1
|
Miyashita N, Onozawa M, Kasahara K, Matsukawa T, Onodera Y, Suzuki K, Takaku T, Teshima T, Kondo T. CML With Mutant ASXL1 Showed Decreased Sensitivity to TKI Treatment via Upregulation of the ALOX5-BLTR Signaling Pathway. Cancer Sci 2025; 116:1115-1125. [PMID: 39905783 PMCID: PMC11967257 DOI: 10.1111/cas.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
In this study, the mechanisms of tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) were investigated focusing additional sex combs-like 1 (ASXL1) gene mutations and their downstream effects. While TKIs have improved the prognosis of CML, some patients have shown resistant to therapy. Cases with mutations in epigenome-related genes such as ASXL1 are known to have a poor prognosis, but the underlying mechanisms of the poor prognosis are unclear. We showed that mutated ASXL1 reduces TKI sensitivity in CML cell lines, and RNA microarray analysis revealed that arachidonate 5-lipoxygenase (ALOX5) is a significantly upregulated gene under the conditional expression of mutated ASXL1. Enforced ALOX5 expression induced TKI resistance, while ALOX5 knockout increased TKI sensitivity. ALOX5 downstream signal inhibition by LY293111, a leukotriene B4 receptor (BLTR) antagonist, suppressed AKT phosphorylation and enhanced TKI sensitivity. This study revealed that TKI resistance in CML with ASXL1 mutation was induced via ALOX5 overexpression. ASXL1 mutations may confer a clonal advantage through activation of the AKT pathway following ALOX5 overexpression. While combined use of LY293111 with TKIs and asciminib showed synergistic effects against CML cells, the ALOX5-BLTR signaling pathway is novel therapeutic target for CML patients with mutated ASXL1.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Arachidonate 5-Lipoxygenase/genetics
- Arachidonate 5-Lipoxygenase/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Drug Resistance, Neoplasm/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mutation
- Cell Line, Tumor
- Receptors, Leukotriene B4/metabolism
- Receptors, Leukotriene B4/genetics
- Up-Regulation
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Naoki Miyashita
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Masahiro Onozawa
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Kohei Kasahara
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Toshihiro Matsukawa
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Yasuhito Onodera
- Department of Molecular BiologyHokkaido University Graduate School of MedicineSapporoJapan
| | - Kohjin Suzuki
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Tomoiku Takaku
- Department of HematologySaitama Medical UniversitySaitamaJapan
| | - Takanori Teshima
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | | |
Collapse
|
2
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2025; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
3
|
Zhang Q, Yim R, Lee P, Chin L, Li V, Gill H. Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders. Cancers (Basel) 2024; 16:4118. [PMID: 39682303 DOI: 10.3390/cancers16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is an age-related phenomenon characterized by the presence of somatic mutations in hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) that acquire a fitness advantage under selection pressure. Individuals with CHIP have an absolute risk of 0.5-1.0% per year for progressing to MDS or AML. Inflammation, smoking, cytotoxic therapy, and radiation can promote the process of clonal expansion and leukemic transformation. Of note, exposure to chemotherapy or radiation for patients with solid tumors or lymphomas can increase the risk of therapy-related MN. Beyond hematological malignancies, CH also serves as an independent risk factor for heart disease, stroke, chronic obstructive pulmonary disease, and chronic kidney disease. Prognostic models such as the CH risk score and MN-prediction models can provide a framework for risk stratification and clinical management of CHIP/CCUS and identify high-risk individuals who may benefit from close surveillance. For CH or related disorders, therapeutic strategies targeting specific CH-associated mutations and specific selection pressure may have a potential role in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lynn Chin
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivian Li
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Sato N, Goyama S, Chang YH, Miyawaki M, Fujino T, Koide S, Denda T, Liu X, Ueda K, Yamamoto K, Asada S, Takeda R, Yonezawa T, Tanaka Y, Honda H, Ota Y, Shibata T, Sekiya M, Isobe T, Lamagna C, Masuda E, Iwama A, Shimano H, Inoue JI, Miyake K, Kitamura T. Clonal hematopoiesis-related mutant ASXL1 promotes atherosclerosis in mice via dysregulated innate immunity. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1568-1583. [PMID: 39653824 DOI: 10.1038/s44161-024-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Certain somatic mutations provide a fitness advantage to hematopoietic stem cells and lead to clonal expansion of mutant blood cells, known as clonal hematopoiesis (CH). Among the most common CH mutations, ASXL1 mutations pose the highest risk for cardiovascular diseases (CVDs), yet the mechanisms by which they contribute to CVDs are unclear. Here we show that hematopoietic cells harboring C-terminally truncated ASXL1 mutant (ASXL1-MT) accelerate the development of atherosclerosis in Ldlr-/- mice. Transcriptome analyses of plaque cells showed that monocytes and macrophages expressing ASXL1-MT exhibit inflammatory signatures. Mechanistically, we demonstrate that wild-type ASXL1 has an unexpected non-epigenetic role by suppressing innate immune signaling through the inhibition of IRAK1-TAK1 interaction in the cytoplasm. This regulatory function is lost in ASXL1-MT, resulting in NF-κB activation. Inhibition of IRAK1/4 alleviated atherosclerosis driven by ASXL1-MT and decreased inflammatory monocytes. The present work provides a mechanistic and cellular explanation linking ASXL1 mutations, CH and CVDs.
Collapse
Affiliation(s)
- Naru Sato
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yu-Hsuan Chang
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Masashi Miyawaki
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tamami Denda
- Department of Pathology, The Institute of Medical Science Research Hospital, University of Tokyo, Tokyo, Japan
| | - Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Centre, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Honda
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, The Institute of Medical Science Research Hospital, University of Tokyo, Tokyo, Japan
| | - Takuma Shibata
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Tokyo, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoya Isobe
- Department of Hematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Esteban Masuda
- Rigel Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan.
