1
|
Schaefers C, Rothmiller S, Thiermann H, Rein T, Schmidt A. The Efficiency of Direct Maturation: the Comparison of Two hiPSC Differentiation Approaches into Motor Neurons. Stem Cells Int 2022; 2022:1320950. [PMID: 36530489 PMCID: PMC9757946 DOI: 10.1155/2022/1320950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 02/23/2025] Open
Abstract
Motor neurons (MNs) derived from human-induced pluripotent stem cells (hiPSC) hold great potential for the treatment of various motor neurodegenerative diseases as transplantations with a low-risk of rejection are made possible. There are many hiPSC differentiation protocols that pursue to imitate the multistep process of motor neurogenesis in vivo. However, these often apply viral vectors, feeder cells, or antibiotics to generate hiPSC and MNs, limiting their translational potential. In this study, a virus-, feeder-, and antibiotic-free method was used for reprogramming hiPSC, which were maintained in culture medium produced under clinical good manufacturing practice. Differentiation into MNs was performed with standardized, chemically defined, and antibiotic-free culture media. The identity of hiPSC, neuronal progenitors, and mature MNs was continuously verified by the detection of specific markers at the genetic and protein level via qRT-PCR, flow cytometry, Western Blot, and immunofluorescence. MNX1- and ChAT-positive motoneuronal progenitor cells were formed after neural induction via dual-SMAD inhibition and expansion. For maturation, an approach aiming to directly mature these progenitors was compared to an approach that included an additional differentiation step for further specification. Although both approaches generated mature MNs expressing characteristic postmitotic markers, the direct maturation approach appeared to be more efficient. These results provide new insights into the suitability of two standardized differentiation approaches for generating mature MNs, which might pave the way for future clinical applications.
Collapse
Affiliation(s)
- Catherine Schaefers
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
- Institute of Sport Science, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
2
|
Yang C, Li S, Li X, Li H, Li Y, Zhang C, Lin J. Effect of sonic hedgehog on motor neuron positioning in the spinal cord during chicken embryonic development. J Cell Mol Med 2019; 23:3549-3562. [PMID: 30834718 PMCID: PMC6484327 DOI: 10.1111/jcmm.14254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
Collapse
Affiliation(s)
- Ciqing Yang
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Shuanqing Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Xiaoying Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang, Malaysia
| | - Yunxiao Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Chen Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Juntang Lin
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Yousefi B, Sanooghi D, Faghihi F, Joghataei MT, Latifi N. Evaluation of motor neuron differentiation potential of human umbilical cord blood- derived mesenchymal stem cells, in vitro. J Chem Neuroanat 2017; 81:18-26. [PMID: 28153469 DOI: 10.1016/j.jchemneu.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/25/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Many people suffer from spinal cord injuries annually. These deficits usually threaten the quality of life of patients. As a postpartum medically waste product, human Umbilical Cord Blood (UCB) is a rich source of stem cells with self- renewal properties and neural differentiation capacity which made it useful in regenerative medicine. Since there is no report on potential of human umbilical cord blood-derived mesenchymal stem cells into motor neurons, we set out to evaluate the differentiation properties of these cells into motor neuron-like cells through administration of Retinoic Acid(RA), Sonic Hedgehog(Shh) and BDNF using a three- step in vitro procedure. The results were evaluated using Real-time PCR, Flowcytometry and Immunocytochemistry for two weeks. Our data showed that the cells changed into bipolar morphology and could express markers related to motor neuron; including Hb-9, Pax-6, Islet-1, NF-H, ChAT at the level of mRNA and protein. We could also quantitatively evaluate the expression of Islet-1, ChAT and NF-H at 7 and 14days post- induction using flowcytometry. It is concluded that human UCB-MSCs is potent to express motor neuron- related markers in the presence of RA, Shh and BDNF through a three- step protocol; thus it could be a suitable cell candidate for regeneration of motor neurons in spinal cord injuries.
Collapse
Affiliation(s)
- Behnam Yousefi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Sanooghi
- Department of Genetics, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nourahmad Latifi
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Modeling amyotrophic lateral sclerosis in pure human iPSc-derived motor neurons isolated by a novel FACS double selection technique. Neurobiol Dis 2015; 82:269-280. [DOI: 10.1016/j.nbd.2015.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/30/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023] Open
|
5
|
Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems. Mol Neurobiol 2015; 53:1862-1872. [PMID: 25790953 DOI: 10.1007/s12035-015-9129-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/22/2015] [Indexed: 12/29/2022]
Abstract
Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).
