1
|
Hissen KL, He W, Wu G, Criscitiello MF. Dietary L-glutamate modulates intestinal mucosal immunity of juvenile hybrid striped bass ( Morone saxatilis ♀ × Morone chrysops ♂). Front Immunol 2025; 16:1575644. [PMID: 40276506 PMCID: PMC12018413 DOI: 10.3389/fimmu.2025.1575644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction L-Glutamate is a conditionally essential amino acid, meaning it can become essential under specific conditions, like stress or disease. It is an abundant intracellular amino acid crucial in immune responses. Supplementation of feed with key amino acids, such as glutamate, can optimize growth and have other health benefits for production animals. Most research on dietary amino acid supplementation has focused on mammalian models, thus this research turned to hybrid striped bass, a teleost fish of growing importance to the aquaculture industry. The study investigated the effects of dietary supplementation with 0% or 5% glutamate in hybrid striped bass on intestinal mucosal immunity. Methods The basal purified diet contained crystalline amino acids, including 3% L-glutamate. After an 8-week period of dietary supplementation with 5% glutamate followed by lipopolysaccharide stimulation, the intestinal mucosa was analyzed at the cellular and molecular levels to compare with the head kidney to assess potential changes in immune reactivity. Results One week after lipopolysaccharide stimulation, glutamate supplementation enhanced (P < 0.05) the whole-body growth of fish without lipopolysaccharide challenge, total respiratory burst (the sum of O2 - and H2O2 production) in head kidney leukocytes, the net production of H2O2 in intestinal mucosal leukocytes, and upregulation of expression of mRNAs for IL-1β, TNF-α, and IgT in the gut mucosa. Discussion Dietary supplementation with 5% L-glutamate may modulate intestinal mucosal immunity and improve growth in HSB to enhance disease resistance. Further research is needed to clarify the mechanism and cost-effective application.
Collapse
Affiliation(s)
- Karina L. Hissen
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Wenliang He
- Amino Acids Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Amino Acids Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
2
|
Rataj J, Gorecki L, Muthna D, Sorf A, Krystof V, Klener P, Ceckova M, Rezacova M, Korabecny J. Targeting FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia: Novel molecular approaches and therapeutic challenges. Biomed Pharmacother 2025; 182:117788. [PMID: 39733588 DOI: 10.1016/j.biopha.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous hematologic malignancy, has generally a poor prognosis despite the recent advancements in diagnostics and treatment. Genetic instability, particularly mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, is associated with severe outcomes. Approximately 30 % of AML patients harbor FLT3 mutations, which have been linked to higher relapse and reduced survival rates. Traditional AML treatments employ cytarabine and anthracyclines drugs. Furthermore, the development of FLT3 inhibitors has significantly improved therapy for FLT3-mutated AML patients. For example, the introduction of midostaurin, the first FLT3 inhibitor, improved patient outcomes. However, resistant AML cell clones continue to pose a challenge to the success of AML treatment. This review discusses FLT3 kinase, mutations, and role in AML pathogenesis. It explores the molecular mechanisms of FLT3 activation, signaling pathways, and the structure and function of the FLT3 receptor. Current and emerging therapeutic approaches are presented, while highlighting the latest FLT3 inhibitors in clinical use, and strategies to overcome drug resistance. Future directions, including personalized therapies and novel drug designs, are examined to provide updated insights into FLT3-targeted treatments. This comprehensive review aims to guide clinicians and researchers in the development of innovative therapies to improve AML patient outcomes.
Collapse
Affiliation(s)
- Jan Rataj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Ales Sorf
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc 779 00, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Albertov 5/128 00, Prague 128 00, Czech Republic; First Department of Medicine, Department of Hematology, Charles University General Hospital, Katerinska 1660/32, Prague 121 08, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic.
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic.
| |
Collapse
|
3
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
4
|
Khorashad JS, Rizzo S, Tonks A. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:5. [PMID: 38434766 PMCID: PMC10905166 DOI: 10.20517/cdr.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.
Collapse
Affiliation(s)
- Jamshid Sorouri Khorashad
- Department of Immunology and inflammation, Imperial College London, London, W12 0NN, UK
- Department of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5PT, UK
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Rizzo
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
5
|
Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div 2024; 19:1. [PMID: 38217019 PMCID: PMC10787507 DOI: 10.1186/s13008-024-00107-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Reactive oxygen species (ROS), such as superoxides (O2 •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.
Collapse
Affiliation(s)
- Min Wei
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Na Liu
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Anjum S, Srivastava S, Panigrahi L, Ansari UA, Trivedi AK, Ahmed S. TORC1 mediated regulation of mitochondrial integrity and calcium ion homeostasis by Wat1/mLst8 in S. pombe. Int J Biol Macromol 2023; 253:126907. [PMID: 37717872 DOI: 10.1016/j.ijbiomac.2023.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The mTOR complexes play a fundamental role in mitochondrial biogenesis and cellular homeostasis. Wat1, an ortholog of mammalian Lst8 is an important component of TOR complex and is essential for the regulation of downstream signaling. Earlier we reported the role of Wat1 in oxidative stress response. Here, we have shown that the abrogation of wat1 causes respiratory defects and mitochondrial depolarization that leads to a decrease in ATP production. The confocal and electron microscopy in wat1Δ cells revealed the fragmented mitochondrial morphology implying its role in mitochondrial fission. Furthermore, we also showed its role in autophagy and the maintenance of calcium ion homeostasis. Additionally, tor2-287 mutant cells also exhibit defects in mitochondrial integrity indicating the TORC1-dependent involvement of Wat1 in the maintenance of mitochondrial homeostasis. The interaction studies of Wat1 and Tor2 with Por1 and Mmm1 proteins revealed a plausible cross-talk between mitochondria and endoplasmic reticulum through the Mitochondria-associated membranes (MAM) and endoplasmic reticulum-mitochondria encounter structure (ERMES) complex, involving TORC1. Taken together, this study demonstrates the involvement of Wat1/mLst8 in harmonizing various mitochondrial functions, redox status, and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Simmi Anjum
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Uzair Ahmad Ansari
- System Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicological Research, Vishvigyan Bhawan, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Lee JS. To overcome the limitations of fixed life patterns, plants can generate meristems throughout life. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154097. [PMID: 38006623 DOI: 10.1016/j.jplph.2023.154097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 11/27/2023]
Abstract
The fixed life pattern of plants is the most threatening factor that hinders the survival and reproduction rate of plants. Maximization of reproduction is determined by the survival rate of the organism. If part of a shoot apical meristem or root apical meristem is cut and planted in soil with appropriate nutrients and survival conditions, a cloned plant known as an ramet, may be developed. Therefore, the ability of plants to constantly produce meristems is essential for survival. In addition, meristem stem cells have enabled plants to evolve a wide variety of asexual reproductive systems. When a tree is pruned, at least one or more new meristems are formed in the surrounding area, and those meristems develop into new branches. In other cases, stem cells normally derived from meristems alone exhibit the potential for asexual reproduction through their seed-like roles. Alternatively, some plants can form somatic cells, which are important in various types of asexual reproduction. There are 125 species of plants in the genus of Kalanchoe, which are succulent plants, and most of these species are well known to reproduce asexually through somatic cells. When we cut the stem of a plant, a callus is formed at the end of the cut side. Plant callus is mainly used to develop new plant varieties in tissue culture research. Alternatively, the plant callus is also used as a material for asexual reproduction. Callus can also form if the plant is infected with bacteria such as Agrobacterium tumefaciens. Differentiated cells of a plant can reproduce asexually by acquiring the ability to function as stems through transdifferentiation. These characteristics play important roles in adapting to environmental changes and extending the lifespan of woody plants.