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.
| |
Collapse
|
5
|
Wang W, Zhang X, Li Y, Shen J, Li Y, Xing W, Bai J, Shi J, Zhou Y. Generation and Characterization of Induced Pluripotent Stem Cells Carrying An ASXL1 Mutation. Stem Cell Rev Rep 2024; 20:1889-1901. [PMID: 38884929 DOI: 10.1007/s12015-024-10737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Additional sex combs-like 1 (ASXL1) is an epigenetic modulator frequently mutated in myeloid malignancies, generally associated with poor prognosis. Current models for ASXL1-mutated diseases are mainly based on the complete deletion of Asxl1 or overexpression of C-terminal truncations in mice models. However, these models cannot fully recapitulate the pathogenesis of myeloid malignancies. Patient-derived induced pluripotent stem cells (iPSCs) provide valuable disease models that allow us to understand disease-related molecular pathways and develop novel targeted therapies. Here, we generated iPSCs from a patient with myeloproliferative neoplasm carrying a heterozygous ASXL1 mutation. The iPSCs we generated exhibited the morphology of pluripotent cells, highly expressed pluripotent markers, excellent differentiation potency in vivo, and normal karyotype. Subsequently, iPSCs with or without ASXL1 mutation were induced to differentiate into hematopoietic stem/progenitor cells, and we found that ASXL1 mutation led to myeloid-biased output and impaired erythroid differentiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that terms related to embryonic development, myeloid differentiation, and immune- and neural-related processes were most enriched in the differentially expressed genes. Western blot demonstrated that the global level of H2AK119ub was significantly decreased when mutant ASXL1 was present. Chromatin Immunoprecipitation Sequencing showed that most genes associated with stem cell maintenance were upregulated, whereas occupancies of H2AK119ub around these genes were significantly decreased. Thus, the iPSC model carrying ASXL1 mutation could serve as a potential tool to study the pathogenesis of myeloid malignancies and to screen targeted therapy for patients.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yihan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
6
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
7
|
Kim N, Byun S, Um SJ. Additional Sex Combs-like Family Associated with Epigenetic Regulation. Int J Mol Sci 2024; 25:5119. [PMID: 38791157 PMCID: PMC11121404 DOI: 10.3390/ijms25105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The additional sex combs-like (ASXL) family, a mammalian homolog of the additional sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin modifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and various types of leukemia. De novo mutation of these genes also causes developmental disorders. Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This review provides a comprehensive summary of epigenetic regulations associated with ASXL family genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding transcription starting sites. Their proteins primarily engage in histone tail modifications through interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4 methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL family genes collectively contribute to tumor suppression and developmental processes. Our understanding of ASXL-regulated epigenetics may provide insights into the development of therapeutic epigenetic drugs.
Collapse
Affiliation(s)
| | | | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, Republic of Korea; (N.K.)
| |
Collapse
|
8
|
Köhnke T, Nuno KA, Alder CC, Gars EJ, Phan P, Fan AC, Majeti R. Human ASXL1-Mutant Hematopoiesis Is Driven by a Truncated Protein Associated with Aberrant Deubiquitination of H2AK119. Blood Cancer Discov 2024; 5:202-223. [PMID: 38359087 PMCID: PMC11061584 DOI: 10.1158/2643-3230.bcd-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Kevin A. Nuno
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | | | - Eric J. Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| |
Collapse
|
9
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
10
|
Ge G, Zhang P, Sui P, Chen S, Yang H, Guo Y, Rubalcava IP, Noor A, Delma CR, Agosto-Peña J, Geng H, Medina EA, Liang Y, Nimer SD, Mesa R, Abdel-Wahab O, Xu M, Yang FC. Targeting lysine demethylase 6B ameliorates ASXL1 truncation-mediated myeloid malignancies in preclinical models. J Clin Invest 2024; 134:e163964. [PMID: 37917239 PMCID: PMC10760961 DOI: 10.1172/jci163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
ASXL1 mutation frequently occurs in all forms of myeloid malignancies and is associated with aggressive disease and poor prognosis. ASXL1 recruits Polycomb repressive complex 2 (PRC2) to specific gene loci to repress transcription through trimethylation of histone H3 on lysine 27 (H3K27me3). ASXL1 alterations reduce H3K27me3 levels, which results in leukemogenic gene expression and the development of myeloid malignancies. Standard therapies for myeloid malignancies have limited efficacy when mutated ASXL1 is present. We discovered upregulation of lysine demethylase 6B (KDM6B), a demethylase for H3K27me3, in ASXL1-mutant leukemic cells, which further reduces H3K27me3 levels and facilitates myeloid transformation. Here, we demonstrated that heterozygous deletion of Kdm6b restored H3K27me3 levels and normalized dysregulated gene expression in Asxl1Y588XTg hematopoietic stem/progenitor cells (HSPCs). Furthermore, heterozygous deletion of Kdm6b decreased the HSPC pool, restored their self-renewal capacity, prevented biased myeloid differentiation, and abrogated progression to myeloid malignancies in Asxl1Y588XTg mice. Importantly, administration of GSK-J4, a KDM6B inhibitor, not only restored H3K27me3 levels but also reduced the disease burden in NSG mice xenografted with human ASXL1-mutant leukemic cells in vivo. This preclinical finding provides compelling evidence that targeting KDM6B may be a therapeutic strategy for myeloid malignancies with ASXL1 mutations.
Collapse
Affiliation(s)
- Guo Ge
- Department of Cell Systems and Anatomy
| | - Peng Zhang
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| | - Pinpin Sui
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| | - Shi Chen
- Department of Molecular Medicine, and
| | - Hui Yang
- Department of Cell Systems and Anatomy
| | - Ying Guo
- Department of Cell Systems and Anatomy
| | | | - Asra Noor
- Department of Cell Systems and Anatomy
| | - Caroline R. Delma
- Department of Cell Systems and Anatomy
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Hui Geng
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Edward A. Medina
- Mays Cancer Center
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ying Liang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mingjiang Xu
- Mays Cancer Center
- Department of Molecular Medicine, and
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| |
Collapse
|
11
|
Belotserkovskaya E, Golotin V, Uyanik B, Demidov ON. Clonal haematopoiesis - a novel entity that modifies pathological processes in elderly. Cell Death Discov 2023; 9:345. [PMID: 37726289 PMCID: PMC10509183 DOI: 10.1038/s41420-023-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Progress in the development of new sequencing techniques with wider accessibility and higher sensitivity of the protocol of deciphering genome particularities led to the discovery of a new phenomenon - clonal haematopoiesis. It is characterized by the presence in the bloodstream of elderly people a minor clonal population of cells with mutations in certain genes, but without any sign of disease related to the hematopoietic system. Here we will review this recent advancement in the field of clonal haematopoiesis and how it may affect the disease's development in old age.
Collapse
Affiliation(s)
| | - Vasily Golotin
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia
- Saint Petersburg bra-nch of "VNIRO" ("Gos-NOIRH" named after L.S. Berg), Saint Petersburg, Russia
| | - Burhan Uyanik
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France
| | - Oleg N Demidov
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia.
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France.
- Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, 354340, Russian Federation.
| |
Collapse
|
12
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
14
|
Natarajan P. Genomic Aging, Clonal Hematopoiesis, and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:3-14. [PMID: 36353993 PMCID: PMC9780188 DOI: 10.1161/atvbaha.122.318181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Chronologic age is the dominant risk factor for coronary artery disease but the features of aging promoting coronary artery disease are poorly understood. Advances in human genetics and population-based genetic profiling of blood cells have uncovered the surprising role of age-related subclinical leukemogenic mutations in blood cells, termed "clonal hematopoiesis of indeterminate potential," in coronary artery disease. Such mutations typically occur in DNMT3A, TET2, ASXL1, and JAK2. Murine and human studies prioritize the role of key inflammatory pathways linking clonal hematopoiesis with coronary artery disease. Increasingly larger, longitudinal, multiomics analyses are enabling further dissection into mechanistic insights. These observations expand the genetic architecture of coronary artery disease, now linking hallmark features of hematologic neoplasia with a much more common cardiovascular condition. Implications of these studies include the prospect of novel precision medicine paradigms for coronary artery disease.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Menendez-Gonzalez JB, Rodrigues NP. Exploring the Associations Between Clonal Hematopoiesis of Indeterminate Potential, Myeloid Malignancy, and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:73-88. [PMID: 35237959 DOI: 10.1007/978-1-0716-1924-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Outgrowth of a mutated hematopoietic stem/progenitor clone and its descendants, also known as clonal hematopoiesis, has long been considered as either a potential forerunner to hematologic malignancy or as a clinically silent phase in leukemia that antedates symptomatic disease. That definition of clonal hematopoiesis has now been expanded to encompass patients who harbor specific genetic/epigenetic mutations that lead to clonal hematopoiesis of indeterminate potential (CHIP) and, with it, a relatively heightened risk for both myeloid malignancy and atherosclerosis during aging. In this review, we provide contemporary insights into the cellular and molecular basis for CHIP and explore the relationship of CHIP to myeloid malignancy and atherosclerosis. We also discuss emerging strategies to explore CHIP biology and clinical targeting of CHIP related malignancy and cardiovascular disease.
Collapse
Affiliation(s)
- Juan Bautista Menendez-Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Asxl1 loss cooperates with oncogenic Nras in mice to reprogram the immune microenvironment and drive leukemic transformation. Blood 2022; 139:1066-1079. [PMID: 34699595 PMCID: PMC8854684 DOI: 10.1182/blood.2021012519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mutations in chromatin regulator ASXL1 are frequently identified in myeloid malignancies, in particular ∼40% of patients with chronic myelomonocytic leukemia (CMML). ASXL1 mutations are associated with poor prognosis in CMML and significantly co-occur with NRAS mutations. Here, we show that concurrent ASXL1 and NRAS mutations defined a population of CMML patients who had shorter leukemia-free survival than those with ASXL1 mutation only. Corroborating this human data, Asxl1-/- accelerated CMML progression and promoted CMML transformation to acute myeloid leukemia (AML) in NrasG12D/+ mice. NrasG12D/+;Asxl1-/- (NA) leukemia cells displayed hyperactivation of MEK/ERK signaling, increased global levels of H3K27ac, upregulation of Flt3. Moreover, we find that NA-AML cells overexpressed all the major inhibitory immune checkpoint ligands: programmed death-ligand 1 (PD-L1)/PD-L2, CD155, and CD80/CD86. Among them, overexpression of PD-L1 and CD86 correlated with upregulation of AP-1 transcription factors (TFs) in NA-AML cells. An AP-1 inhibitor or short hairpin RNAs against AP-1 TF Jun decreased PD-L1 and CD86 expression in NA-AML cells. Once NA-AML cells were transplanted into syngeneic recipients, NA-derived T cells were not detectable. Host-derived wild-type T cells overexpressed programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) receptors, leading to a predominant exhausted T-cell phenotype. Combined inhibition of MEK and BET resulted in downregulation of Flt3 and AP-1 expression, partial restoration of the immune microenvironment, enhancement of CD8 T-cell cytotoxicity, and prolonged survival in NA-AML mice. Our study suggests that combined targeted therapy and immunotherapy may be beneficial for treating secondary AML with concurrent ASXL1 and NRAS mutations.
Collapse
|
17
|
Wang D, Yuan X, Guo H, Yan S, Wang G, Wang Y, Wang T, He J, Peng X. Bohring-Opitz syndrome caused by a novel ASXL1 mutation (c.3762delT) in an IVF baby: A case report. Medicine (Baltimore) 2022; 101:e28759. [PMID: 35119035 PMCID: PMC8812699 DOI: 10.1097/md.0000000000028759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Bohring-Opitz syndrome is a severe congenital disorder associated with a de novo mutation in the additional sex combs-like 1 (ASXL1) gene, and it is characterized by symptoms that include developmental delay and musculoskeletal and neurological features. PATIENT CONCERNS The patient was a girl, an in vitro fertilization (IVF) baby, with delayed motor development, drooling, short stature, slow growth, low muscle tone, image diagnosis of hypoplasia of the corpus callosum, delayed tooth eruption, high palatal arch, adduction of the thumb, drooling, not chewing, excessive joint activity, and ligament relaxation. DIAGNOSIS Whole-exome sequencing analysis detected 1 novel disruptive frameshift mutation in ASXL1 in the proband but wild-type ASXL1 in both parents. INTERVENTIONS Approximately 1 year of rehabilitation training, which included exercise therapy, toy imitation operation, cognition of daily objects, daily living skills training, gesture language training, oral muscle training, and hand movement training. OUTCOMES After approximately 1 year of training, the patient was 3 years old and able to eat normally without drooling. She was able to grasp objects and pick them up after they fell. She was able to grasp small objects and actively played with toys. In addition, she was able to crawl on the floor (at slow speed, with poor initiative), stand with assistance, and walk with assistance; she was unstable when standing unassisted (standing unassisted for 8 seconds at most during training). LESSON ASXL1 c.3762delT is a novel mutation that may be caused by IVF. This finding suggests that appropriate gene mutation detection approaches may be necessary for IVF technology.