Collapse
|
6
|
Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells into Motorneuron-like Cells on Electrospun Gelatin Membrane. J Mol Neurosci 2014; 55:845-53. [DOI: 10.1007/s12031-014-0437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022]
|
7
|
Mashanov VS, Zueva OR, García-Arrarás JE. Transcriptomic changes during regeneration of the central nervous system in an echinoderm. BMC Genomics 2014; 15:357. [PMID: 24886271 PMCID: PMC4229883 DOI: 10.1186/1471-2164-15-357] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Echinoderms are emerging as important models in regenerative biology. Significant amount of data are available on cellular mechanisms of post-traumatic repair in these animals, whereas studies of gene expression are rare. In this study, we employ high-throughput sequencing to analyze the transcriptome of the normal and regenerating radial nerve cord (a homolog of the chordate neural tube), in the sea cucumber Holothuria glaberrima. RESULTS Our de novo assembly yielded 70,173 contigs, of which 24,324 showed significant similarity to known protein-coding sequences. Expression profiling revealed large-scale changes in gene expression (4,023 and 3,257 up-regulated and down-regulated transcripts, respectively) associated with regeneration. Functional analysis of sets of differentially expressed genes suggested that among the most extensively over-represented pathways were those involved in the extracellular matrix (ECM) remodeling and ECM-cell interactions, indicating a key role of the ECM in regeneration. We also searched the sea cucumber transcriptome for homologs of factors known to be involved in acquisition and/or control of pluripotency. We identified eleven genes that were expressed both in the normal and regenerating tissues. Of these, only Myc was present at significantly higher levels in regeneration, whereas the expression of Bmi-1 was significantly reduced. We also sought to get insight into which transcription factors may operate at the top of the regulatory hierarchy to control gene expression in regeneration. Our analysis yielded eleven putative transcription factors, which constitute good candidates for further functional studies. The identified candidate transcription factors included not only known regeneration-related genes, but also factors not previously implicated as regulators of post-traumatic tissue regrowth. Functional annotation also suggested that one of the possible adaptations contributing to fast and efficient neural regeneration in echinoderms may be related to suppression of excitotoxicity. CONCLUSIONS Our transcriptomic analysis corroborates existing data on cellular mechanisms implicated in regeneration in sea cucumbers. More importantly, however, it also illuminates new aspects of echinoderm regeneration, which have been scarcely studied or overlooked altogether. The most significant outcome of the present work is that it lays out a roadmap for future studies of regulatory mechanisms by providing a list of key candidate genes for functional analysis.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- Department of Biology, University of Puerto Rico, PO Box 70377, PR 00936-8377 San Juan, USA
| | - Olga R Zueva
- Department of Biology, University of Puerto Rico, PO Box 70377, PR 00936-8377 San Juan, USA
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, PO Box 70377, PR 00936-8377 San Juan, USA
| |
Collapse
|
8
|
Park HW, Cho JS, Park CK, Jung SJ, Park CH, Lee SJ, Oh SB, Park YS, Chang MS. Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells. PLoS One 2012; 7:e35244. [PMID: 22496912 PMCID: PMC3320649 DOI: 10.1371/journal.pone.0035244] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/11/2012] [Indexed: 01/08/2023] Open
Abstract
Cell replacement using stem cells is a promising therapeutic approach to treat degenerative motor neuron (MN) disorders, such as amyotrophic lateral sclerosis and spinal cord injury. Human bone marrow-derived mesenchymal stem cells (hMSCs) are a desirable cell source for autologous cell replacement therapy to treat nervous system injury due to their plasticity, low immunogenicity, and a lower risk of tumor formation than embryonic stem cells. However, hMSCs are inefficient with regards to differentiating into MN-like cells. To solve this limitation, we genetically engineered hMSCs to express MN-associated transcription factors, Olig2 and Hb9, and then treat the hMSCs expressing Olig2 and Hb9 with optimal MN induction medium (MNIM). This method of induction led to higher expression (>30% of total cells) of MN markers. Electrophysiological data revealed that the induced hMSCs had the excitable properties of neurons and were able to form functional connections with muscle fibers in vitro. Furthermore, when the induced hMSCs were transplanted into an injured organotypic rat spinal cord slice culture, an ex vivo model of spinal cord injury, they exhibited characteristics of MNs. The data strongly suggest that induced Olig2/Hb9-expressing hMSCs were clearly reprogrammed and directed toward a MN-like lineage. We propose that methods to induce Olig2 and Hb9, followed by further induction with MNIM have therapeutic potential for autologous cell replacement therapy to treat degenerative MN disorders.
