1
|
Toczylowska B, Kalinowski P, Kacka-Piotrowska A, Duda P, Grąt M, Zieminska E. Metabolic Pattern of Brain Death-NMR-Based Metabolomics of Cerebrospinal Fluid. Int J Mol Sci 2025; 26:2719. [PMID: 40141360 PMCID: PMC11942502 DOI: 10.3390/ijms26062719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study was to gain insight into the biochemical status of cerebrospinal fluid in the presence of brain death in life-supported patients. The biochemical status was determined via in vitro NMR spectroscopy of cerebrospinal fluid (CSF) obtained by lumbar puncture from 22 patients with confirmed brain death and compared with that of 34 control patients (without neurological diseases). Forty-one NMR signals from raw CSF samples and 20 signals from lipid extracts were analyzed using univariate and multivariate statistical methods. ANOVA revealed significant differences in all analyzed signals. No single biochemical marker was found to predict brain death. The CSF metabolic profiles of patients who died differed significantly from those of patients in the control group. There were many statistically significantly different compounds, including amino acids, ketone bodies, lactate, pyruvate, citrate, guanidinoacetate, choline, and glycerophosphocholine. Analysis of lipids revealed significant differences in cholesterol, estriol, and phosphoethanolamine. Discriminant analysis allows the analysis of metabolic profiles instead of single biomarkers of cerebrospinal fluid compounds. The results of our analysis allowed us to split the groups-the control group, which consisted of patients with a normal biochemical CSF composition, and the brain death group-with confirmed brain death.
Collapse
Affiliation(s)
- Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, 02-109 Warsaw, Poland; (B.T.); (P.D.)
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland; (P.K.); (M.G.)
| | | | - Paulina Duda
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, 02-109 Warsaw, Poland; (B.T.); (P.D.)
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland; (P.K.); (M.G.)
| | - Elzbieta Zieminska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Narattil NR, Maroun M. Differential role of NMDA receptors in hippocampal-dependent spatial memory and plasticity in juvenile male and female rats. Hippocampus 2024; 34:564-574. [PMID: 39143939 DOI: 10.1002/hipo.23631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Early life, or juvenility, stands out as the most pivotal phase in neurodevelopment due to its profound impact over the long-term cognition. During this period, significant changes are made in the brain's connections both within and between different areas, particularly in tandem with the development of more intricate behaviors. The hippocampus is among the brain regions that undergo significant postnatal remodeling, including dendritic arborization, synaptogenesis, the formation of complex spines and neuron proliferation. Given the crucial role of the hippocampus in spatial memory processing, it has been observed that spatial memory abilities continue to develop as the hippocampus matures, particularly before puberty. The N-methyl-d-aspartate (NMDA) type of glutamate receptor channel is crucial for the induction of activity-dependent synaptic plasticity and spatial memory formation in both rodents and humans. Although extensive evidence shows the role of NMDA receptors (NMDAr) in spatial memory and synaptic plasticity, the studies addressing the role of NMDAr in spatial memory of juveniles are sparse and mostly limited to adult males. In the present study, we, therefore, aimed to investigate the effects of systemic NMDAr blockade by the MK-801 on spatial memory (novel object location memory, OLM) and hippocampal plasticity in the form of long-term potentiation (LTP) of both male and female juvenile rats. Our results show the sex-dimorphic role of NMDAr in spatial memory and plasticity during juvenility, as systemic NMDAr blockade impairs the OLM and LTP in juvenile males without an effect on juvenile females. Taken together, our results demonstrate that spatial memory and hippocampal plasticity are NMDAr-dependent in juvenile males and NMDAr-independent in juvenile females. These sex-specific differences in the mechanisms of spatial memory and plasticity may imply gender-specific treatment for spatial memory disorders even in children.
Collapse
Affiliation(s)
- Nisha Rajan Narattil
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Chanana V, Zafer D, Kintner DB, Chandrashekhar JH, Eickhoff J, Ferrazzano PA, Levine JE, Cengiz P. TrkB-mediated neuroprotection in female hippocampal neurons is autonomous, estrogen receptor alpha-dependent, and eliminated by testosterone: a proposed model for sex differences in neonatal hippocampal neuronal injury. Biol Sex Differ 2024; 15:30. [PMID: 38566248 PMCID: PMC10988865 DOI: 10.1186/s13293-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.