Collapse
Affiliation(s)
- Dongbo Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Xin Yuan
- The First Hospital of Hunan University of Chinese Medicine, China
| | - Haichun Guo
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Shuyuan Yan
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Guohong Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Yanling Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Tuanmei Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Jun He
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| | - Xiangwen Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, China
| |
Collapse
|
18
|
Oncogenic Truncations of ASXL1 Enhance a Motif for BRD4 ET-Domain Binding. J Mol Biol 2021; 433:167242. [PMID: 34536441 DOI: 10.1016/j.jmb.2021.167242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Proper regulation of gene-expression relies on specific protein-protein interactions between a myriad of epigenetic regulators. As such, mutation of genes encoding epigenetic regulators often drive cancer and developmental disorders. Additional sex combs-like protein 1 (ASXL1) is a key example, where mutations frequently drive haematological cancers and can cause developmental disorders. It has been reported that nonsense mutations in ASXL1 promote an interaction with BRD4, another central epigenetic regulator. Here we provide a molecular mechanism for the BRD4-ASXL1 interaction, demonstrating that a motif near to common truncation breakpoints of ASXL1 contains an epitope that binds the ET domain within BRD4. Binding-studies show that this interaction is analogous to common ET-binding modes of BRD4-interactors, and that all three ASX-like protein orthologs (ASXL1-3) contain a functional ET domain-binding epitope. Crucially, we observe that BRD4-ASXL1 binding is markedly increased in the prevalent ASXL1Y591X truncation that maintains the BRD4-binding epitope, relative to full-length ASXL1 or truncated proteins that delete the epitope. Together, these results show that ASXL1 truncation enhances BRD4 recruitment to transcriptional complexes via its ET domain, which could misdirect regulatory activity of either BRD4 or ASXL1 and may inform potential therapeutic interventions.
Collapse
|
19
|
Elyamany G, Akhter A, Kamran H, Rizwan H, Shabani-Rad MT, Alkhayat N, Al Sharif O, Elborai Y, Al Shahrani M, Mansoor A. Gene Expression Analysis of Pediatric Acute Myeloid Leukemia Identified a Hyperactive ASXL1/BAP1 Axis Linked with Poor Prognosis and over Expressed Epigenetic Modifiers. Pediatr Hematol Oncol 2021; 38:581-592. [PMID: 33764257 DOI: 10.1080/08880018.2021.1901808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Genetic aberrations in the epigenome are rare in pediatric AML, hence expression data in epigenetic regulation and its downstream effect is lacking in childhood AML. Our pilot study screened epigenetic modifiers and its related oncogenic signal transduction pathways concerning clinical outcomes in a small cohort of pediatric AML in KSA. RNA from diagnostic BM biopsies (n = 35) was subjected to expression analysis employing the nCounter Pan-Cancer pathway panel. The patients were dichotomized into low ASXL1 (17/35; 49%) and high ASXL1 (18/35; 51%) groups based on ROC curve analysis. Age, gender, hematological data or molecular risk factors (FLT3 mutation/molecular fusion) exposed no significant differences across these two distinct ASXL1 expression groups (P > 0.05). High ASXL1 expression showed linkage with high expression of other epigenetic modifiers (TET2/EZH2/IDH1&2). Our data showed that high ASXL1 mRNA is interrelated with increased BRCA1 associated protein-1 (BAP1) and its target gene E2F Transcription Factor 1 (E2F1) expression. High ASXL1 expression was associated with high mortality {10/18 (56%) vs. 1/17; (6%) P < 0 .002}. Low ASXL1 expressers showed better OS {740 days vs. 579 days; log-rank P= < 0.023; HR 7.54 (0.98-54.1)}. The association between high ASXL1 expression and epigenetic modifiers is interesting but unexplained and require further investigation. High ASXL1 expression is associated with BAP1 and its target genes. Patients with high ASXL1 expression showed poor OS without any association with a conventional molecular prognostic marker.
Collapse
Affiliation(s)
- Ghaleb Elyamany
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ariz Akhter
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Hamza Kamran
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Hassan Rizwan
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| | - Nawaf Alkhayat
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar Al Sharif
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Yasser Elborai
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohammad Al Shahrani
- Division of Pediatric Hematology/Oncology, Department of Pediatric, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary/Alberta Precision Laboratories (APL), Alberta, Canada
| |
Collapse
|
20
|
Yamamoto K, Goyama S, Asada S, Fujino T, Yonezawa T, Sato N, Takeda R, Tsuchiya A, Fukuyama T, Tanaka Y, Yokoyama A, Toya H, Kon A, Nannya Y, Onoguchi-Mizutani R, Nakagawa S, Hirose T, Ogawa S, Akimitsu N, Kitamura T. A histone modifier, ASXL1, interacts with NONO and is involved in paraspeckle formation in hematopoietic cells. Cell Rep 2021; 36:109576. [PMID: 34433054 DOI: 10.1016/j.celrep.2021.109576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/03/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.
Collapse
Affiliation(s)
- Keita Yamamoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Yokoyama
- National Cancer Center Tsuruoka Metabolomics Laboratory, Yamagata, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Tamburri S, Conway E, Pasini D. Polycomb-dependent histone H2A ubiquitination links developmental disorders with cancer. Trends Genet 2021; 38:333-352. [PMID: 34426021 DOI: 10.1016/j.tig.2021.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Cell identity is tightly controlled by specific transcriptional programs which require post-translational modifications of histones. These histone modifications allow the establishment and maintenance of active and repressed chromatin domains. Histone H2A lysine 119 ubiquitination (H2AK119ub1) has an essential role in building repressive chromatin domains during development. It is regulated by the counteracting activities of the Polycomb repressive complex 1 (PRC1) and the Polycomb repressive-deubiquitinase (PR-DUB) complexes, two multi-subunit ensembles that write and erase this modification, respectively. We have catalogued the recurrent genetic alterations in subunits of the PRC1 and PR-DUB complexes in both neurodevelopmental disorders and cancer. These genetic lesions are often shared across disorders, and we highlight common mechanisms of H2AK119ub1 dysregulation and how they affect development in multiple disease contexts.
Collapse
Affiliation(s)
- Simone Tamburri
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| | - Eric Conway
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
22
|
Bai J, Chen Z, Chen C, Zhang M, Zhang Y, Song J, Yuan J, Jiang X, Xing W, Yang J, Bai J, Zhou Y. Reducing hyperactivated BAP1 attenuates mutant ASXL1-driven myeloid malignancies in human haematopoietic cells. Cancer Lett 2021; 519:78-90. [PMID: 34186160 DOI: 10.1016/j.canlet.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Additional sex combs-like 1 (ASXL1) is frequently mutated in a variety of myeloid malignancies, resulting in expression of a C-terminal-truncated ASXL1 protein that confers gain of function on the ASXL1-BAP1 deubiquitinase (DUB) complex. Several studies have reported that hyperactivity of BRCA-1-associated protein 1 (BAP1) in deubiquitinating mono-ubiquitinated histone H2AK119 is one of the critical molecular mechanisms in ASXL1 mutation-driven myeloid malignancies in mice. In this study, we found that human haematopoietic stem and progenitor cells (HSPCs) overexpressing truncated ASXL1 (ASXL1Y591X) developed an MDS-like phenotype similar to that induced by overexpression of BAP1. We then used shRNAs targeting BAP1 in ASXL1Y591X-overexpressing HSPCs and primary leukaemia cells with ASXL1 mutation, demonstrating that reduced BAP1 expression can partially rescue the pathological consequences. RNA sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses revealed that reduced BAP1 expression suppressed upregulation of the transcription factors AP-1 and EGR1/2, as well as myeloid dysplasia-associated genes, by retarding H2AK119Ub removal caused by ASXL1 mutation. This study indicates that targeting the hyperactive ASXL1-BAP1 DUB complex can attenuate mutant ASXL1-driven myeloid malignancies in human.