Collapse
Affiliation(s)
- Hwan-Woo Park
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung-Sun Cho
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chul-Kyu Park
- Department of Physiology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea
| | - Shin-Jae Lee
- Department of Orthodontics, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Physiology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Mi-Sook Chang
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Kalincik T, Jozefcikova K, Sutharsan R, Mackay-Sim A, Carrive P, Waite PME. Selected changes in spinal cord morphology after T4 transection and olfactory ensheathing cell transplantation. Auton Neurosci 2010; 158:31-8. [PMID: 20594923 DOI: 10.1016/j.autneu.2010.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/28/2010] [Indexed: 01/17/2023]
Abstract
Spinal cord transection at T4 results in severe damage of the nervous tissue, with impairment of motor, sensory and autonomic functions. Transplantation of olfactory ensheathing cells (OECs) has the potential to improve these functions through a number of mechanisms, which include facilitation of regeneration and neuroprotection. For cardiovascular functions, we have previously shown that OECs reduce the duration of autonomic dysreflexia, without evidence of regeneration. To further understand the mechanisms underpinning this improvement, we have studied changes in selected morphological features (cavitation, non-cavity tissue loss, morphology of sympathetic preganglionic neurons and primary afferent fibre density) in the T4-transected rat spinal cord over 9 weeks, both in control and OEC-transplanted animals. T4 transection led to a number of structural changes: gradual formation of cavities, non-cavity tissue loss, a long-term increase in soma size of sympathetic preganglionic neurons and a temporary increase in the extent of their dendritic arbours, and an increase in the density of primary afferent fibres caudal to the lesion. OECs decreased the cavitation and normalised soma size of the sympathetic preganglionic neurons below the lesion, while increasing the extent of dendritic arbours in the preganglionic neurons above the lesion. Thus the OECs may contribute to the normalisation of the dysreflexic hypertension through tissue preservation and normalisation of the morphology of the preganglionic neurons caudal to the lesion, while enhancing the input on the rostral preganglionic neurons, whose vasomotor control remains intact. We hypothesise that these changes are mediated through secretion of soluble trophic factors by the transplanted OECs.
Collapse
Affiliation(s)
- Tomas Kalincik
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27:78-87. [PMID: 18845761 PMCID: PMC2729673 DOI: 10.1634/stemcells.2008-0543] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration.
Collapse
Affiliation(s)
- Slaven Erceg
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
11
|
Nosjean A, Roux P, Perret E, Bohl D. Cholinergic differentiation of neural progenitors in adult mouse motor facial nucleus. J Neurotrauma 2009; 26:1417-27. [PMID: 19505176 DOI: 10.1089/neu.2008.0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental cues are critical determinants of the fate of neural progenitors (NPs) upon transplantation into the central nervous system. In the present study, we assessed the differentiation potential of NPs implanted in a cholinergic environment of the adult mouse brain. Neurospheres containing NPs issued from fetal ganglionic eminences of transgenic mice expressing the green fluorescent protein (GFP) were transplanted either inside or outside the mouse cholinergic facial motor nucleus. In some mice, a pre-degenerated nerve releasing trophic factors was grafted into this nucleus to favor NP survival and improve axonal growth into the graft. The fate of NPs was analyzed 6 to 9 days or 2 months post-transplantation by immunofluorescence under confocal microscopy. Transplanted NPs were observed both inside and outside the facial nucleus after 6 to 9 days, but almost exclusively inside after 2 months regardless of the presence of a pre-degenerated nerve. NPs expressed markers of undifferentiated cells, astrocytes, oligodendrocytes, neurons, or cholinergic cells. The cholinergic phenotype of NPs engrafted inside the facial nucleus increased with time and the presence of a pre-degenerated nerve. Large GFP cholinergic somata and abundant long cholinergic GFP axons projecting into the nerve graft were also observed. Our results show that NPs, isolated from fetal mouse brain and transplanted into the non-neurogenic environment of the adult mouse facial nucleus, differentiate into cholinergic cells capable to project axons. This environment and the nerve graft favored NP differentiation into cholinergic neurons.
