation and as part of therapies for malignancies, but their associated comorbidities represent a long-standing clinical problem. In particular, they cause myeloablation that debilitates the physiological role of mesenchymal stem and precursor cells (MSPCs) in sustaining hematopoiesis. This review addresses the damaging impact of cytoreductive regimens on MSPCs. In addition, it discusses prospects for alleviating the resulting iatrogenic comorbidities. New insights into the structural and functional dynamics of hematopoietic stem cell (HSC) niches reveal the existence of "empty" niches and the ability of the donor-derived healthy HSCs to outcompete the defective HSCs in occupying these niches. These findings support the notion that conditioning regimens, conventionally used to ablate the recipient hematopoiesis to create space for engraftment of the donor-derived HSCs, may not be a necessity for allogeneic BM transplantation. In addition, the capacity of the MSPCs to cross-talk with HSCs, despite major histocompatibility complex disparity, and suppress graft versus host disease indicates the possibility for development of a conditioning-free, MSPCs-enhanced protocol for BM transplantation. The clinical advantage of supplementing cytoreductive protocols with MSPCs to improve autologous hematopoiesis reconstitution and alleviate cytopenia associated with chemo and radiation therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Tatiana D Zorina
- Department of Medical Laboratory Science and Biotechnology, Jefferson College of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Chinnadurai R, Forsberg MH, Kink JA, Hematti P, Capitini CM. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome. CURRENT STEM CELL REPORTS 2020; 6:77-85. [PMID: 32944493 DOI: 10.1007/s40778-020-00176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Innovative and minimally toxic treatment approaches are sorely needed for the prevention and treatment of hematopoietic acute radiation syndrome (H-ARS). Cell therapies have been increasingly studied for their potential use as countermeasures for accidental and intentional ionizing radiation exposures which can lead to fatal ARS. Mesenchymal stem/stromal cells (MSCs) are a cell therapy that have shown promising results in preclinical studies of ARS, and are being developed in clinical trials specifically for H-ARS. MSCs, MSC-educated macrophages (MEMs) and MSC-exosome educated macrophages (EEMs) all have the potential to be used as adoptive cell therapies for H-ARS. Here we review how MSCs have been reported to mitigate inflammation from radiation injury while also stimulating hematopoiesis during ARS. Recent findings We discuss emerging work with immune cell subsets educated by MSCs, including MEMs and EEMs, in promoting hematopoiesis in xenogeneic models of ARS. We also discuss the first placental-derived MSC product to enter phase I trials, PLX-R18, and the challenges faced by bringing MSC and other cell therapies into the clinic for treating ARS. Summary Although MSCs, MEMs and EEMs are potential cell therapy candidates in promoting hematopoietic HRS, challenges persist in translational clinical development of these products to the clinic. Whether any of these cellular therapies will be sufficient as stand-alone therapies to mitigate H-ARS or if they will be a bridging therapy that insures survival until a curative allogeneic hematopoietic stem cell transplant can be performed are the key questions that will have to be answered.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John A Kink
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
20
|
Qian L, Cen J. Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340756. [PMID: 32855768 PMCID: PMC7443042 DOI: 10.1155/2020/8340756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| | - Jian Cen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| |
Collapse
|
21
|
Volinsky E, Lazmi-Hailu A, Cohen N, Adani B, Faroja M, Grunewald M, Gorodetsky R. Alleviation of acute radiation-induced bone marrow failure in mice with human fetal placental stromal cell therapy. Stem Cell Res Ther 2020; 11:337. [PMID: 32746939 PMCID: PMC7397607 DOI: 10.1186/s13287-020-01850-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Selected placental mesenchymal stromal cells isolated from the fetal mesenchymal placental tissues (f-hPSCs) were tested as cell therapy of lethal acute radiation syndrome (ARS) with bone marrow regeneration and induced extramedullary hematopoiesis. Methods and materials f-hPSCs were isolated from the chorionic plate of human placentae and further expanded in regular culture conditions. 2 × 106 f-hPSCs were injected on days 1 and 4 to 8-Gy total body irradiated (TBI) C3H mice, both intramuscularly and subcutaneously. Pre-splenectomized TBI mice were used to test the involvement of extramedullary spleen hematopoiesis in the f-hPSC-induced hematopoiesis recovery in the TBI mice. Weight and survival of the mice were followed up within the morbid period of up to 23 days following irradiation. The role of hematopoietic progenitors in the recovery of treated mice was evaluated by flow cytometry, blood cell counts, and assay of possibly relevant growth factors. Results and conclusions The survival rate of all groups of TBI f-hPSC-treated mice at the end of the follow-up was dramatically elevated from < 10% in untreated to ~ 80%, with a parallel regain of body weight, bone marrow (BM) recovery, and elevated circulating progenitors of blood cell lineages. Blood erythropoietin levels were elevated in all f-hPSC-treated mice. Extramedullary splenic hematopoiesis was recorded in the f-hPSC-treated mice, though splenectomized mice still had similar survival rate. Our findings suggest that the indirect f-hPSC life-saving therapy of ARS may also be applied for treating other conditions with a failure of the hematopoietic system and severe pancytopenia.