Collapse
Affiliation(s)
- Joon Sang Lee
- Department of Biology Education, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
8
|
Reis J, Gorgulla C, Massari M, Marchese S, Valente S, Noce B, Basile L, Törner R, Cox H, Viennet T, Yang MH, Ronan MM, Rees MG, Roth JA, Capasso L, Nebbioso A, Altucci L, Mai A, Arthanari H, Mattevi A. Targeting ROS production through inhibition of NADPH oxidases. Nat Chem Biol 2023; 19:1540-1550. [PMID: 37884805 DOI: 10.1038/s41589-023-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.
Collapse
Affiliation(s)
- Joana Reis
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Marta Massari
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sara Marchese
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Basile
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huel Cox
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Moon Hee Yang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Zhang H, Sun C, Sun Q, Li Y, Zhou C, Sun C. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci 2023; 10:1275774. [PMID: 37818101 PMCID: PMC10561097 DOI: 10.3389/fmolb.2023.1275774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a 5-year survival rate of less than 30%. Continuous updating of diagnostic and therapeutic strategies has not been effective in improving the clinical benefit of AML. AML cells are prone to iron metabolism imbalance due to their unique pathological characteristics, and ferroptosis is a novel cell death mode that is dominated by three cellular biological processes: iron metabolism, oxidative stress and lipid metabolism. An in-depth exploration of the unique ferroptosis mechanism in AML can provide new insights for the diagnosis and treatment of this disease. This study summarizes recent studies on ferroptosis in AML cells and suggests that the metabolic characteristics, gene mutation patterns, and dependence on mitochondria of AML cells greatly increase their susceptibility to ferroptosis. In addition, this study suggests that AML cells can establish a variety of strategies to evade ferroptosis to maintain their survival during the process of occurrence and development, and summarizes the related drugs targeting ferroptosis pathway in AML treatment, which provides development directions for the subsequent mechanism research and clinical treatment of AML.
Collapse
Affiliation(s)
- Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
11
|
Azlan A, Khor KZ, Rajasegaran Y, Rosli AA, Said MSM, Yusoff NM, Moses EJ. RUNX1/ETO regulates reactive oxygen species (ROS) levels in t(8,21) acute myeloid leukaemia via FLT3 and RAC1. Med Oncol 2023; 40:208. [PMID: 37341821 DOI: 10.1007/s12032-023-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Reactive oxygen species (ROS) homeostasis is crucial for leukaemogenesisand deregulation would hamper leukaemic progression. Although the regulatory effects of RUNX1/ETO has been extensively studied, its underlying molecular mechanims in ROS production in t(8,21) AML is yet to be fully elucidated. Here, we report that RUNX1/ETO could directly control FLT3 by occupying several DNA elements on FLT3 locus. The possible hijacking mechanism by RUNX1/ETO over FLT3 mediated ROS modulation in AML t(8;21) was made apparent when suppression of RUNX1/ETO led to decrement in ROS levels and the direct oxidative marker FOXO3 but not in FLT3 and RAC1 suppressed t(8,21) AML cell line Furthermore, nuclear import of RUNX1/ETO was aberrated following RUNX1/ETO and RAC1 suppression suggesting association in ROS control. A different picture was depicted in non t(8;21) cells where suppression of RAC1 and FLT3 led to decreased levels of FOXO3a and ROS. Results alltogether indicate a possible dysregulation of ROS levels by RUNX1/ETO in t(8,21) AML.
Collapse
Affiliation(s)
- Adam Azlan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Kang Zi Khor
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Aliaa Arina Rosli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | | | - Narazah Mohd Yusoff
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.
| |
Collapse
|
12
|
Haage TR, Schraven B, Mougiakakos D, Fischer T. How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15112991. [PMID: 37296951 DOI: 10.3390/cancers15112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.
Collapse
Affiliation(s)
- Tobias R Haage
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
13
|
Germon ZP, Sillar JR, Mannan A, Duchatel RJ, Staudt D, Murray HC, Findlay IJ, Jackson ER, McEwen HP, Douglas AM, McLachlan T, Schjenken JE, Skerrett-Byrne DA, Huang H, Melo-Braga MN, Plank MW, Alvaro F, Chamberlain J, De Iuliis G, Aitken RJ, Nixon B, Wei AH, Enjeti AK, Huang Y, Lock RB, Larsen MR, Lee H, Vaghjiani V, Cain JE, de Bock CE, Verrills NM, Dun MD. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies. Sci Signal 2023; 16:eabp9586. [PMID: 36976863 DOI: 10.1126/scisignal.abp9586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.
Collapse
Affiliation(s)
- Zacary P Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan R Sillar
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Heather C Murray
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Holly P McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tabitha McLachlan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Honggang Huang
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marcella N Melo-Braga
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maximilian W Plank
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- GlaxoSmithKline, Abbotsford, Victoria, Australia
| | - Frank Alvaro
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Janis Chamberlain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Geoff De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anoop K Enjeti
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
- NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Heather Lee
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vijesh Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Nicole M Verrills
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
14
|
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Namdar A, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 2023; 21:57. [PMID: 36915102 PMCID: PMC10009952 DOI: 10.1186/s12964-023-01074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
|
16
|
Schwarz M, Rizzo S, Paz WE, Kresinsky A, Thévenin D, Müller JP. Disrupting PTPRJ transmembrane-mediated oligomerization counteracts oncogenic receptor tyrosine kinase FLT3 ITD. Front Oncol 2022; 12:1017947. [PMID: 36452504 PMCID: PMC9701752 DOI: 10.3389/fonc.2022.1017947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPRJ (also known as DEP-1) has been identified as a negative regulator of the receptor tyrosine kinase FLT3 signalling in vitro. The inactivation of the PTPRJ gene in mice expressing the constitutively active, oncogenic receptor tyrosine kinase FLT3 ITD aggravated known features of leukaemogenesis, revealing PTPRJ's antagonistic role. FLT3 ITD mutations resulting in constitutively kinase activity and cell transformation frequently occur in patients with acute myeloid leukaemia (AML). Thus, in situ activation of PTPRJ could be used to abrogate oncogenic FLT3 signalling. The activity of PTPRJ is suppressed by homodimerization, which is mediated by transmembrane domain (TMD) interactions. Specific Glycine-to-Leucine mutations in the TMD disrupt oligomerization and inhibit the Epidermal Growth Factor Receptor (EGFR) and EGFR-driven cancer cell phenotypes. To study the effects of PTPRJ TMD mutant proteins on FLT3 ITD activity in cell lines, endogenous PTPRJ was inactivated and replaced by stable expression of PTPRJ TMD mutants. Autophosphorylation of wild-type and ITD-mutated FLT3 was diminished in AML cell lines expressing the PTPRJ TMD mutants compared to wild-type-expressing cells. This was accompanied by reduced FLT3-mediated global protein tyrosine phosphorylation and downstream signalling. Further, PTPRJ TMD mutant proteins impaired the proliferation and in vitro transformation of leukemic cells. Although PTPRJ's TMD mutant proteins showed impaired self-association, the specific phosphatase activity of immunoprecipitated proteins remained unchanged. In conclusion, this study demonstrates that the destabilization of PTPRJ TMD-mediated self-association increases the activity of PTPRJ in situ and impairs FLT3 activity and FLT3-driven cell phenotypes of AML cells. Thus, disrupting the oligomerization of PTPRJ in situ could prove a valuable therapeutic strategy to restrict oncogenic FLT3 activity in leukemic cells.