Collapse
Affiliation(s)
- Jiaojiao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Mingying Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuhui Zhang
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jiajia Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiao Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Yang
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
23
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
24
|
D'Altri T, Wilhelmson AS, Schuster MB, Wenzel A, Kalvisa A, Pundhir S, Meldgaard Hansen A, Porse BT. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica 2021; 106:1000-1007. [PMID: 32381577 PMCID: PMC8017816 DOI: 10.3324/haematol.2019.235150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knockin mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, ASXL1 p.G643WfsX12. Mutant mice neither displayed any major hematopoietic defects nor developed any apparent hematological disease. In AML patients, ASXL1 mutations co-occur with mutations in CEBPA and we therefore generated compound Cebpa and Asxl1 mutated mice. Using a transplantation model, we found that the mutated Asxl1 allele significantly accelerated disease development in a CEBPA mutant context. Importantly, we demonstrated that, similar to the human setting, Asxl1 mutated mice responded poorly to chemotherapy. This model therefore constitutes an excellent experimental system for further studies into the clinically important question of chemotherapy resistance mediated by mutant ASXL1.
Collapse
Affiliation(s)
- Teresa D'Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Mikkel B Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S, Yamasaki S, Matsumoto A, Yamaguchi K, Isobe Y, Tsuchiya A, Shikata S, Sato N, Morinaga H, Fukuyama T, Tanaka Y, Fukushima T, Takeda R, Yamamoto K, Honda H, Nishimura EK, Furukawa Y, Shibata T, Abdel-Wahab O, Suematsu M, Kitamura T. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun 2021; 12:1826. [PMID: 33758188 PMCID: PMC7988019 DOI: 10.1038/s41467-021-22053-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.
Collapse
Affiliation(s)
- Takeshi Fujino
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Susumu Goyama
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo Japan
| | - Daichi Inoue
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan−Kettering Cancer Center and Weill Cornell Medical College, New York, USA ,grid.417982.10000 0004 0623 246XDepartment of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe City, Hyogo Japan
| | - Shuhei Asada
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.410818.40000 0001 0720 6587Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo Japan
| | - Satoshi Yamasaki
- grid.26999.3d0000 0001 2151 536XLaboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Akiko Matsumoto
- grid.26999.3d0000 0001 2151 536XLaboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Kiyoshi Yamaguchi
- grid.26999.3d0000 0001 2151 536XDivision of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Yumiko Isobe
- grid.26999.3d0000 0001 2151 536XDivision of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Akiho Tsuchiya
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Shiori Shikata
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Naru Sato
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Hironobu Morinaga
- grid.265073.50000 0001 1014 9130Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Tomofusa Fukuyama
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Yosuke Tanaka
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Tsuyoshi Fukushima
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Reina Takeda
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Keita Yamamoto
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Hiroaki Honda
- grid.410818.40000 0001 0720 6587Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo Japan
| | - Emi K. Nishimura
- grid.265073.50000 0001 1014 9130Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Yoichi Furukawa
- grid.26999.3d0000 0001 2151 536XDivision of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Tatsuhiro Shibata
- grid.26999.3d0000 0001 2151 536XLaboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Omar Abdel-Wahab
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan−Kettering Cancer Center and Weill Cornell Medical College, New York, USA
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo Japan
| | - Toshio Kitamura
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| |
Collapse
|
26
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|
27
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
28
|
Kjær L. Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082100. [PMID: 32731609 PMCID: PMC7464548 DOI: 10.3390/cancers12082100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, DK-4000 Roskilde, Denmark
| |
Collapse
|
29
|
Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, Song L, Ding C, Tang YJ, Yang Z, Yang C, Wang P, Guan KL, Xiong Y, Ye D. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell 2020; 12:557-577. [PMID: 32683582 PMCID: PMC8225741 DOI: 10.1007/s13238-020-00754-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
Additional sex combs-like 1 (ASXL1) interacts with BRCA1-associated protein 1 (BAP1) deubiquitinase to oppose the polycomb repressive complex 1 (PRC1)-mediated histone H2A ubiquitylation. Germline BAP1 mutations are found in a spectrum of human malignancies, while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis. Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region, resulting in the production of C-terminally truncated mutant ASXL1 proteins. How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogenesis are unclear. Here, we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes. We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells, and lose the ability to interact with FOXK1/K2. Specific deletion of the mutant allele eliminates the expression of C-terminally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1, thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes, particularly those involved in glucose metabolism, oxygen sensing, and JAK-STAT3 signaling pathways. In addition to FOXK1/K2, we also identify other DNA-binding transcription regulators including transcription factors (TFs) which interact with wild-type ASXL1, but not C-terminally truncated mutant. Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.
Collapse
Affiliation(s)
- Yu-Kun Xia
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Yi-Rong Zeng
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Meng-Li Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Xi He
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Yi-Ping Sun
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Jin-Ye Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Cheng Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu-Jie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhen Yang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pu Wang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dan Ye
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China. .,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China. .,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034876. [PMID: 31548225 DOI: 10.1101/cshperspect.a034876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated JAK-STAT signaling is central to the pathogenesis of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and occurs as a result of MPN phenotypic driver mutations in JAK2, CALR, or MPL The spectrum of concomitant somatic mutations in other genes has now largely been defined in MPNs. With the integration of targeted next-generation sequencing (NGS) panels into clinical practice, the clinical significance of concomitant mutations in MPNs has become clearer. In this review, we describe the consequences of concomitant mutations in the most frequently mutated classes of genes in MPNs: (1) DNA methylation pathways, (2) chromatin modification, (3) RNA splicing, (4) signaling pathways, (5) transcription factors, and (6) DNA damage response/stress signaling. The increased use of molecular genetics for early risk stratification of patients brings the possibility of earlier intervention to prevent disease progression in MPNs. However, additional studies are required to decipher underlying molecular mechanisms and effectively target them.