Collapse
Affiliation(s)
- Evgenia Volinsky
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel.,IMRIC-Developmental Biology and Cancer Research, Hebrew University School of Medicine, P.O. Box 12271, 91121, Jerusalem, Israel
| | - Astar Lazmi-Hailu
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Nerel Cohen
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Boaz Adani
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Mohammad Faroja
- General Surgery, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Myriam Grunewald
- IMRIC-Developmental Biology and Cancer Research, Hebrew University School of Medicine, P.O. Box 12271, 91121, Jerusalem, Israel.
| | - Raphael Gorodetsky
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
22
|
Lia G, Di Vito C, Cerrano M, Brunello L, Calcaterra F, Tapparo M, Giaccone L, Mavilio D, Bruno B. Extracellular Vesicles After Allogeneic Hematopoietic Cell Transplantation: Emerging Role in Post-Transplant Complications. Front Immunol 2020; 11:422. [PMID: 32265915 PMCID: PMC7100658 DOI: 10.3389/fimmu.2020.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the cellular crosstalk by transferring bioactive molecules through biological barriers from a cell to another, thus influencing recipient cell functions and phenotype. Therefore, EVs are increasingly being explored as biomarkers of disease progression or response to therapy and as potential therapeutic agents in different contexts including in hematological malignancies. Recently, an EV role has emerged in allogeneic hematopoietic cell transplantation (allo-HCT) as well. Allogeneic hematopoietic cell transplantation often represents the only curative option in several hematological disorders, but it is associated with potentially life-threatening complications that can have a significant impact on clinical outcomes. The most common complications have been well-established and include graft-versus-host disease and infections. Furthermore, relapse remains an important cause of treatment failure. The aim of this review is to summarize the current knowledge, the potential applications, and clinical relevance of EVs in allo-HCT. Herein, we will mainly focus on the immune-modulating properties of EVs, in particular those derived from mesenchymal stromal cells, as potential therapeutic strategy to improve allo-HCT outcome. Moreover, we will briefly describe the main findings on EVs as biomarkers to monitor graft-versus-host disease onset and tumor relapse.