Collapse
Affiliation(s)
- Marie Schwarz
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Sophie Rizzo
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | | | - Anne Kresinsky
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany,Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Jörg P. Müller
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany,*Correspondence: Jörg P. Müller,
| |
Collapse
|
17
|
Romo-González M, Ijurko C, Hernández-Hernández Á. Reactive Oxygen Species and Metabolism in Leukemia: A Dangerous Liaison. Front Immunol 2022; 13:889875. [PMID: 35757686 PMCID: PMC9218220 DOI: 10.3389/fimmu.2022.889875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS), previously considered toxic by-products of aerobic metabolism, are increasingly recognized as regulators of cellular signaling. Keeping ROS levels low is essential to safeguard the self-renewal capacity of hematopoietic stem cells (HSC). HSC reside in a hypoxic environment and have been shown to be highly dependent on the glycolytic pathway to meet their energy requirements. However, when the differentiation machinery is activated, there is an essential enhancement of ROS together with a metabolic shift toward oxidative metabolism. Initiating and sustaining leukemia depend on the activity of leukemic stem cells (LSC). LSC also show low ROS levels, but unlike HSC, LSC rely on oxygen to meet their metabolic energetic requirements through mitochondrial respiration. In contrast, leukemic blasts show high ROS levels and great metabolic plasticity, both of which seem to sustain their invasiveness. Oxidative stress and metabolism rewiring are recognized as hallmarks of cancer that are intimately intermingled. Here we present a detailed overview of these two features, sustained at different levels, that support a two-way relationship in leukemia. Modifying ROS levels and targeting metabolism are interesting therapeutic approaches. Therefore, we provide the most recent evidence on the modulation of oxidative stress and metabolism as a suitable anti-leukemic approach.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Dakik H, El Dor M, Bourgeais J, Kouzi F, Herault O, Gouilleux F, Zibara K, Mazurier F. Diphenyleneiodonium Triggers Cell Death of Acute Myeloid Leukemia Cells by Blocking the Mitochondrial Respiratory Chain, and Synergizes with Cytarabine. Cancers (Basel) 2022; 14:cancers14102485. [PMID: 35626090 PMCID: PMC9140039 DOI: 10.3390/cancers14102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an aggressive heterogeneous cancer of the blood, of which 70% of cases develop relapse. Relapse is mainly due to chemoresistant leukemic cells (LCs) that are characterized by high mitochondrial oxidative phosphorylation (OxPhos) status, i.e., cells that are dependent on the mitochondrial respiratory chain (MRC) function. The aim of our study was to determine whether diphenyleneiodonium (DPI)—known as a potent inhibitor of flavoproteins—could be used to target AML cells. Herein, we demonstrate that DPI disrupts the mitochondrial function of AML cell lines. Interestingly, we found that cells with high OxPhos are more sensitive to the apoptotic effects of DPI. Moreover, we showed that DPI sensitizes AML cell lines to cytarabine (Ara-C) treatment, suggesting that MRC inhibitors could be employed to target LCs that are resistant to this chemotherapeutic agent. Abstract Acute myeloid leukemia (AML) is characterized by the accumulation of undifferentiated blast cells in the bone marrow and blood. In most cases of AML, relapse frequently occurs due to resistance to chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly dependent on the intracellular levels of reactive oxygen species (ROS). Modulating ROS levels is therefore a valuable strategy to overcome the chemotherapy resistance of leukemic cells. In this study, we evaluated the efficiency of diphenyleneiodonium (DPI)—a well-known inhibitor of ROS production—in targeting AML cells. Results showed that although inhibiting cytoplasmic ROS production, DPI also triggered an increase in the mitochondrial ROS levels, caused by the disruption of the mitochondrial respiratory chain. We also demonstrated that DPI blocks mitochondrial oxidative phosphorylation (OxPhos) in a dose-dependent manner, and that AML cells with high OxPhos status are highly sensitive to treatment with DPI, which synergizes with the chemotherapeutic agent cytarabine (Ara-C). Thus, our results suggest that targeting mitochondrial function with DPI might be exploited to target AML cells with high OxPhos status.
Collapse
Affiliation(s)
- Hassan Dakik
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
| | - Maya El Dor
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
| | - Jérôme Bourgeais
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Department of Biological Hematology, Tours University Hospital, F-37000 Tours, France
| | - Farah Kouzi
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Biology Department, Faculty of Sciences, Lebanese University, Beirut 90656, Lebanon
| | - Olivier Herault
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Department of Biological Hematology, Tours University Hospital, F-37000 Tours, France
| | - Fabrice Gouilleux
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
| | - Kazem Zibara
- Biology Department, Faculty of Sciences, Lebanese University, Beirut 90656, Lebanon
- ER045, PRASE, Beirut 6573/14, Lebanon
- Correspondence: (K.Z.); (F.M.)
| | - Frédéric Mazurier
- EA7501 GICC/CNRS ERL7001 LNOx, University of Tours, F-37032 Tours, France; (H.D.); (M.E.D.); (J.B.); (F.K.); (O.H.); (F.G.)
- Correspondence: (K.Z.); (F.M.)
| |
Collapse
|
19
|
Targeting the NRF2/HO-1 Antioxidant Pathway in FLT3-ITD-Positive AML Enhances Therapy Efficacy. Antioxidants (Basel) 2022; 11:antiox11040717. [PMID: 35453402 PMCID: PMC9027903 DOI: 10.3390/antiox11040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is a molecularly heterogenous hematological malignancy, with one of the most common mutations being internal tandem duplication (ITD) of the juxtamembrane domain of the fms-like tyrosine kinase receptor-3 (FLT3). Despite the development of FLT3-directed tyrosine kinase inhibitors (TKI), relapse and resistance are problematic, requiring improved strategies. In both patient samples and cell lines, FLT3-ITD raises levels of reactive oxygen species (ROS) and elicits an antioxidant response which is linked to chemoresistance broadly in AML. NF-E2–related factor 2 (NRF2) is a transcription factor regulating the antioxidant response including heme oxygenase -1 (HO-1), a heat shock protein implicated in AML resistance. Here, we demonstrate that HO-1 is elevated in FLT3-ITD-bearing cells compared to FLT3-wild type (WT). Transient knockdown or inhibitor-based suppression of HO-1 enhances vulnerability to the TKI, quizartinib, in both TKI-resistant and sensitive primary AML and cell line models. NRF2 suppression (genetically or pharmacologically using brusatol) results in decreased HO-1, suggesting that TKI-resistance is dependent on an active NRF2-driven pathway. In AML-patient derived xenograft (PDX) models, brusatol, in combination with daunorubicin, reduces leukemia burden and prolongs survival. Cumulatively, these data encourage further development of brusatol and NRF2 inhibition as components of combination therapy for refractory AML.
Collapse
|
20
|
The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants (Basel) 2022; 11:antiox11040683. [PMID: 35453368 PMCID: PMC9030579 DOI: 10.3390/antiox11040683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023] Open
Abstract
The cytosolic branched-chain aminotransferase (BCAT1) has received attention for its role in myeloid leukaemia development, where studies indicate metabolic adaptations due to BCAT1 up-regulation. BCAT1, like the mitochondria isoform (BCAT2), shares a conserved CXXC motif ~10 Å from the active site. This CXXC motif has been shown to act as a ‘redox-switch’ in the enzymatic regulation of the BCAT proteins, however the response to reactive oxygen species (ROS) differs between BCAT isoforms. Studies indicate that the BCAT1 CXXC motif is several orders of magnitude less sensitive to the effects of ROS compared with BCAT2. Moreover, estimation of the reduction mid-point potential of BCAT1, indicates that BCAT1 is more reductive in nature and may possess antioxidant properties. Therefore, the aim of this study was to further characterise the BCAT1 CXXC motif and evaluate its role in acute myeloid leukaemia. Our biochemical analyses show that purified wild-type (WT) BCAT1 protein could metabolise H2O2 in vitro, whereas CXXC motif mutant or WT BCAT2 could not, demonstrating for the first time a novel antioxidant role for the BCAT1 CXXC motif. Transformed U937 AML cells over-expressing WT BCAT1, showed lower levels of intracellular ROS compared with cells over-expressing the CXXC motif mutant (CXXS) or Vector Controls, indicating that the BCAT1 CXXC motif may buffer intracellular ROS, impacting on cell proliferation. U937 AML cells over-expressing WT BCAT1 displayed less cellular differentiation, as observed by a reduction of the myeloid markers; CD11b, CD14, CD68, and CD36. This finding suggests a role for the BCAT1 CXXC motif in cell development, which is an important pathological feature of myeloid leukaemia, a disease characterised by a block in myeloid differentiation. Furthermore, WT BCAT1 cells were more resistant to apoptosis compared with CXXS BCAT1 cells, an important observation given the role of ROS in apoptotic signalling and myeloid leukaemia development. Since CD36 has been shown to be Nrf2 regulated, we investigated the expression of the Nrf2 regulated gene, TrxRD1. Our data show that the expression of TrxRD1 was downregulated in transformed U937 AML cells overexpressing WT BCAT1, which taken with the reduction in CD36 implicates less Nrf2 activation. Therefore, this finding may implicate the BCAT1 CXXC motif in wider cellular redox-mediated processes. Altogether, this study provides the first evidence to suggest that the BCAT1 CXXC motif may contribute to the buffering of ROS levels inside AML cells, which may impact ROS-mediated processes in the development of myeloid leukaemia.