Collapse
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Zhang P, Xu M, Yang FC. The Role of ASXL1/2 and Their Associated Proteins in Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Fujino T, Kitamura T. ASXL1 mutation in clonal hematopoiesis. Exp Hematol 2020; 83:74-84. [PMID: 31945396 DOI: 10.1016/j.exphem.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in DNA sequencing technologies have enhanced our knowledge about several diseases. Coupled with easy accessibility to blood samples, hematology plays a leading role in understanding the process of carcinogenesis. Clonal hematopoiesis (CH) with somatic mutations is observed in at least 10% of people over 65 years of age, without apparent hematologic disorders. CH is associated with increased risk of hematologic malignancies, which is indicative of a pre-malignant condition. Therefore, a better understanding of CH will help elucidate the mechanism of multi-step tumorigenesis in the hematopoietic system. Somatic mutations of ASXL1 are frequently detected in CH and myeloid malignancies. Although ASXL1 does not have any catalytic activity, it is involved in multiple histone modifications including H3K4me3, H3K27me3, and H2AK119Ub, suggesting its function as a scaffolding protein. Most ASXL1 mutations detected in CH and myeloid malignancies are frameshift or nonsense mutations of the last exon, generating a C-terminally truncated protein. Deletion of Asxl1 or expression of mutant ASXL1 in mice alters histone modifications and facilitates aberrant gene expression, resulting in myeloid transformation. On the contrary, these mice exhibit impaired functioning of hematopoietic stem cells (HSCs), suggesting the negative effects of ASXL1 mutations on stem cell function. Thus, how ASXL1 mutations induce a clonal advantage of hematopoietic cells and subsequent CH development has not been elucidated. Here, we have reviewed the current literature that enhances our understanding of ASXL1, including its mutational landscape, function, and involvement of its mutation in pathogenesis of CH and myeloid malignancies. Finally, we discuss the potential causes of CH harboring ASXL1 mutations with our latest knowledge.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 2019; 76:2511-2523. [PMID: 30927018 PMCID: PMC11105736 DOI: 10.1007/s00018-019-03084-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
34
|
Gjini E, Jing CB, Nguyen AT, Reyon D, Gans E, Kesarsing M, Peterson J, Pozdnyakova O, Rodig SJ, Mansour MR, Joung K, Look AT. Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish. Dis Model Mech 2019; 12:dmm035790. [PMID: 31064769 PMCID: PMC6550042 DOI: 10.1242/dmm.035790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
Somatic loss-of-function mutations of the additional sex combs-like transcriptional regulator 1 (ASXL1) gene are common genetic abnormalities in human myeloid malignancies and induce clonal expansion of mutated hematopoietic stem cells (HSCs). To understand how ASXL1 disruption leads to myeloid cell transformation, we generated asxl1 haploinsufficient and null zebrafish lines using genome-editing technology. Here, we show that homozygous loss of asxl1 leads to apoptosis of newly formed HSCs. Apoptosis occurred via the mitochondrial apoptotic pathway mediated by upregulation of bim and bid Half of the asxl1+/- zebrafish had myeloproliferative neoplasms (MPNs) by 5 months of age. Heterozygous loss of asxl1 combined with heterozygous loss of tet2 led to a more penetrant MPN phenotype, while heterozygous loss of asxl1 combined with complete loss of tet2 led to acute myeloid leukemia (AML). These findings support the use of asxl1+/- zebrafish as a strategy to identify small-molecule drugs to suppress the growth of asxl1 mutant but not wild-type HSCs in individuals with somatically acquired inactivating mutations of ASXL1.
Collapse
Affiliation(s)
- Evisa Gjini
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Chang-Bin Jing
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Ashley T Nguyen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emma Gans
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Michiel Kesarsing
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Joshua Peterson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6AG, United Kingdom
| | - Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| |
Collapse
|
35
|
Matheus F, Rusha E, Rehimi R, Molitor L, Pertek A, Modic M, Feederle R, Flatley A, Kremmer E, Geerlof A, Rishko V, Rada-Iglesias A, Drukker M. Pathological ASXL1 Mutations and Protein Variants Impair Neural Crest Development. Stem Cell Reports 2019; 12:861-868. [PMID: 31006630 PMCID: PMC6524927 DOI: 10.1016/j.stemcr.2019.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
The neural crest (NC) gives rise to a multitude of fetal tissues, and its misregulation is implicated in congenital malformations. Here, we investigated molecular mechanisms pertaining to NC-related symptoms in Bohring-Opitz syndrome (BOS), a developmental disorder linked to mutations in the Polycomb group factor Additional sex combs-like 1 (ASXL1). Genetically edited human pluripotent stem cell lines that were differentiated to NC progenitors and then xenotransplanted into chicken embryos demonstrated an impairment of NC delamination and emigration. Molecular analysis showed that ASXL1 mutations correlated with reduced activation of the transcription factor ZIC1 and the NC gene regulatory network. These findings were supported by differentiation experiments using BOS patient-derived induced pluripotent stem cell lines. Expression of truncated ASXL1 isoforms (amino acids 1-900) recapitulated the NC phenotypes in vitro and in ovo, raising the possibility that truncated ASXL1 variants contribute to BOS pathology. Collectively, we expand the understanding of truncated ASXL1 in BOS and in the human NC.
Collapse
Affiliation(s)
- Friederike Matheus
- Institute for Stem Cell Research, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, iPSC Core Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), 50931 Köln, Germany
| | - Lena Molitor
- Institute for Stem Cell Research, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Anna Pertek
- Institute for Stem Cell Research, iPSC Core Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Miha Modic
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Protein Expression and Purification Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Valentyna Rishko
- Institute for Stem Cell Research, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | | | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany.
| |
Collapse
|
36
|
Abstract
A number of recent epidemiological studies have associated the clonal expansion of hematopoietic cells, a process referred to as clonal hematopoiesis, with increased mortality. Clonal hematopoiesis increases the risk of hematological cancer, but this overall risk cannot account for the increase in mortality in the general population. Surprisingly, these mutations have also been associated with higher rates of cardiovascular disease, suggesting a previously unrecognized link between somatic mutations in hematopoietic cells and chronic disease. Here, we review recent epidemiological and experimental studies on clonal hematopoiesis that relate to cardiovascular disease.