Collapse
Affiliation(s)
- Giuseppe Lia
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marco Cerrano
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lucia Brunello
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
23
|
Kink JA, Forsberg MH, Reshetylo S, Besharat S, Childs CJ, Pederson JD, Gendron-Fitzpatrick A, Graham M, Bates PD, Schmuck EG, Raval A, Hematti P, Capitini CM. Macrophages Educated with Exosomes from Primed Mesenchymal Stem Cells Treat Acute Radiation Syndrome by Promoting Hematopoietic Recovery. Biol Blood Marrow Transplant 2019; 25:2124-2133. [PMID: 31394269 DOI: 10.1016/j.bbmt.2019.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
Abstract
In the setting of radiation-induced trauma, exposure to high levels of radiation can cause an acute radiation syndrome (ARS) causing bone marrow (BM) failure, leading to life-threatening infections, anemia, and thrombocytopenia. We have previously shown that human macrophages educated with human mesenchymal stem cells (MSCs) by coculture can significantly enhance survival of mice exposed to lethal irradiation. In this study, we investigated whether exosomes isolated from MSCs could replace direct coculture with MSCs to generate exosome educated macrophages (EEMs). Functionally unique phenotypes were observed by educating macrophages with exosomes from MSCs (EEMs) primed with bacterial lipopolysaccharide (LPS) at different concentrations (LPS-low EEMs or LPS-high EEMs). LPS-high EEMs were significantly more effective than uneducated macrophages, MSCs, EEMs, or LPS-low EEMs in extending survival after lethal ARS in vivo. Moreover, LPS-high EEMs significantly reduced clinical signs of radiation injury and restored hematopoietic tissue in the BM and spleen as determined by complete blood counts and histology. LPS-high EEMs showed significant increases in gene expression of STAT3, secretion of cytokines like IL-10 and IL-15, and production of growth factors like FLT-3L. LPS-EEMs also showed increased phagocytic activity, which may aid with tissue remodeling. LPS-high EEMs have the potential to be an effective cellular therapy for the management of ARS.
Collapse
Affiliation(s)
- John A Kink
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sofiya Reshetylo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Soroush Besharat
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Charlie J Childs
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jessica D Pederson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Annette Gendron-Fitzpatrick
- The Comparative Pathology Laboratory, Research Animal Resource Center, University of Wisconsin, Madison, Wisconsin
| | - Melissa Graham
- The Comparative Pathology Laboratory, Research Animal Resource Center, University of Wisconsin, Madison, Wisconsin
| | - Paul D Bates
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Eric G Schmuck
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amish Raval
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
24
|
Kim MM, Schlussel L, Zhao L, Himburg HA. Dickkopf-1 Treatment Stimulates Hematopoietic Regenerative Function in Infused Endothelial Progenitor Cells. Radiat Res 2019; 192:53-62. [PMID: 31081743 DOI: 10.1667/rr15361.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.
Collapse
Affiliation(s)
- Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
25
|
Mesenchymal Stem Cell Benefits Observed in Bone Marrow Failure and Acquired Aplastic Anemia. Stem Cells Int 2017; 2017:8076529. [PMID: 29333168 PMCID: PMC5733198 DOI: 10.1155/2017/8076529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/15/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
Abstract
Acquired aplastic anemia (AA) is a type of bone marrow failure (BMF) syndrome characterized by partial or total bone marrow (BM) destruction resulting in peripheral blood (PB) pancytopenia, which is the reduction in the number of red blood cells (RBC) and white blood cells (WBC), as well as platelets (PLT). The first-line treatment option of AA is given by hematopoietic stem cell (HSCs) transplant and/or immunosuppressive (IS) drug administration. Some patients did not respond to the treatment and remain pancytopenic following IS drugs. The studies are in progress to test the efficacy of adoptive cellular therapies as mesenchymal stem cells (MSCs), which confer low immunogenicity and are reliable allogeneic transplants in refractory severe aplastic anemia (SAA) cases. Moreover, bone marrow stromal cells (BMSC) constitute an essential component of the hematopoietic niche, responsible for stimulating and enhancing the proliferation of HSCs by secreting regulatory molecules and cytokines, providing stimulus to natural BM microenvironment for hematopoiesis. This review summarizes scientific evidences of the hematopoiesis improvements after MSC transplant, observed in acquired AA/BMF animal models as well as in patients with acquired AA. Additionally, we discuss the direct and indirect contribution of MSCs to the pathogenesis of acquired AA.