Collapse
|
21
|
Zhao Y, Feng HM, Yan WJ, Qin Y. Identification of the Signature Genes and Network of Reactive Oxygen Species Related Genes and DNA Repair Genes in Lung Adenocarcinoma. Front Med (Lausanne) 2022; 9:833829. [PMID: 35308531 PMCID: PMC8929513 DOI: 10.3389/fmed.2022.833829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive Oxygen Species (ROS) are present in excess amounts in patients with tumors, and these ROS can kill and destroy tumor cells. Therefore, tumor cells upregulate ROS-related genes to protect them and reduce their destructing effects. Cancer cells already damaged by ROS can be repaired by expressing DNA repair genes consequently promoting their proliferation. The present study aimed to identify the signature genes of and regulating network of ROS-related genes and DNA repair genes in lung adenocarcinoma (LUAD) using transcriptomic data of public databases. The LUAD transcriptome data in the TCGA database and gene expressions from Gene Expression Omnibus (GEO) were analyzed and samples were clustered into 5 ROS-related categories and 6 DNA repair categories. Survival analysis revealed a significant difference in patient survival between the two classification methods. In addition, the samples corresponding to the two categories overlap, thus, the gene expression profile of the same sample with different categories and survival prognosis was further explored, and the connection between ROS-related and DNA repair genes was investigated. The interactive sample recombination classification was used, revealing that the patient's prognosis was worse when the ROS-related and DNA repair genes were expressed at the same time. The further research on the potential regulatory network of the two categories of genes and the correlation analysis revealed that ROS-related genes and DNA repair genes have a mutual regulatory relationship. The ROS-related genes namely NQO1, TXNRD1, and PRDX4 could establish links with other DNA repair genes through the DNA repair gene NEIL3, thereby balancing the level of ROS. Therefore, targeting ROS-related genes and DNA repair genes might be a promising strategy in the treatment of LUAD. Finally, a survival prognostic model of ROS-related genes and DNA repair genes was established (TERT, PRKDC, PTTG1, SMUG1, TXNRD1, CAT, H2AFX, and PFKP). The risk score obtained from our survival prognostic model could be used as an independent prognostic factor in LUAD patients.
Collapse
Affiliation(s)
- Ye Zhao
- First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Ming Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Jian Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Yu Qin
- First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Demircan MB, Mgbecheta PC, Kresinsky A, Schnoeder TM, Schröder K, Heidel FH, Böhmer FD. Combined Activity of the Redox-Modulating Compound Setanaxib (GKT137831) with Cytotoxic Agents in the Killing of Acute Myeloid Leukemia Cells. Antioxidants (Basel) 2022; 11:antiox11030513. [PMID: 35326163 PMCID: PMC8944474 DOI: 10.3390/antiox11030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.
Collapse
Affiliation(s)
- Muhammed Burak Demircan
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Peter C. Mgbecheta
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
| | - Anne Kresinsky
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
| | - Tina M. Schnoeder
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Innere Medizin C, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Florian H. Heidel
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
- Innere Medizin C, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Frank D. Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Correspondence:
| |
Collapse
|
23
|
The Glycolytic Gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nat Commun 2022; 13:1105. [PMID: 35232995 PMCID: PMC8888573 DOI: 10.1038/s41467-022-28737-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia remains difficult to treat due to strong genetic heterogeneity between and within individual patients. Here, we show that Pyruvate dehydrogenase kinase 1 (PDK1) acts as a targetable determinant of different metabolic states in acute myeloid leukemia (AML). PDK1low AMLs are OXPHOS-driven, are enriched for leukemic granulocyte-monocyte progenitor (L-GMP) signatures, and are associated with FLT3-ITD and NPM1cyt mutations. PDK1high AMLs however are OXPHOSlow, wild type for FLT3 and NPM1, and are enriched for stemness signatures. Metabolic states can even differ between genetically distinct subclones within individual patients. Loss of PDK1 activity releases glycolytic cells into an OXPHOS state associated with increased ROS levels resulting in enhanced apoptosis in leukemic but not in healthy stem/progenitor cells. This coincides with an enhanced dependency on glutamine uptake and reduced proliferation in vitro and in vivo in humanized xenograft mouse models. We show that human leukemias display distinct metabolic states and adaptation mechanisms that can serve as targets for treatment. Acute myeloid leukemia (AML) is genetically a very heterogeneous disease. Here, Erdem et al. uncover heterogeneity in the metabolic landscape of AML and identify Pyruvate dehydrogenase kinase 1 (PDK1) as a targetable determinant of different metabolic states in distinct subtypes of AML.