Collapse
Affiliation(s)
- Vishal Chanana
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Dila Zafer
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Douglas B Kintner
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jayadevi H Chandrashekhar
- Waisman Center, University of Wisconsin, Madison, WI, USA
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jens Eickhoff
- Department of Statistics and Bioinformatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter A Ferrazzano
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA.
| |
Collapse
|
4
|
Lee CJ, Lee SH, Kang BS, Park MK, Yang HW, Woo SY, Park SW, Kim DY, Jeong HH, Yang WI, Kho AR, Choi BY, Song HK, Choi HC, Kim YJ, Suh SW. Effects of L-Type Voltage-Gated Calcium Channel (LTCC) Inhibition on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure. Antioxidants (Basel) 2024; 13:389. [PMID: 38671837 PMCID: PMC11047745 DOI: 10.3390/antiox13040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Epilepsy, marked by abnormal and excessive brain neuronal activity, is linked to the activation of L-type voltage-gated calcium channels (LTCCs) in neuronal membranes. LTCCs facilitate the entry of calcium (Ca2+) and other metal ions, such as zinc (Zn2+) and magnesium (Mg2+), into the cytosol. This Ca2+ influx at the presynaptic terminal triggers the release of Zn2+ and glutamate to the postsynaptic terminal. Zn2+ is then transported to the postsynaptic neuron via LTCCs. The resulting Zn2+ accumulation in neurons significantly increases the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, contributing to reactive oxygen species (ROS) generation and neuronal death. Amlodipine (AML), typically used for hypertension and coronary artery disease, works by inhibiting LTCCs. We explored whether AML could mitigate Zn2+ translocation and accumulation in neurons, potentially offering protection against seizure-induced hippocampal neuronal death. We tested this by establishing a rat epilepsy model with pilocarpine and administering AML (10 mg/kg, orally, daily for 7 days) post-epilepsy onset. We assessed cognitive function through behavioral tests and conducted histological analyses for Zn2+ accumulation, oxidative stress, and neuronal death. Our findings show that AML's LTCC inhibition decreased excessive Zn2+ accumulation, reactive oxygen species (ROS) production, and hippocampal neuronal death following seizures. These results suggest amlodipine's potential as a therapeutic agent in seizure management and mitigating seizures' detrimental effects.
Collapse
Affiliation(s)
- Chang-Jun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Song-Hee Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Beom-Seok Kang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Min-Kyu Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Hyun-Wook Yang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Seo-Young Woo
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Se-Wan Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Dong-Yeon Kim
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Hyun-Ho Jeong
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
| | - Won-Il Yang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea;
| | - A-Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo-Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Hong-Ki Song
- Department of Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea; (H.-K.S.); (Y.-J.K.)
- Hallym Institute of Epilepsy Research, Chuncheon 24252, Republic of Korea;
| | - Hui-Chul Choi
- Hallym Institute of Epilepsy Research, Chuncheon 24252, Republic of Korea;
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| | - Yeo-Jin Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea; (H.-K.S.); (Y.-J.K.)
| | - Sang-Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.-J.L.); (S.-H.L.); (B.-S.K.); (M.-K.P.); (H.-W.Y.); (S.-Y.W.); (S.-W.P.); (D.-Y.K.); (H.-H.J.); (W.-I.Y.)