Collapse
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| |
Collapse
|
37
|
Asada S, Kitamura T. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms. Int J Hematol 2018; 110:179-186. [PMID: 30515738 DOI: 10.1007/s12185-018-2563-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Abstract
An epigenetic modulator Additional sex combs-like 1 (ASXL1) is recurrently mutated in myeloid neoplasms such as myelodysplastic syndromes (MDS), acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). ASXL1 mutations are also frequently detected in clonal hematopoiesis with indeterminate potential (CHIP), which is the clonal expansion of premalignant hematopoietic cells without any evidence of hematological malignancies. Thus, understanding the roles of ASXL1 in hematopoiesis and myeloid neoplasms is a clinically crucial issue. ASXL1 mutations in hematological neoplasms are typically frameshift or nonsense mutations and occur near the 5' end of the last exon, thereby the transcripts would escape from nonsense-mediated decay, Indeed, we identified the C-terminally truncated mutant protein of ASXL1 in several cell lines derived from patients with myeloid leukemia. In mouse models, expression of the mutant ASXL1 results in impaired hematopoiesis and promotes development of myeloid neoplasms. In addition, recent findings from biochemical analysis have demonstrated that the mutant ASXL1 protein gains new functions including enhancing catalytic activity of BRCA1-associated protein 1 (BAP1), resulting in reduction of H2AK119ub and aberrant gene expression essential for myeloid transformation. In this review, we will focus on the pivotal roles of the mutant ASXL1 on histone modifications and myeloid transformation.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
38
|
Inoue D, Fujino T, Kitamura T. ASXL1 as a critical regulator of epigenetic marks and therapeutic potential of mutated cells. Oncotarget 2018; 9:35203-35204. [PMID: 30443287 PMCID: PMC6219660 DOI: 10.18632/oncotarget.26230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Daichi Inoue
- Daichi Inoue: Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman, New York, NY, USA
| | - Takeshi Fujino
- Daichi Inoue: Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman, New York, NY, USA
| | - Toshio Kitamura
- Daichi Inoue: Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman, New York, NY, USA
| |
Collapse
|
39
|
Montes-Moreno S, Routbort MJ, Lohman EJ, Barkoh BA, Kanagal-Shamanna R, Bueso-Ramos CE, Singh RR, Medeiros LJ, Luthra R, Patel KP. Clinical molecular testing for ASXL1 c.1934dupG p.Gly646fs mutation in hematologic neoplasms in the NGS era. PLoS One 2018; 13:e0204218. [PMID: 30222780 PMCID: PMC6141087 DOI: 10.1371/journal.pone.0204218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2018] [Indexed: 12/22/2022] Open
Abstract
ASXL1 (additional sex combs like 1) is a gene that is mutated in a number of hematological neoplasms. The most common genetic alteration is c.1934dupG p.Gly646fs. Previous publications have shown that ASXL1 mutations have a negative prognostic impact in patients with MDS and AML, however, controversy exists regarding the molecular testing of ASXL1 c.1934dupG as polymerase splippage over the adjacent homopolymer could lead to a false-positive result. Here, we report the first study to systematically test different targeted next generation sequencing (NGS) approaches for this mutation in patients with hematologic neoplasms. In addition, we investigated the impact of proofreading capabilities of different DNA polymerases on ASXL1 c.1934dupG somatic mutation using conventional Sanger sequencing, another common method for ASXL1 genotyping. Our results confirm that ASXL1 c.1934dupG can be detected as a technical artifact, which can be overcome by the use of appropriate enzymes and library preparation methods. A systematic study of serial samples from 30 patients show that ASXL1 c.1934dupG is a somatic mutation in haematological neoplasms including MDS, AML, MPN and MDS/MPN and often is associated with somatic mutations of TET2, EZH2, IDH2, RUNX1, NRAS and DNMT3A. The pattern of clonal evolution suggests that this ASXL1 mutation might be an early mutational event that occurs in the principal clonal population and can serve as a clonal marker for persistent/relapsing disease.
Collapse
Affiliation(s)
- Santiago Montes-Moreno
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Pathology Department/Translational Hematopathology Lab, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | - Mark J. Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Elijah J. Lohman
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bedia A. Barkoh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Rajesh R. Singh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Raja Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous disease that has a poor prognosis. Recent advances in genomics and molecular biology have led to a greatly improved understanding of the disease. Until 2017, there had been no new drugs approved for AML in decades. Here, we review novel drug targets in AML with a focus on epigenetic-targeted therapies in pre-clinical and clinical development as well as the recent new drug approvals.
Collapse
Affiliation(s)
- Justin Watts
- Sylvester Comprehensive Cancer Center and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center and Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
41
|
Affiliation(s)
- Stefan Karlsson
- From the Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun 2018; 9:2733. [PMID: 30013160 PMCID: PMC6048047 DOI: 10.1038/s41467-018-05085-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8.
Collapse
|
43
|
Nagase R, Inoue D, Pastore A, Fujino T, Hou HA, Yamasaki N, Goyama S, Saika M, Kanai A, Sera Y, Horikawa S, Ota Y, Asada S, Hayashi Y, Kawabata KC, Takeda R, Tien HF, Honda H, Abdel-Wahab O, Kitamura T. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med 2018; 215:1729-1747. [PMID: 29643185 PMCID: PMC5987913 DOI: 10.1084/jem.20171151] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/24/2017] [Accepted: 03/01/2018] [Indexed: 01/11/2023] Open
Abstract
Nagase and Inoue et al. generated a novel Asxl1 mutant mouse model to mimic clonal hematopoiesis and myelodysplastic syndromes caused by ASXL1 mutations and elucidated the effects of mutant versus wild-type ASXL1 on hematopoiesis, gene expression, and chromatin state. Additional sex combs like 1 (ASXL1) is frequently mutated in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP). Although loss of ASXL1 promotes hematopoietic transformation, there is growing evidence that ASXL1 mutations might confer an alteration of function. In this study, we identify that physiological expression of a C-terminal truncated Asxl1 mutant in vivo using conditional knock-in (KI) results in myeloid skewing, age-dependent anemia, thrombocytosis, and morphological dysplasia. Although expression of mutant Asxl1 altered the functions of hematopoietic stem cells (HSCs), it maintained their survival in competitive transplantation assays and increased susceptibility to leukemic transformation by co-occurring RUNX1 mutation or viral insertional mutagenesis. KI mice displayed substantial reductions in H3K4me3 and H2AK119Ub without significant reductions in H3K27me3, distinct from the effects of Asxl1 loss. Chromatin immunoprecipitation followed by next-generation sequencing analysis demonstrated opposing effects of wild-type and mutant Asxl1 on H3K4me3. These findings reveal that ASXL1 mutations confer HSCs with an altered epigenome and increase susceptibility for leukemic transformation, presenting a novel model for CHIP.