Collapse
|
24
|
Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021; 10:973. [PMID: 34204425 PMCID: PMC8234808 DOI: 10.3390/antiox10060973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
One of the major sources of reactive oxygen species (ROS) generated within stem cells is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (NOXs), which are critical determinants of the redox state beside antioxidant defense mechanisms. This balance is involved in another one that regulates stem cell fate: indeed, self-renewal, proliferation, and differentiation are decisive steps for stem cells during embryo development, adult tissue renovation, and cell therapy application. Ex vivo culture-expanded stem cells are being investigated for tissue repair and immune modulation, but events such as aging, senescence, and oxidative stress reduce their ex vivo proliferation, which is crucial for their clinical applications. Here, we review the role of NOX-derived ROS in stem cell biology and functions, focusing on positive and negative effects triggered by the activity of different NOX isoforms. We report recent findings on downstream molecular targets of NOX-ROS signaling that can modulate stem cell homeostasis and lineage commitment and discuss the implications in ex vivo expansion and in vivo engraftment, function, and longevity. This review highlights the role of NOX as a pivotal regulator of several stem cell populations, and we conclude that these aspects have important implications in the clinical utility of stem cells, but further studies on the effects of pharmacological modulation of NOX in human stem cells are imperative.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
25
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
26
|
Głowacki S, Synowiec E, Szwed M, Toma M, Skorski T, Śliwiński T. Relationship between Oxidative Stress and Imatinib Resistance in Model Chronic Myeloid Leukemia Cells. Biomolecules 2021; 11:biom11040610. [PMID: 33924068 PMCID: PMC8074285 DOI: 10.3390/biom11040610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/19/2023] Open
Abstract
Chronic myeloid leukemia (CML) develops due to the presence of the BCR-ABL1 protein, a target of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), used in a CML therapy. CML eradication is a challenge due to developing resistance to TKIs. BCR-ABL1 induces endogenous oxidative stress leading to genomic instability and development of TKI resistance. Model CML cells susceptible or resistant to IM, as well as wild-type, non-cancer cells without the BCR-ABL1 protein were treated with IM, hydrogen peroxide (H2O2) as a model trigger of external oxidative stress, or with IM+H2O2. Accumulation of reactive oxygen species (ROS), DNA damage, activity of selected antioxidant enzymes and glutathione (GSH), and mitochondrial potential (MMP) were assessed. We observed increase in ROS accumulation in BCR-ABL1 positive cells and distinct levels of ROS accumulation in IM-susceptible cells when compared to IM-resistant ones, as well as increased DNA damage caused by IM action in sensitive cells. Depletion of GSH levels and a decreased activity of glutathione peroxidase (GPx) in the presence of IM was higher in the cells susceptible to IM. IM-resistant cells showed an increase of catalase activity and a depletion of MMP. BCR-ABL1 kinase alters ROS metabolism, and IM resistance is accompanied by the changes in activity of GPx, catalase, and alterations in MMP.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/toxicity
- Catalase/metabolism
- Cell Line, Tumor
- DNA Damage
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Glutathione/metabolism
- Glutathione Peroxidase/metabolism
- Imatinib Mesylate/toxicity
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Membrane Potential, Mitochondrial
- Mice
- Oxidative Stress
Collapse
Affiliation(s)
- Sylwester Głowacki
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland;
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
- Correspondence:
| |
Collapse
|
27
|
Characterization of NADPH Oxidase Expression and Activity in Acute Myeloid Leukemia Cell Lines: A Correlation with the Differentiation Status. Antioxidants (Basel) 2021; 10:antiox10030498. [PMID: 33807114 PMCID: PMC8004739 DOI: 10.3390/antiox10030498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
In acute myeloid leukemia (AML), a low level of reactive oxygen species (ROS) is associated with leukemic stem cell (LSC) quiescence, whereas a high level promotes blast proliferation. ROS homeostasis relies on a tightly-regulated balance between the antioxidant and oxidant systems. Among the oxidants, NADPH oxidases (NOX) generate ROS as a physiological function. Although it has been reported in AML initiation and development, the contribution of NOX to the ROS production in AML remains to be clarified. The aim of this study was to investigate the NOX expression and function in AML, and to examine the role of NOX in blast proliferation and differentiation. First, we interrogated the NOX expression in primary cells from public datasets, and investigated their association with prognostic markers. Next, we explored the NOX expression and activity in AML cell lines, and studied the impact of NOX knockdown on cell proliferation and differentiation. We found that NOX2 is ubiquitously expressed in AML blasts, and particularly in cells from the myelomonocytic (M4) and monocytic (M5) stages; however, it is less expressed in LSCs and in relapsed AML. This is consistent with an increased expression throughout normal hematopoietic differentiation, and is reflected in AML cell lines. Nevertheless, no endogenous NOX activity could be detected in the absence of PMA stimulation. Furthermore, CYBB knockdown, although hampering induced NOX2 activity, did not affect the proliferation and differentiation of THP-1 and HL-60 cells. In summary, our data suggest that NOX2 is a marker of AML blast differentiation, while AML cell lines lack any NOX2 endogenous activity.
Collapse
|
28
|
Zhang S. The characteristics of circRNA as competing endogenous RNA in pathogenesis of acute myeloid leukemia. BMC Cancer 2021; 21:277. [PMID: 33722210 PMCID: PMC7962291 DOI: 10.1186/s12885-021-08029-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background As one of the novel molecules, circRNA has been identified closely involved in the pathogenesis of many diseases. However, the function of circRNA in acute myeloid leukemia (AML) still remains unknown. Methods In the current study, the RNA expression profiles were obtained from Gene Expression Omnibus (GEO) datasets. The differentially expressed RNAs were identified using R software and the competing endogenous RNA (ceRNA) network was constructed using Cytoscape. Functional and pathway enrichment analyses were performed to identify the candidate circRNA-mediated aberrant signaling pathways. The hub genes were identified by MCODE and CytoHubba plugins of Cytoscape, and then a subnetwork regulatory module was established. Results A total of 27 circRNA-miRNA pairs and 208 miRNA-mRNA pairs, including 12 circRNAs, 24 miRNAs and 112 mRNAs were included in the ceRNA network. Subsequently, a subnetwork, including 4 circRNAs, 5 miRNAs and 6 mRNAs, was established based on related circRNA-miRNA-mRNA regulatory modules. Conclusions In summary, this work analyzes the characteristics of circRNA as competing endogenous RNA in AML pathogenesis, which would provide hints for developing novel prognostic, diagnostic and therapeutic strategy for AML.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Medicine, Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
29
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
30
|
Shaaban Y, Aref S, Taalab M, Ayed M, Mabed M. Implications of Glutathione Peroxidase 3 Expression in a Cohort of Egyptian Patients with Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2020; 21:3567-3572. [PMID: 33369453 PMCID: PMC8046308 DOI: 10.31557/apjcp.2020.21.12.3567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The impact of low expression of Glutathione peroxidase 3 (GPX3) on the clinical course of acute myeloid leukemia (AML) is poorly investigated. Aims: To explore the status of GPX3 expression and analyze its clinical characteristics and prognosis in a cohort of Egyptian patients with AML. Methods: GPX3 mRNA level was assessed by RT-q PCR in 40 newly diagnosed AML patients and 10 healthy controls. Results: The gene expression level was significantly lower in AML patients than the control group (P < 0.001). A cut off value (0.1223) for the discrimination between AML and controls was obtained by ROC curve. According to this cutoff value; the patients were reassigned into 2 groups; 28 patients with lower GPX3 expression and 12 patients with high GPX3 expression. GPX3low expression was significantly associated with higher incidence of induction death (P= 0.037) and lower CR rate (P=0.048). Moreover, GPX3low expression was significantly associated with shorter cumulative 1-year overall survival (OS) (P = 0.001) and disease-free survival (DFS) (P=0.028). Conclusion: GPX3low expression status is considered a poor prognostic factor in AML predicting shorter OS and DFS. The study highlights the importance of targeting glutathione metabolism as a central component of the anti-leukemia therapy.
Collapse
Affiliation(s)
- Yasmine Shaaban
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Salah Aref
- The Hematology Unit, Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Mona Taalab
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Ayed
- The Hematology Unit, Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed Mabed
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
31
|
Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies. Leukemia 2020; 35:299-311. [PMID: 33122849 DOI: 10.1038/s41375-020-01069-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
The effective treatment of acute myeloid leukemia (AML) is very challenging. Due to the immense heterogeneity of this disease, treating it using a "one size fits all" approach is ineffective and only benefits a subset of patients. Instead, there is a shift towards more personalized treatment based on the patients' genomic signature. This shift has facilitated the increased revelation of novel insights into pathways that lead to the survival and propagation of AML cells. These AML survival pathways are involved in drug resistance, evasion of the immune system, reprogramming metabolism, and impairing differentiation. In addition, based on the reports of enhanced clinical efficiencies when combining drugs or treatments, deeper investigation into possible pathways, which can be targeted together to increase treatment response in a wider group of patients, is warranted. In this review, not only is a comprehensive summary of targets involved in these pathways provided, but also insights into the potential of targeting these molecules in combination therapy will be discussed.