- Hallym Institute of Epilepsy Research, Chuncheon 24252, Republic of Korea;
| |
Collapse
|
5
|
Zeng S, Zhu R, Wang Y, Yang Y, Li N, Fu N, Sun M, Zhang J. Role of GABA A receptor depolarization-mediated VGCC activation in sevoflurane-induced cognitive impairment in neonatal mice. Front Cell Neurosci 2022; 16:964227. [PMID: 36176629 PMCID: PMC9514857 DOI: 10.3389/fncel.2022.964227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background In neonatal mice, anesthesia with sevoflurane depolarizes the GABA Type A receptor (GABAAR), which leads to cognitive impairment. Calcium accumulation in neurons can lead to neurotoxicity. Voltage-gated calcium channels (VGCCs) can increase intracellular calcium concentration under isoflurane and hypoxic conditions. The underlying mechanisms remain largely unknown. Methods Six-day-old mice were anesthetized with 3% sevoflurane for 2 h/day for 3 days. The Y-Maze, new object recognition (NOR) test, the Barnes maze test, immunoassay, immunoblotting, the TUNEL test, and Golgi-Cox staining were used to assess cognition, calcium concentration, inflammatory response, GABAAR activation, VGCC expression, apoptosis, and proliferation of hippocampal nerve cells in mice and HT22 cells. Results Compared with the control group, mice in the sevoflurane group had impaired cognitive function. In the sevoflurane group, the expression of Gabrb3 and Cav1.2 in the hippocampal neurons increased (p < 0.01), the concentration of calcium ions increased (p < 0.01), inflammatory reaction and apoptosis of neurons increased (p < 0.01), the proliferation of neurons in the DG area decreased (p < 0.01), and dendritic spine density decreased (p < 0.05). However, the inhibition of Gabrb3 and Cav1.2 alleviated cognitive impairment and reduced neurotoxicity. Conclusions Sevoflurane activates VGCCs by inducing GABAAR depolarization, resulting in cognitive impairment. Activated VGCCs cause an increase in intracellular calcium concentration and an inflammatory response, resulting in neurotoxicity and cognitive impairment.
Collapse
Affiliation(s)
- Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
7
|
Abstract
The hippocampus is central to spatial learning and stress responsiveness, both of which differ in form and function in males versus females, yet precisely how the hippocampus contributes to these sex differences is largely unknown. In reproductively mature individuals, sex differences in the steroid hormone milieu undergirds many sex differences in hippocampal-related endpoints. However, there is also evidence for developmental programming of adult hippocampal function, with a central role for androgens as well as their aromatized byproduct, estrogens. These include sex differences in cell genesis, synapse formation, dendritic arborization, and excitatory/inhibitory balance. Enduring effects of steroid hormone modulation occur during two developmental epochs, the first being the classic perinatal critical period of sexual differentiation of the brain and the other being adolescence and the associated hormonal changes of puberty. The cellular mechanisms by which steroid hormones enduringly modify hippocampal form and function are poorly understood, but we here review what is known and highlight where attention should be focused.
Collapse
|
8
|
Hippocampal Metabolite Profiles in Two Rat Models of Autism: NMR-Based Metabolomics Studies. Mol Neurobiol 2020; 57:3089-3105. [PMID: 32468248 PMCID: PMC7320041 DOI: 10.1007/s12035-020-01935-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorders (ASDs) are increasingly being diagnosed. Hypotheses link ASD to genetic, epigenetic, or environmental factors. The role of oxidative stress and the imbalance between excitatory and inhibitory neurotransmission in the pathogenesis of ASD has been suggested. Rats in which ASD symptoms are induced by valproate (VPA) or thalidomide (THAL) application in utero are useful models in ASD studies. Our study investigated whether rats in ASD models show changes in metabolite levels in the brain consistent with the hypothetical pathomechanisms of ASD. Female rats were fed one dose of 800 mg/kg VPA or 500 mg/kg THAL orally on the 11th day of gestation, and 1-month offspring were used for the experiments. Metabolic profiles from proton nuclear magnetic resonance spectroscopy of hydrophilic and hydrophobic extracts of rat hippocampi were subjected to OPLS-DA statistical analysis. Large differences between both models in the content of several metabolites in the rat hippocampus were noticed. The following metabolic pathways were identified as being disturbed in both ASD models: steroid hormone biosynthesis; fatty acid biosynthesis; the synthesis and degradation of ketone bodies; glycerophospholipid metabolism; cholesterol metabolism; purine metabolism; arginine and proline metabolism; valine, leucine, and isoleucine biosynthesis and degradation. These results indicate disorders of energy metabolism, altered structure of cell membranes, changes in neurotransmission, and the induction of oxidative stress in the hippocampus. Our data, consistent with hypotheses of ASD pathomechanisms, may be useful in future ASD studies, especially for the interpretation of the results of metabolomics analysis of body fluids in rat ASD models.