Collapse
Affiliation(s)
- Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan .,Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Norimasa Yamasaki
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Saika
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Sera
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito Cojin Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia 2018; 32:1834-1837. [PMID: 29743720 DOI: 10.1038/s41375-018-0126-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
|
45
|
Wu ZJ, Zhao X, Banaszak LG, Gutierrez-Rodrigues F, Keyvanfar K, Gao SG, Quinones Raffo D, Kajigaya S, Young NS. CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation. Int J Oncol 2018. [PMID: 29532865 PMCID: PMC5843401 DOI: 10.3892/ijo.2018.4290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Additional sex combs-like 1 (ASXL1) is a well‑known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells. Comparable cell growth and cell cycle progression were observed between wild-type (WT) and ASXL1-mutated U937 cells. Drug-induced cytotoxicity, as measured by growth inhibition and apoptosis in the presence of the cell-cycle active agent 5-fluorouracil, was variable among the mutated clones but was not significantly different from WT cells. In addition, ASXL1-mutated cells exhibited defects in monocyte/macrophage differentiation. Transcriptome analysis revealed that ASXL1 mutations altered differentiation of U937 cells by disturbing genes involved in myeloid differentiation, including cytochrome B-245 β chain and C-type lectin domain family 5, member A. Dysregulation of numerous gene sets associated with cell death and survival were also observed in ASXL1-mutated cells. These data provide evidence regarding the underlying molecular mechanisms induced by mutated ASXL1 in leukemogenesis.
Collapse
Affiliation(s)
- Zhi-Jie Wu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Xin Zhao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Lauren G Banaszak
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Fernanda Gutierrez-Rodrigues
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Shou-Guo Gao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| |
Collapse
|
46
|
Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov 2018; 4:4. [PMID: 29423272 PMCID: PMC5802628 DOI: 10.1038/s41421-017-0004-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.
Collapse
|
47
|
Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J, Li Z, Al-Ali H, Li L, Chen Z, Field MG, Zhang P, Chen S, Yamamoto S, Li Z, Zhou Y, Nimer SD, Harbour JW, Wahlestedt C, Xu M, Yang FC. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 2018; 131:328-341. [PMID: 29113963 PMCID: PMC5774208 DOI: 10.1182/blood-2017-06-789669] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/28/2017] [Indexed: 11/20/2022] Open
Abstract
Additional Sex Combs-Like 1 (ASXL1) is mutated at a high frequency in all forms of myeloid malignancies associated with poor prognosis. We generated a Vav1 promoter-driven Flag-Asxl1Y588X transgenic mouse model, Asxl1Y588X Tg, to express a truncated FLAG-ASXL1aa1-587 protein in the hematopoietic system. The Asxl1Y588X Tg mice had an enlarged hematopoietic stem cell (HSC) pool, shortened survival, and predisposition to a spectrum of myeloid malignancies, thereby recapitulating the characteristics of myeloid malignancy patients with ASXL1 mutations. ATAC- and RNA-sequencing analyses revealed that the ASXL1aa1-587 truncating protein expression results in more open chromatin in cKit+ cells compared with wild-type cells, accompanied by dysregulated expression of genes critical for HSC self-renewal and differentiation. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation experiments showed that ASXL1aa1-587 acquired an interaction with BRD4. An epigenetic drug screening demonstrated a hypersensitivity of Asxl1Y588X Tg bone marrow cells to BET bromodomain inhibitors. This study demonstrates that ASXL1aa1-587 plays a gain-of-function role in promoting myeloid malignancies. Our model provides a powerful platform to test therapeutic approaches of targeting the ASXL1 truncation mutations in myeloid malignancies.
Collapse
Affiliation(s)
- Hui Yang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | | | - Ying Guo
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Ines Lohse
- Sylvester Comprehensive Cancer Center
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences
| | | | - Jianping Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Zhaomin Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Hassan Al-Ali
- Sylvester Comprehensive Cancer Center
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Peggy and Harold Katz Family Drug Discovery Center, and
| | - Lingxiao Li
- Sylvester Comprehensive Cancer Center
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL; and
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Matthew G Field
- Sylvester Comprehensive Cancer Center
- Bascom Palmer Eye Institute
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Shi Chen
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Shohei Yamamoto
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Zhuo Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL; and
| | - J William Harbour
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
- Bascom Palmer Eye Institute
| | - Claes Wahlestedt
- Sylvester Comprehensive Cancer Center
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
48
|
|
49
|
Dinan AM, Atkins JF, Firth AE. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product? Biol Direct 2017; 12:24. [PMID: 29037253 PMCID: PMC5644247 DOI: 10.1186/s13062-017-0195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. RESULTS Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. CONCLUSIONS Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF. REVIEWERS This article was reviewed by Laurence Hurst and Eugene Koonin.
Collapse
Affiliation(s)
- Adam M Dinan
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, T12 YT57, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew E Firth
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
50
|
Hsu YC, Chiu YC, Lin CC, Kuo YY, Hou HA, Tzeng YS, Kao CJ, Chuang PH, Tseng MH, Hsiao TH, Chou WC, Tien HF. The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J Hematol Oncol 2017; 10:139. [PMID: 28697759 PMCID: PMC5504705 DOI: 10.1186/s13045-017-0508-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Background Additional sex combs-like 1 (ASXL1) is frequently mutated in myeloid malignancies. Recent studies showed that hematopoietic-specific deletion of Asxl1 or overexpression of mutant ASXL1 resulted in myelodysplasia-like disease in mice. However, actual effects of a “physiological” dose of mutant ASXL1 remain unexplored. Methods We established a knock-in mouse model bearing the most frequent Asxl1 mutation and studied its pathophysiological effects on mouse hematopoietic system. Results Heterozygotes (Asxl1tm/+) marrow cells had higher in vitro proliferation capacities as shown by more colonies in cobblestone-area forming assays and by serial re-plating assays. On the other hand, donor hematopoietic cells from Asxl1tm/+ mice declined faster in recipients during transplantation assays, suggesting compromised long-term in vivo repopulation abilities. There were no obvious blood diseases in mutant mice throughout their life-span, indicating Asxl1 mutation alone was not sufficient for leukemogenesis. However, this mutation facilitated engraftment of bone marrow cell overexpressing MN1. Analyses of global gene expression profiles of ASXL1-mutated versus wild-type human leukemia cells as well as heterozygote versus wild-type mouse marrow precursor cells, with or without MN1 overexpression, highlighted the association of in vivo Asxl1 mutation to the expression of hypoxia, multipotent progenitors, hematopoietic stem cells, KRAS, and MEK gene sets. ChIP-Seq analysis revealed global patterns of Asxl1 mutation-modulated H3K27 tri-methylation in hematopoietic precursors. Conclusions We proposed the first Asxl1 mutation knock-in mouse model and showed mutated Asxl1 lowered the threshold of MN1-driven engraftment and exhibited distinct biological functions on physiological and malignant hematopoiesis, although it was insufficient to lead to blood malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0508-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueh-Chwen Hsu
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chiao Chiu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Chin Lin
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Yuan-Yeh Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Yi-Shiuan Tzeng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Po-Han Chuang
- Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chien Chou
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan. .,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan.
| |
Collapse
|