Collapse
Affiliation(s)
- Ramya Nair
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Alejandro Salinas-Illarena
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| |
Collapse
|
32
|
Mason CC, Fiol CR, Baker MJ, Nadal-Melsio E, Yebra-Fernandez E, Bicalho L, Chowdhury A, Albert M, Reid AG, Claudiani S, Apperley JF, Khorashad JS. Identification of genetic targets in acute myeloid leukaemia for designing targeted therapy. Br J Haematol 2020; 192:137-145. [PMID: 33022753 DOI: 10.1111/bjh.17129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023]
Abstract
Few effective therapies exist for acute myeloid leukaemia (AML), in part due to the molecular heterogeneity of this disease. We sought to identify genes crucial to deregulated AML signal transduction pathways which, if inhibited, could effectively eradicate leukaemia stem cells. Due to difficulties in screening primary cells, most previous studies have performed next-generation sequencing (NGS) library knockdown screens in cell lines. Using carefully considered methods including evaluation at multiple timepoints to ensure equitable gene knockdown, we employed a large NGS short hairpin RNA (shRNA) knockdown screen of nearly 5 000 genes in primary AML cells from six patients to identify genes that are crucial for leukaemic survival. Across various levels of stringency, genome-wide bioinformatic analysis identified a gene in the NOX family, NOX1, to have the most consistent knockdown effectiveness in primary cells (P = 5∙39 × 10-5 , Bonferroni-adjusted), impacting leukaemia cell survival as the top-ranked gene for two of the six AML patients and also showing high effectiveness in three of the other four patients. Further investigation of this pathway highlighted NOX2 as the member of the NOX family with clear knockdown efficacy. We conclude that genes in the NOX family are enticing candidates for therapeutic development in AML.
Collapse
Affiliation(s)
- Clinton C Mason
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | | | - Monika J Baker
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Elisabet Nadal-Melsio
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Eva Yebra-Fernandez
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Novel Approaches to Target Mutant FLT3 Leukaemia. Cancers (Basel) 2020; 12:cancers12102806. [PMID: 33003568 PMCID: PMC7600363 DOI: 10.3390/cancers12102806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a haematologic disease in which oncogenic mutations in the receptor tyrosine kinase FLT3 frequently lead to leukaemic development. Potent treatment of AML patients is still hampered by inefficient targeting of leukemic stem cells expressing constitutive active FLT3 mutants. This review summarizes the current knowledge about the regulation of FLT3 activity at cellular level and discusses therapeutical options to affect the tumor cells and the microenvironment to impair the haematological aberrations. Abstract Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient’s poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.
Collapse
|
34
|
Cappellini A, Mongiorgi S, Finelli C, Fazio A, Ratti S, Marvi MV, Curti A, Salvestrini V, Pellagatti A, Billi AM, Suh PG, McCubrey JA, Boultwood J, Manzoli L, Cocco L, Follo MY. Phospholipase C beta1 (PI-PLCbeta1)/Cyclin D3/protein kinase C (PKC) alpha signaling modulation during iron-induced oxidative stress in myelodysplastic syndromes (MDS). FASEB J 2020; 34:15400-15416. [PMID: 32959428 DOI: 10.1096/fj.202000933rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.
Collapse
Affiliation(s)
- Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonio Curti
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Valentina Salvestrini
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea.,School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
36
|
Zhao Y, Sun L, Li Q, Yan X, Li Z, Liu B, Li G. Use of integrated biomarker response for evaluating antioxidant stress and DNA damage of earthworms (Eisenia fetida) in decabromodiphenyl ethane-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114706. [PMID: 32388306 DOI: 10.1016/j.envpol.2020.114706] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a new and popular type of brominated flame retardant (BFR) with high bromine content, strong thermal stability, and ultraviolet resistance. To evaluated the potential toxicity of this new BFR to soil ecosystem, different concentrations of DBDPE were used to observe effects on earthworms (Eisenia fetida) in artificial soil. The reactive oxygen species (ROS) contents, activities of antioxidase system and detoxify enzyme, levels of malondialdehyde (MDA), as well as DNA damage in earthworms were measured after exposure to 0, 2.5, 5, 10, and 20 mg/kg DBDPE in artificial soil for 7, 14, 21, and 28 days. The results showed that ROS and MDA content significantly increased for all treatments from days 7-21, followed by a decrease. Throughout the experimental period, SOD, POD, and CAT activities increased. The GST activity was stimulated significantly from days 14-28. Besides, the olive tail moment (OTM) value in all treated groups was significantly higher than that in the control and exhibited a concentration-related and exposure time-related response. This is the first study evaluating the biological toxicity of BFR at different concentrations using an integrated biomarker response index. Our results show that DBDPE has biochemical toxicity on earthworms, which sheds some light on the potential risks of DBDPE in the soil environment and provides a basis for the monitoring and diagnosis of soils contaminated with DBDPE.
Collapse
Affiliation(s)
- Yiyi Zhao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangqi Sun
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qianqian Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaotong Yan
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ziwei Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Liu
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Guangde Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
37
|
El Dor M, Dakik H, Polomski M, Haudebourg E, Brachet M, Gouilleux F, Prié G, Zibara K, Mazurier F. VAS3947 Induces UPR-Mediated Apoptosis through Cysteine Thiol Alkylation in AML Cell Lines. Int J Mol Sci 2020; 21:ijms21155470. [PMID: 32751795 PMCID: PMC7432790 DOI: 10.3390/ijms21155470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) involvement has been established in the oncogenic cell signaling of acute myeloid leukemia (AML) cells and in the crosstalk with their niche. We have shown an expression of NOX subunits in AML cell lines while NOX activity is lacking in the absence of exogenous stimulation. Here, we used AML cell lines as models to investigate the specificity of VAS3947, a current NOX inhibitor. Results demonstrated that VAS3947 induces apoptosis in AML cells independently of its anti-NOX activity. High-performance liquid chromatography (HPLC) and mass spectrometry analyses revealed that VAS3947 thiol alkylates cysteine residues of glutathione (GSH), while also interacting with proteins. Remarkably, VAS3947 decreased detectable GSH in the MV-4-11 cell line, thereby suggesting possible oxidative stress induction. However, a decrease in both cytoplasmic and mitochondrial reactive oxygen species (ROS) levels was observed by flow cytometry without disturbance of mitochondrial mass and membrane potential. Thus, assuming the consequences of VAS3947 treatment on protein structure, we examined its impact on endoplasmic reticulum (ER) stress. An acute unfolded protein response (UPR) was triggered shortly after VAS3947 exposure, through the activation of inositol-requiring enzyme 1α (IRE1α) and PKR-like endoplasmic reticulum kinase (PERK) pathways. Overall, VAS3947 induces apoptosis independently of anti-NOX activity, via UPR activation, mainly due to aggregation and misfolding of proteins.
Collapse
Affiliation(s)
- Maya El Dor
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
- PRASE, Beirut, Lebanon;
| | - Hassan Dakik
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
| | - Marion Polomski
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
| | - Eloi Haudebourg
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
| | - Marie Brachet
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
| | - Fabrice Gouilleux
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
| | - Gildas Prié
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
| | - Kazem Zibara
- PRASE, Beirut, Lebanon;
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Frédéric Mazurier
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
- Correspondence: ; Tel.: +33-2-47-36-60-75
| |
Collapse
|
38
|
Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis 2020; 11:291. [PMID: 32341354 PMCID: PMC7184730 DOI: 10.1038/s41419-020-2488-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) are both dependent on the hypoxic bone marrow (BM) microenvironment (also known as the BM niche). There is always fierce competition between the two types of cells, and the former exhibits a greater competitive advantage than the latter via multiple mechanisms. Under hypoxia, the dynamic balance between the generation and clearing of intracellular reactive oxygen species (ROS) is conducive to maintaining a quiescent state of cells. Quiescent LSCs can reside well in the BM niche, avoiding attack by chemotherapeutic agents, which is the cause of chemotherapeutic resistance and relapse in leukemia. HSCs acquire energy mainly through anaerobic glycolysis, whereas LSCs achieve energy metabolism largely through mitochondrial oxidative respiration. Mitochondria are the primary site of ROS generation. Thus, in theory, mitochondria-mediated respiration will cause an increase in ROS generation in LSCs and a higher intracellular oxidative stress level. The sensitivity of the cells to pro-oxidant drugs increases as well, which allows for the selective clearing of LSCs by pro-oxidative therapy. However, HSCs are also highly sensitive to changes in ROS levels, and the toxic effects of pro-oxidant drugs on HSCs poses a major challenge to pro-oxidative therapy in leukemia. Given the above facts, we reviewed studies on the oxidative resistance of LSCs and the oxidative damage to HSCs under pro-oxidative therapy. An in-depth investigation into the oxidative stress status and regulatory mechanisms of LSCs and HSCs in hypoxic environments will promote our understanding of the survival strategy employed by LSCs and the mechanism of the oxidative damage to HSCs in the BM niche, thus facilitating individualized treatment of leukemia patients and helping eliminate LSCs without disturbing normal hematopoietic cells.