Collapse
|
9
|
Mir FR, Wilson C, Cabrera Zapata LE, Aguayo LG, Cambiasso MJ. Gonadal hormone-independent sex differences in GABA A receptor activation in rat embryonic hypothalamic neurons. Br J Pharmacol 2020; 177:3075-3090. [PMID: 32133616 DOI: 10.1111/bph.15037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptor functions are dependent on subunit composition, and, through their activation, GABA can exert trophic actions in immature neurons. Although several sex differences in GABA-mediated responses are known to be dependent on gonadal hormones, few studies have dealt with sex differences detected before the critical period of brain masculinisation. In this study, we assessed GABAA receptor functionality in sexually segregated neurons before brain hormonal masculinisation. EXPERIMENTAL APPROACH Ventromedial hypothalamic neurons were obtained from embryonic day 16 rat brains and grown in vitro for 2 days. Calcium imaging and electrophysiology recordings were carried out to assess GABAA receptor functional parameters. KEY RESULTS GABAA receptor activation elicited calcium entry in immature hypothalamic neurons mainly through L-type voltage-dependent calcium channels. Nifedipine blocked calcium entry more efficiently in male than in female neurons. There were more male than female neurons responding to GABA, and they needed more time to return to resting levels. Pharmacological characterisation revealed that propofol enhanced GABAA -mediated currents and blunted GABA-mediated calcium entry more efficiently in female neurons than in males. Testosterone treatment did not erase such sex differences. These data suggest sex differences in the expression of GABAA receptor subtypes. CONCLUSION AND IMPLICATIONS GABA-mediated responses are sexually dimorphic even in the absence of gonadal hormone influence, suggesting genetically biased differences. These results highlight the importance of GABAA receptors in hypothalamic neurons even before hormonal masculinisation of the brain.
Collapse
Affiliation(s)
- Franco R Mir
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Fisiología Animal, Departamento de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Carlos Wilson
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigación en Medicina Traslaciona, Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Lucas E Cabrera Zapata
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis G Aguayo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Julia Cambiasso
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Le Dieu-Lugon B, Dupré N, Legouez L, Leroux P, Gonzalez BJ, Marret S, Leroux-Nicollet I, Cleren C. Why considering sexual differences is necessary when studying encephalopathy of prematurity through rodent models. Eur J Neurosci 2019; 52:2560-2574. [PMID: 31885096 DOI: 10.1111/ejn.14664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
Preterm birth is a high-risk factor for the development of gray and white matter abnormalities, referred to as "encephalopathy of prematurity," that may lead to life-long motor, cognitive, and behavioral impairments. The prevalence and clinical outcomes of encephalopathy of prematurity differ between sexes, and elucidating the underlying biological basis has become a high-priority challenge. Human studies are often limited to assessment of brain region volumes by MRI, which does not provide much information about the underlying mechanisms of lesions related to very preterm birth. However, models using KO mice or pharmacological manipulations in rodents allow relevant observations to help clarify the mechanisms of injury sustaining sex-differential vulnerability. This review focuses on data obtained from mice aged P1-P5 or rats aged P3 when submitted to cerebral damage such as hypoxia-ischemia, as their brain lesions share similarities with lesion patterns occurring in very preterm human brain, before 32 gestational weeks. We first report data on the mechanisms underlying the development of sexual brain dimorphism in rodent, focusing on the hippocampus. In the second part, we describe sex specificities of rodent models of encephalopathy of prematurity (RMEP), focusing on mechanisms underlying differences in hippocampal vulnerability. Finally, we discuss the relevance of these RMEP. Together, this review highlights the need to systematically search for potential effects of sex when studying the mechanisms underlying deficits in RMEP in order to design effective sex-specific medical interventions in human preterms.