Collapse
|
26
|
DiCarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, Macchiarini F, Maidment BW, Jourdain JR. Cellular Therapies for Treatment of Radiation Injury: Report from a NIH/NIAID and IRSN Workshop. Radiat Res 2017; 188:e54-e75. [PMID: 28605260 DOI: 10.1667/rr14810.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases co-sponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Radia Tamarat
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Carmen I Rios
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Marc Benderitter
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Francesca Macchiarini
- e Previously -RNCP, DAIT, NIAID, NIH; now National Institute on Aging (NIA), NIH, Bethesda, Maryland
| | | | - Jean-Rene Jourdain
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
27
|
Efficacy of human umbilical cord derived-mesenchymal stem cells in treatment of rat bone marrow exposed to gamma irradiation. Ann Anat 2017; 210:64-75. [DOI: 10.1016/j.aanat.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022]
|
28
|
Lee SB, Shim S, Kim MJ, Shin HY, Jang WS, Lee SJ, Jin YW, Lee SS, Park S. Identification of a distinct subpopulation of fibroblasts from murine dermis: CD73(-) CD105(+) as potential marker of dermal fibroblasts subset with multipotency. Cell Biol Int 2016; 40:1008-16. [PMID: 27170595 DOI: 10.1002/cbin.10623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/07/2016] [Indexed: 01/22/2023]
Abstract
Skin dermis includes various types of multipotent stromal cells (MSCs) and a subpopulation of dermal fibroblasts that exhibit the ability to differentiate. However, characterization of this dermal fibroblast subtype remains less understood. In this study, we isolated dermal cells from the skin of newborn C57/B6 mice and investigated their characteristics. Isolated murine dermal cells exhibited a fibroblast phenotype as judged by accepted criteria including a lack of MSC-related antigens and the differentiation potential of MSCs, and the positive expression of fibroblast markers. A comparative analysis demonstrated that CD73(-) CD105(+) but not CD73(-) CD105(-) dermal fibroblasts exhibited some of the functional properties of MSCs. Furthermore, the multipotent phenotype of CD73(-) CD105(+) cells was diminished by treatment of CD105 siRNA and shRNA, indicating that CD105 expression was critical for the retention of differentiation potential of those cells. Overall, these results suggest that CD73(-) CD105(+) cells are a distinct subset of dermal fibroblasts with multipotency and that their surface antigens could help to classify this subpopulation. These cells may contribute to the regeneration of damaged tissue.
Collapse
Affiliation(s)
- Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Hye-Yun Shin
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Young-Woo Jin
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| |
Collapse
|
29
|
Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, Deng Y, Goldberg L, Aliotta J, Chatterjee D, Stewart C, Carpanetto A, Collino F, Bruno S, Camussi G, Quesenberry P. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 2016; 30:2221-2231. [PMID: 27150009 PMCID: PMC5093052 DOI: 10.1038/leu.2016.107] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/05/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 h to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 h post irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% dimethyl sulfoxide at -80 °C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells.
Collapse
Affiliation(s)
- S Wen
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - M Dooner
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Y Cheng
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - E Papa
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - M Del Tatto
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - M Pereira
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Y Deng
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - L Goldberg
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - J Aliotta
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - D Chatterjee
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - C Stewart
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - A Carpanetto
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - F Collino
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - S Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - G Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - P Quesenberry
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
30
|
Cary LH, Noutai D, Salber RE, Williams MS, Ngudiankama BF, Whitnall MH. Interactions between Endothelial Cells and T Cells Modulate Responses to Mixed Neutron/Gamma Radiation. Radiat Res 2014; 181:592-604. [DOI: 10.1667/rr13550.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Gaberman E, Pinzur L, Levdansky L, Tsirlin M, Netzer N, Aberman Z, Gorodetsky R. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells. PLoS One 2013; 8:e66549. [PMID: 23823334 PMCID: PMC3688917 DOI: 10.1371/journal.pone.0066549] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 05/12/2013] [Indexed: 12/22/2022] Open
Abstract
Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.
Collapse
Affiliation(s)
- Elena Gaberman
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | | | - Lilia Levdansky
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Maria Tsirlin
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nir Netzer
- Pluristem Therapeutics Inc., Haifa, Israel
| | | | - Raphael Gorodetsky
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|