Collapse
|
39
|
Robinson AJ, Hopkins GL, Rastogi N, Hodges M, Doyle M, Davies S, Hole PS, Omidvar N, Darley RL, Tonks A. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3. Cancer Res 2020; 80:937-949. [PMID: 31862780 PMCID: PMC7611211 DOI: 10.1158/0008-5472.can-19-1920] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disorder with a poor clinical outcome. Previously, we showed that overproduction of reactive oxygen species (ROS), arising from constitutive activation of NOX2 oxidase, occurs in >60% of patients with AML and that ROS production promotes proliferation of AML cells. We show here that the process most significantly affected by ROS overproduction is glycolysis. Whole metabolome analysis of 20 human primary AML showed that blasts generating high levels of ROS have increased glucose uptake and correspondingly increased glucose metabolism. In support of this, exogenous ROS increased glucose consumption while inhibition of NOX2 oxidase decreased glucose consumption. Mechanistically, ROS promoted uncoupling protein 2 (UCP2) protein expression and phosphorylation of AMPK, upregulating the expression of a key regulatory glycolytic enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Overexpression of PFKFB3 promoted glucose uptake and cell proliferation, whereas downregulation of PFKFB3 strongly suppressed leukemia growth both in vitro and in vivo in the NSG model. These experiments provide direct evidence that oxidase-derived ROS promotes the growth of leukemia cells via the glycolytic regulator PFKFB3. Targeting PFKFB3 may therefore present a new mode of therapy for this disease with a poor outcome. SIGNIFICANCE: These findings show that ROS generated by NOX2 in AML cells promotes glycolysis by activating PFKFB3 and suggest PFKFB3 as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Andrew J Robinson
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Goitseone L Hopkins
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Wales, United Kingdom
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Wales, United Kingdom
| | - Sara Davies
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Nader Omidvar
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom.
| |
Collapse
|
40
|
The Influence of Light on Reactive Oxygen Species and NF-кB in Disease Progression. Antioxidants (Basel) 2019; 8:antiox8120640. [PMID: 31842333 PMCID: PMC6943569 DOI: 10.3390/antiox8120640] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) are important secondary metabolites that play major roles in signaling pathways, with their levels often used as analytical tools to investigate various cellular scenarios. They potentially damage genetic material and facilitate tumorigenesis by inhibiting certain tumor suppressors. In diabetic conditions, substantial levels of ROS stimulate oxidative stress through specialized precursors and enzymatic activity, while minimum levels are required for proper wound healing. Photobiomodulation (PBM) uses light to stimulate cellular mechanisms and facilitate the removal of oxidative stress. Photodynamic therapy (PDT) generates ROS to induce selective tumor destruction. The regulatory roles of PBM via crosstalk between ROS and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) are substantial for the appropriate management of various conditions.
Collapse
|
41
|
Böhmer A, Barz S, Schwab K, Kolbe U, Gabel A, Kirkpatrick J, Ohlenschläger O, Görlach M, Böhmer FD. Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation. Redox Biol 2019; 28:101325. [PMID: 31606550 PMCID: PMC6812047 DOI: 10.1016/j.redox.2019.101325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is frequently mutated in Acute Myeloid Leukemia patients, and resulting oncogenic variants of FLT3 with 'internal tandem duplications (FLT3ITD)' drive production of reactive oxygen in leukemic cells. FLT3 was moderately activated by treatment of intact cells with hydrogen peroxide. Conversely, FLT3ITD signaling was attenuated by cell treatments with agents inhibiting formation of reactive oxygen species. FLT3 and FLT3ITD incorporated DCP-Bio1, a reagent specifically reacting with sulfenic acid residues. Mutation of FLT3ITD cysteines 695 and 790 reduced DCP-Bio1 incorporation, suggesting that these sites are subject to oxidative modification. Functional characterization of individual FLT3ITD cysteine-to-serine mutants of all 8 cytoplasmic cysteines revealed phenotypes in kinase activity, signal transduction and cell transformation. Replacement of cysteines 681, 694, 695, 807, 925, and 945 attenuated signaling and blocked FLT3ITD-mediated cell transformation, whereas mutation of cysteine 790 enhanced activity of both FLT3ITD and wild-type FLT3. These effects were not related to altered FLT3ITD dimerization, but likely caused by changed intramolecular interactions. The findings identify the functional relevance of all cytoplasmic FLT3ITD cysteines, and indicate the potential for redox regulation of this clinically important oncoprotein.
Collapse
Affiliation(s)
- Annette Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Saskia Barz
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Katjana Schwab
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Ulrike Kolbe
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Anke Gabel
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | | | | | - Matthias Görlach
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany.
| |
Collapse
|
42
|
Neuroprotective effect of FMS-like tyrosine kinase-3 silence on cerebral ischemia/reperfusion injury in a SH-SY5Y cell line. Gene 2019; 697:152-158. [DOI: 10.1016/j.gene.2019.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/05/2023]
|
43
|
Cheng FF, Sun P, Xiong WW, Zhang Y, Zhang Q, Yao W, Cao Y, Zhang L. Multifunctional titanium phosphate nanoparticles for site-specific drug delivery and real-time therapeutic efficacy evaluation. Analyst 2019; 144:3103-3110. [PMID: 30920573 DOI: 10.1039/c8an02450b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Receptor-targeted delivery systems have been proposed as means of concentrating therapeutic agents to improve therapeutic effects on disease sites and reduce side effects on normal issues. Herein, we synthesized biocompatible folic acid (FA)-functionalized DHE-modified TiP (TiP-PAH-DHE-FA) nanoparticles as a drug delivery system that possessed high drug loading capability and enhanced folate-receptor-mediated cellular uptake. Moreover, it also allowed drug effect evaluation based on the real-time monitoring of the fluorescence intensity of HE molecules that are triggered by intercellular ROS. This acquired drug delivery system provided a novel platform to integrate efficient cell-specific drug delivery with real-time monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Fang-Fang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Panpan Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Wei-Wei Xiong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Qiao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yudan Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, PR China
| |
Collapse
|
44
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
45
|
Wang C, Wang Z, Liu W, Ai Z. ROS-generating oxidase NOX1 promotes the self-renewal activity of CD133+ thyroid cancer cells through activation of the Akt signaling. Cancer Lett 2019; 447:154-163. [PMID: 30690057 DOI: 10.1016/j.canlet.2019.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/31/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023]
Abstract
Thyroid cancer results from unregulated expansion of a self-renewing tumor-initiating cell population. The regulatory pathways essential for sustaining the self-renewal of tumor-initiating cells remain largely unknown. Reactive oxygen species (ROS) play a vital role in tumor initiation and progression. In the present study, we found that the level of ROS was higher in CD133 + thyroid cancer cells than in CD133- thyroid cancer cells. The transcriptional level of ROS-generating oxidase NADPH oxidase 1 (NOX1) is high in CD133 + thyroid cancer cells. Activation of STAT3 through phosphorylation is responsible for high activation of NOX1 transcription in CD133 + thyroid cancer cells. Knock down of NOX1 obviously reduced the level of ROS and inhibited the self-renewal activity and tumorigenicity of CD133 + thyroid cancer cells. Furthermore, knock down of NOX1 reduced the activity of PI3K/Akt pathway. Overexpression of active form of Akt rescued the negative effect of NOX1 knockdown on the self-renewal capability of CD133 + thyroid cancer cells. Together, NOX1 promotes the self-renewal property of CD133 + thyroid cancer cells at least partly through activation of the Akt signaling.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenglin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhilong Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