Collapse
Affiliation(s)
- Bérénice Le Dieu-Lugon
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Nicolas Dupré
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Lou Legouez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Philippe Leroux
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Bruno J Gonzalez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Stéphane Marret
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France.,Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Isabelle Leroux-Nicollet
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Carine Cleren
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| |
Collapse
|
11
|
Kiernan EA, Wang T, Vanderplow AM, Cherukuri S, Cahill ME, Watters JJ. Neonatal Intermittent Hypoxia Induces Lasting Sex-Specific Augmentation of Rat Microglial Cytokine Expression. Front Immunol 2019; 10:1479. [PMID: 31333645 PMCID: PMC6615134 DOI: 10.3389/fimmu.2019.01479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Sleep disordered breathing (SDB) affects 3-5% of the pediatric population, including neonates who are highly susceptible due to an underdeveloped ventilatory control system, and REM-dominated sleep. Although pediatric SDB is associated with poor cognitive outcomes, very little research has focused on models of pediatric SDB, particularly in neonates. In adults and neonates, intermittent hypoxia (IH), a hallmark of SDB, recapitulates multiple physiological aspects of severe SDB, including neuronal apoptosis, sex-specific cognitive deficits, and neuroinflammation. Microglia, resident CNS immune cells, are important mediators of neurodevelopment and neuroinflammation, but to date, no studies have examined the molecular properties of microglia in the context of neonatal IH. Here, we tested the hypothesis that neonatal IH will enhance microglial inflammation and sex-specifically lead to long-term changes in working memory. To test this hypothesis, we exposed post-natal day (P1) neonates with dams to an established adult model of pathological IH consisting of 2 min cycles of 10.5% O2 followed by 21% O2, 8 h/day for 8 days. We then challenged the offspring with bacterial lipopolysaccharide (LPS) at P9 or at 6-8 weeks of age and immunomagnetically isolated microglia for gene expression analyses and RNA-sequencing. We also characterized neonatal CNS myeloid cell populations by flow cytometry analyses. Lastly, we examined working memory performance using a Y-maze in the young adults. Contrary to our hypothesis, we found that neonatal IH acutely augmented basal levels of microglial anti-inflammatory cytokines, attenuated microglial responses to LPS, and sex-specifically altered CNS myeloid populations. We identified multiple sex differences in basal neonatal microglial expression of genes related to chemotaxis, cognition, and aging. Lastly, we found that basal, but not LPS-induced, anti-inflammatory cytokines were augmented sex-specifically in the young adults, and that there was a significant interaction between sex and IH on basal working memory. Our results support the idea that neonates may be able to adapt to IH exposures that are pathological in adults. Further, they suggest that male and female microglial responses to IH are sex-specific, and that these sex differences in basal microglial gene expression may contribute to sexual dimorphisms in vulnerability to IH-induced cognitive disruption.
Collapse
Affiliation(s)
- Elizabeth A Kiernan
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Tao Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda M Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Sneha Cherukuri
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael E Cahill
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|
13
|
Andersen SL. Stress, sensitive periods, and substance abuse. Neurobiol Stress 2019; 10:100140. [PMID: 30569003 PMCID: PMC6288983 DOI: 10.1016/j.ynstr.2018.100140] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the inter-relationship between drug abuse and social stress has primarily focused on the role of stress exposure during adulthood and more recently, adolescence. Adolescence is a time of heightened reward sensitivity, but it is also a time when earlier life experiences are expressed. Exposure to stress early in postnatal life is associated with an accelerated age of onset for drug use. Lifelong addiction is significantly greater if drug use is initiated during early adolescence. Understanding how developmental changes following stress exposure interact with sensitive periods to unfold over the course of maturation is integral to reducing their later impact on substance use. Arousal levels, gender/sex, inflammation, and the timing of stress exposure play a role in the vulnerability of these circuits. The current review focuses on how early postnatal stress impacts brain development during a sensitive period to increase externalizing and internalizing behaviors in adolescence that include social interactions (aggression; sexual activity), working memory impairment, and depression. How stress effects the developmental trajectories of brain circuits that are associated with addiction are discussed for both clinical and preclinical studies.