Collapse
Affiliation(s)
- Anne Nosjean
- Unité Rétrovirus et Transfert Génétique, Département Neuroscience, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
12
|
Liu S, Bohl D, Blanchard S, Bacci J, Saïd G, Heard JM. Combination of microsurgery and gene therapy for spinal dorsal root injury repair. Mol Ther 2009; 17:992-1002. [PMID: 19240691 PMCID: PMC2835177 DOI: 10.1038/mt.2009.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/20/2009] [Indexed: 01/14/2023] Open
Abstract
Brachial plexus injury is frequent after traffic accident in adults or shoulder dystocia in newborns. Whereas surgery can restore arm movements, therapeutic options are missing for sensory defects. Dorsal root (DR) ganglion neurons convey sensory information to the central nervous system (CNS) through a peripheral and a central axon. Central axons severed through DR section or avulsion during brachial plexus injury inefficiently regenerate and do not reenter the spinal cord. We show that a combination of microsurgery and gene therapy circumvented the functional barrier to axonal regrowth at the peripheral and CNS interface. After cervical DR section in rats, microsurgery restored anatomical continuity through a nerve graft that laterally connected the injured DR to an intact DR. Gene transfer to cells in the nerve graft induced the local release of neurotrophin-3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF) and stimulated axonal regrowth. Central DR ganglion axons efficiently regenerated and invaded appropriate areas of the spinal cord dorsal horn, leading to partial recovery of nociception and proprioception. Microsurgery created conditions for functional restoration of DR ganglion central axons, which were improved in combination with gene therapy. This combination treatment provides means to reduce disability due to somatosensory defects after brachial plexus injury.
Collapse
Affiliation(s)
- Song Liu
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Männel D, Zurzolo C. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009; 11:328-36. [PMID: 19198598 DOI: 10.1038/ncb1841] [Citation(s) in RCA: 477] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/26/2009] [Indexed: 01/09/2023]
Abstract
In variant Creutzfeldt-Jakob disease, prions (PrP(Sc)) enter the body with contaminated foodstuffs and can spread from the intestinal entry site to the central nervous system (CNS) by intercellular transfer from the lymphoid system to the peripheral nervous system (PNS). Although several means and different cell types have been proposed to have a role, the mechanism of cell-to-cell spreading remains elusive. Tunnelling nanotubes (TNTs) have been identified between cells, both in vitro and in vivo, and may represent a conserved means of cell-to-cell communication. Here we show that TNTs allow transfer of exogenous and endogenous PrP(Sc) between infected and naive neuronal CAD cells. Significantly, transfer of endogenous PrP(Sc) aggregates was detected exclusively when cells chronically infected with the 139A mouse prion strain were connected to mouse CAD cells by means of TNTs, identifying TNTs as an efficient route for PrP(Sc) spreading in neuronal cells. In addition, we detected the transfer of labelled PrP(Sc) from bone marrow-derived dendritic cells to primary neurons connected through TNTs. Because dendritic cells can interact with peripheral neurons in lymphoid organs, TNT-mediated intercellular transfer would allow neurons to transport prions retrogradely to the CNS. We therefore propose that TNTs are involved in the spreading of PrP(Sc) within neurons in the CNS and from the peripheral site of entry to the PNS by neuroimmune interactions with dendritic cells.
Collapse
Affiliation(s)
- Karine Gousset
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bohl D, Liu S, Blanchard S, Hocquemiller M, Haase G, Heard JM. Directed evolution of motor neurons from genetically engineered neural precursors. Stem Cells 2008; 26:2564-75. [PMID: 18635866 DOI: 10.1634/stemcells.2008-0371] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stem cell-based therapies hold therapeutic promise for degenerative motor neuron diseases, such as amyotrophic lateral sclerosis, and for spinal cord injury. Fetal neural progenitors present less risk of tumor formation than embryonic stem cells but inefficiently differentiate into motor neurons, in line with their low expression of motor neuron-specific transcription factors and poor response to soluble external factors. To overcome this limitation, we genetically engineered fetal rat spinal cord neurospheres to express the transcription factors HB9, Nkx6.1, and Neurogenin2. Enforced expression of the three factors rendered neural precursors responsive to Sonic hedgehog and retinoic acid and directed their differentiation into cholinergic motor neurons that projected axons and formed contacts with cocultured myotubes. When transplanted in the injured adult rat spinal cord, a model of acute motor neuron degeneration, the engineered precursors transiently proliferated, colonized the ventral horn, expressed motor neuron-specific differentiation markers, and projected cholinergic axons in the ventral root. We conclude that genetic engineering can drive the differentiation of fetal neural precursors into motor neurons that efficiently engraft in the spinal cord. The strategy thus holds promise for cell replacement in motor neuron and related diseases. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Delphine Bohl
- Département Neuroscience, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale U622, Unité Rétrovirus et Transfert Génétique, Paris, France.