47
|
The Cooperative Relationship between STAT5 and Reactive Oxygen Species in Leukemia: Mechanism and Therapeutic Potential. Cancers (Basel) 2018; 10:cancers10100359. [PMID: 30262727 PMCID: PMC6210354 DOI: 10.3390/cancers10100359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are now recognized as important second messengers with roles in many aspects of signaling during leukemogenesis. They serve as critical cell signaling molecules that regulate the activity of various enzymes including tyrosine phosphatases. ROS can induce inactivation of tyrosine phosphatases, which counteract the effects of tyrosine kinases. ROS increase phosphorylation of many proteins including signal transducer and activator of transcription-5 (STAT5) via Janus kinases (JAKs). STAT5 is aberrantly activated through phosphorylation in many types of cancer and this constitutive activation is associated with cell survival, proliferation, and self-renewal. Such leukemic activation of STAT5 is rarely caused by mutation of the STAT5 gene itself but instead by overactive mutant receptors with tyrosine kinase activity as well as JAK, SRC family protein tyrosine kinases (SFKs), and Abelson murine leukemia viral oncogene homolog (ABL) kinases. Interestingly, STAT5 suppresses transcription of several genes encoding antioxidant enzymes while simultaneously enhancing transcription of NADPH oxidase. By doing so, STAT5 activation promotes an overall elevation of ROS level, which acts as a feed-forward loop, especially in high risk Fms-related tyrosine kinase 3 (FLT3) mutant leukemia. Therefore, efforts have been made recently to target ROS in cancer cells. Drugs that are able to either quench ROS production or inversely augment ROS-related signaling pathways both have potential as cancer therapies and may afford some selectivity by activating feedback inhibition of the ROS-STAT5 kinome. This review summarizes the cooperative relationship between ROS and STAT5 and explores the pros and cons of emerging ROS-targeting therapies that are selective for leukemia characterized by persistent STAT5 phosphorylation.
Collapse
|
48
|
Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:125. [PMID: 29940987 PMCID: PMC6019308 DOI: 10.1186/s13046-018-0797-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
Oxidative stress is related to ageing and degenerative diseases, including cancer. However, a moderate amount of reactive oxygen species (ROS) is required for the regulation of cellular signalling and gene expression. A low level of ROS is important for maintaining quiescence and the differentiation potential of haematopoietic stem cells (HSCs), whereas the level of ROS increases during haematopoietic differentiation; thus, suggesting the importance of redox signalling in haematopoiesis. Here, we will analyse the importance of ROS for haematopoiesis and include evidence showing that cells from leukaemia patients live under oxidative stress. The potential sources of ROS will be described. Finally, the level of oxidative stress in leukaemic cells can also be harnessed for therapeutic purposes. In this regard, the reliance of front-line anti-leukaemia chemotherapeutics on increased levels of ROS for their mechanism of action, as well as the active search for novel compounds that modulate the redox state of leukaemic cells, will be analysed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Marta Romo-González
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Alejandro Pérez-Fernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Carla Ijurko
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain. .,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain.
| |
Collapse
|
49
|
Moloney JN, Jayavelu AK, Stanicka J, Roche SL, O'Brien RL, Scholl S, Böhmer FD, Cotter TG. Nuclear membrane-localised NOX4D generates pro-survival ROS in FLT3-ITD-expressing AML. Oncotarget 2017; 8:105440-105457. [PMID: 29285262 PMCID: PMC5739649 DOI: 10.18632/oncotarget.22241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Internal tandem duplication of the juxtamembrane domain of FMS-like tyrosine kinase 3 (FLT3-ITD) is the most prevalent genetic aberration present in 20-30% of acute myeloid leukaemia (AML) cases and is associated with a poor prognosis. FLT3-ITD expressing cells express elevated levels of NADPH oxidase 4 (NOX4)-generated pro-survival hydrogen peroxide (H2O2) contributing to increased levels of DNA oxidation and double strand breaks. NOX4 is constitutively active and has been found to have various isoforms expressed at multiple locations within a cell. The purpose of this study was to investigate the expression, localisation and regulation of NOX4 28 kDa splice variant, NOX4D. NOX4D has previously been shown to localise to the nucleus and nucleolus in various cell types and is implicated in the generation of reactive oxygen species (ROS) and DNA damage. Here, we demonstrate that FLT3-ITD expressing-AML patient samples as well as -cell lines express the NOX4D isoform resulting in elevated H2O2 levels compared to FLT3-WT expressing cells, as quantified by flow cytometry. Cell fractionation indicated that NOX4D is nuclear membrane-localised in FLT3-ITD expressing cells. Treatment of MV4-11 cells with receptor trafficking inhibitors, tunicamycin and brefeldin A, resulted in deglycosylation of NOX4 and NOX4D. Inhibition of the FLT3 receptor revealed that the FLT3-ITD oncogene is responsible for the production of NOX4D-generated H2O2 in AML. We found that inhibition of the PI3K/AKT and STAT5 pathways resulted in down-regulation of NOX4D-generated pro-survival ROS. Taken together these findings indicate that nuclear membrane-localised NOX4D-generated pro-survival H2O2 may be contributing to genetic instability in FLT3-ITD expressing AML.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashok Kumar Jayavelu
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany.,Current address: Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Joanna Stanicka
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Rebecca L O'Brien
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sebastian Scholl
- Department of Haematology/Oncology, Clinic for Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Orlova A, Wingelhofer B, Neubauer HA, Maurer B, Berger-Becvar A, Keserű GM, Gunning PT, Valent P, Moriggl R. Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opin Ther Targets 2017; 22:45-57. [PMID: 29148847 PMCID: PMC5743003 DOI: 10.1080/14728222.2018.1406924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hematopoietic neoplasms are often driven by gain-of-function mutations of the JAK-STAT pathway together with mutations in chromatin remodeling and DNA damage control pathways. The interconnection between the JAK-STAT pathway, epigenetic regulation or DNA damage control is still poorly understood in cancer cell biology. Areas covered: Here, we focus on a broader description of mutational insights into myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas, since sequencing efforts have identified similar combinations of driver mutations in these diseases covering different lineages. We summarize how these pathways might be interconnected in normal or cancer cells, which have lost differentiation capacity and drive oncogene transcription. Expert opinion: Due to similarities in driver mutations including epigenetic enzymes, JAK-STAT pathway activation and mutated checkpoint control through TP53, we hypothesize that similar therapeutic approaches could be of benefit in these diseases. We give an overview of how driver mutations in these malignancies contribute to hematopoietic cancer initiation or progression, and how these pathways can be targeted with currently available tools.
Collapse
Affiliation(s)
- Anna Orlova
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Bettina Wingelhofer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Heidi A Neubauer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Barbara Maurer
- c Institute of Pharmacology and Toxicology , University of Veterinary Medicine Vienna , Vienna , Austria
| | - Angelika Berger-Becvar
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - György Miklós Keserű
- d Medicinal Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Budapest , Hungary
| | - Patrick T Gunning
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - Peter Valent
- e Department of Internal Medicine I, Division of Hematology and Hemostaseology , Medical University of Vienna , Vienna , Austria.,f Ludwig Boltzmann-Cluster Oncology , Medical University of Vienna , Vienna , Austria
| | - Richard Moriggl
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria.,i Medical University Vienna , Vienna , Austria
| |
Collapse
|