Collapse
|
14
|
Bennet L, Galinsky R, Draghi V, Lear CA, Davidson JO, Unsworth CP, Gunn AJ. Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep. J Physiol 2018; 596:6079-6092. [PMID: 29572829 DOI: 10.1113/jp275627] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We evaluated the effect of magnesium sulphate (MgSO4 ) on seizures induced by asphyxia in preterm fetal sheep. MgSO4 did not prevent seizures, but significantly reduced the total duration, number of seizures, seizure amplitude and average seizure burden. Saline-asphyxia male fetuses had significantly more seizures than female fetuses, but male fetuses showed significantly greater reduction in seizures during MgSO4 infusion than female fetuses. A circadian profile of seizure activity was observed in all fetuses, with peak seizures seen around 04.00-06.00 h on the first and second days after the end of asphyxia. This study is the first to demonstrate that MgSO4 has utility as an anti-seizure agent after hypoxia-ischaemia. More information is needed about the mechanisms mediating the effect of MgSO4 on seizures and sexual dimorphism, and the influence of circadian rhythms on seizure expression. ABSTRACT Seizures are common in newborns after asphyxia at birth and are often refractory to anti-seizure agents. Magnesium sulphate (MgSO4 ) has anticonvulsant effects and is increasingly given to women in preterm labour for potential neuroprotection. There is limited information on its effects on perinatal seizures. We examined the hypothesis that MgSO4 infusion would reduce fetal seizures after asphyxia in utero. Preterm fetal sheep at 0.7 gestation (104 days, term = 147 days) were given intravenous infusions of either saline (n = 14) or MgSO4 (n = 12, 160 mg bolus + 48 mg h-1 infusion over 48 h). Fetuses underwent umbilical cord occlusion (UCO) for 25 min, 24 h after the start of infusion. The start time for seizures did not differ between groups, but MgSO4 significantly reduced the total number of seizures (P < 0.001), peak seizure amplitude (P < 0.05) and seizure burden (P < 0.005). Within the saline-asphyxia group, male fetuses had significantly more seizures than females (P < 0.05). Within the MgSO4 -asphyxia group, although both sexes had fewer seizures than the saline-asphyxia group, the greatest effect of MgSO4 was on male fetuses, with reduced numbers of seizures (P < 0.001) and seizure burden (P < 0.005). Only 1 out of 6 MgSO4 males had seizures on the second day post-UCO compared to 5 out of 6 MgSO4 female fetuses (P = 0.08). Finally, seizures showed a circadian profile with peak seizures between 04.00 and 06.00 h on the first and second day post-UCO. Collectively, these results suggest that MgSO4 may have utility in treating perinatal seizures and has sexually dimorphic effects.
Collapse
Affiliation(s)
- Laura Bennet
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Vittoria Draghi
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Babstock DM, Walling SG, Harley CW, Malsbury CW. Androgen receptor ontogeny in the dorsal hippocampus of male and female rats. Horm Behav 2018. [PMID: 29534889 DOI: 10.1016/j.yhbeh.2018.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D M Babstock
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - S G Walling
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - C W Harley
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada.
| | - C W Malsbury
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| |
Collapse
|
16
|
Sex differences in ischaemic stroke: potential cellular mechanisms. Clin Sci (Lond) 2017; 131:533-552. [PMID: 28302915 DOI: 10.1042/cs20160841] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
Abstract
Stroke remains a leading cause of mortality and disability worldwide. More women than men have strokes each year, in part because women live longer. Women have poorer functional outcomes, are more likely to need nursing home care and have higher rates of recurrent stroke compared with men. Despite continued advancements in primary prevention, innovative acute therapies and ongoing developments in neurorehabilitation, stroke incidence and mortality continue to increase due to the aging of the U.S. POPULATION Sex chromosomes (XX compared with XY), sex hormones (oestrogen and androgen), epigenetic regulation and environmental factors all contribute to sex differences. Ischaemic sensitivity varies over the lifespan, with females having an "ischaemia resistant" phenotype that wanes after menopause, which has recently been modelled in the laboratory. Pharmacological therapies for acute ischaemic stroke are limited. The only pharmacological treatment for stroke approved by the Food and Drug Administration (FDA) is tissue plasminogen activator (tPA), which must be used within hours of stroke onset and has a number of contraindications. Pre-clinical studies have identified a number of potentially efficacious neuroprotective agents; however, nothing has been effectively translated into therapy in clinical practice. This may be due, in part, to the overwhelming use of young male rodents in pre-clinical research, as well as lack of sex-specific design and analysis in clinical trials. The review will summarize the current clinical evidence for sex differences in ischaemic stroke, and will discuss sex differences in the cellular mechanisms of acute ischaemic injury, highlighting cell death and immune/inflammatory pathways that may contribute to these clinical differences.