| | | | | | | | | | | |
Collapse
|
15
|
Martinez-Monedero R, Yi E, Oshima K, Glowatzki E, Edge AS. Differentiation of inner ear stem cells to functional sensory neurons. Dev Neurobiol 2008; 68:669-84. [DOI: 10.1002/dneu.20616] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Xia X, Zhang Y, Zieth CR, Zhang SC. Transgenes delivered by lentiviral vector are suppressed in human embryonic stem cells in a promoter-dependent manner. Stem Cells Dev 2007. [PMID: 17348812 DOI: 10.1089/scd.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lentiviruses have been increasingly used for genetic modification of human cells including embryonic stem (ES) cells. Using four ubiquitous promoters--cytomegalovirus (CMV), cytomegalovirus immediate-early enhancer/chicken beta-actin hybrid (CAG), phosphoglycerate kinase (PGK), and human elongation factor-1alpha (EF1alpha)--in a lentiviral vector to drive the expression of the enhanced green fluorescent protein (EGFP) gene in human ES cells and mouse ES cells, we determined the extent of EGFP suppression by assessing the percentage of cells that were transduced with the EGFP gene but did not fluoresce green. A much higher level of transgene suppression was observed in human ES cells as compared to mouse ES cells. The suppression was also highly promoter dependent, leading to inactivation of more than 95% of the EGFP genes under the CMV or CAG promoter while only 55% under the PGK promoter. No promoter-dependent suppression was observed in transient transfection of human ES cells. Thus, the common phenomenon of poor transgene expression in human ES cells may be caused mainly by suppression of the transgene right after transduction and integration. Cautions should be taken to choose the optimal promoter when lentiviruses are used for genetic modification of human ES cells.
Collapse
Affiliation(s)
- Xiaofeng Xia
- WiCell Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
17
|
Xia X, Zhang Y, Zieth CR, Zhang SC. Transgenes delivered by lentiviral vector are suppressed in human embryonic stem cells in a promoter-dependent manner. Stem Cells Dev 2007; 16:167-76. [PMID: 17348812 PMCID: PMC2801347 DOI: 10.1089/scd.2006.0057] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lentiviruses have been increasingly used for genetic modification of human cells including embryonic stem (ES) cells. Using four ubiquitous promoters--cytomegalovirus (CMV), cytomegalovirus immediate-early enhancer/chicken beta-actin hybrid (CAG), phosphoglycerate kinase (PGK), and human elongation factor-1alpha (EF1alpha)--in a lentiviral vector to drive the expression of the enhanced green fluorescent protein (EGFP) gene in human ES cells and mouse ES cells, we determined the extent of EGFP suppression by assessing the percentage of cells that were transduced with the EGFP gene but did not fluoresce green. A much higher level of transgene suppression was observed in human ES cells as compared to mouse ES cells. The suppression was also highly promoter dependent, leading to inactivation of more than 95% of the EGFP genes under the CMV or CAG promoter while only 55% under the PGK promoter. No promoter-dependent suppression was observed in transient transfection of human ES cells. Thus, the common phenomenon of poor transgene expression in human ES cells may be caused mainly by suppression of the transgene right after transduction and integration. Cautions should be taken to choose the optimal promoter when lentiviruses are used for genetic modification of human ES cells.
Collapse
Affiliation(s)
- Xiaofeng Xia
- WiCell Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
18
|
Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M, Nardini M, Donadoni C, Salani S, Fortunato F, Strazzer S, Bresolin N, Comi GP. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. ACTA ACUST UNITED AC 2007; 130:1289-305. [PMID: 17439986 DOI: 10.1093/brain/awm043] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of the motor neurons. We tested whether treatment of superoxide dismutase (SOD1)-G93A transgenic mouse, a model of ALS, with a neural stem cell subpopulation double positive for Lewis X and the chemokine receptor CXCR4 (LeX+CXCR4+) can modify the disease's progression. In vitro, after exposure to morphogenetic stimuli, LeX+CXCR4+ cells generate cholinergic motor neuron-like cells upon differentiation. LeX+CXCR4+ cells deriving from mice expressing Green Fluorescent Protein in all tissues or only in motor neurons, after a period of priming in vitro, were grafted into spinal cord of SOD1-G93A mice. Transplanted transgenic mice exhibited a delayed disease onset and progression, and survived significantly longer than non-treated animals by 23 days. Examination of the spinal cord revealed integration of donor-derived cells that differentiated mostly in neurons and in a lower proportion in motor neuron-like cells. Quantification of motor neurons of the spinal cord suggests a significant neuroprotection by LeX+CXCR4+ cells. Both VEGF- and IGF1-dependent pathways were significantly modulated in transplanted animals compared to controls, suggesting a role of these neurotrophins in MN protection. Our results support the therapeutic potential of neural stem cell fractions through both neurogenesis and growth factors release in motor neuron disorders.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|