Collapse
|
17
|
Demarest TG, Waite EL, Kristian T, Puche AC, Waddell J, McKenna MC, Fiskum G. Sex-dependent mitophagy and neuronal death following rat neonatal hypoxia-ischemia. Neuroscience 2016; 335:103-13. [PMID: 27555552 DOI: 10.1016/j.neuroscience.2016.08.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
Males are more susceptible than females to long-term cognitive deficits following neonatal hypoxic-ischemic encephalopathy (HIE). Mitochondrial dysfunction is implicated in the pathophysiology of cerebral hypoxia-ischemia (HI), but the influence of sex on mitochondrial quality control (MQC) after HI is unknown. Therefore, we tested the hypothesis that mitophagy is sexually dimorphic and neuroprotective 20-24h following the Rice-Vannucci model of rat neonatal HI at postnatal day 7 (PN7). Mitochondrial and lysosomal morphology and degree of co-localization were determined by immunofluorescence in the cerebral cortex. No difference in mitochondrial abundance was detected in the cortex after HI. However, net mitochondrial fission increased in both hemispheres of female brain, but was most extensive in the ipsilateral hemisphere of male brain following HI. Basal autophagy, assessed by immunoblot for the autophagosome marker LC3BI/II, was greater in males suggesting less intrinsic reserve capacity for autophagy following HI. Autophagosome formation, lysosome size, and TOM20/LAMP2 co-localization were increased in the contralateral hemisphere following HI in female, but not male brain. An accumulation of ubiquitinated mitochondrial protein was observed in male, but not female brain following HI. Moreover, neuronal cell death with NeuN/TUNEL co-staining occurred in both hemispheres of male brain, but only in the ipsilateral hemisphere of female brain after HI. In summary, mitophagy induction and neuronal cell death are sex dependent following HI. The deficit in elimination of damaged/dysfunctional mitochondria in the male brain following HI may contribute to male vulnerability to neuronal death and long-term neurobehavioral deficits following HIE.
Collapse
Affiliation(s)
- T G Demarest
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - E L Waite
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 21201, USA
| | - T Kristian
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - A C Puche
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - J Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - M C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - G Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
18
|
Gonadal hormone modulation of intracellular calcium as a mechanism of neuroprotection. Front Neuroendocrinol 2016; 42:40-52. [PMID: 26930421 DOI: 10.1016/j.yfrne.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Hormones have wide-ranging effects throughout the nervous system, including the ability interact with and modulate many aspects of intracellular calcium regulation and calcium signaling. Indeed, these interactions specifically may help to explain the often opposing or paradoxical effects of hormones, such as their ability to both promote and prevent neuronal cell death during development, as well as reduce or exacerbate damage following an insult or injury in adulthood. Here, we review the basic mechanisms underlying intracellular calcium regulation-perhaps the most dynamic and flexible of all signaling molecules-and discuss how gonadal hormones might manipulate these mechanisms to coordinate diverse cellular responses and achieve disparate outcomes. Additional future research that specifically addresses questions of sex and hormone effects on calcium signaling at different ages will be critical to understanding hormone-mediated neuroprotection.
Collapse
|
19
|
Edlow AG, Guedj F, Pennings JL, Sverdlov D, Neri C, Bianchi DW. Males are from Mars, and females are from Venus: sex-specific fetal brain gene expression signatures in a mouse model of maternal diet-induced obesity. Am J Obstet Gynecol 2016; 214:623.e1-623.e10. [PMID: 26945603 DOI: 10.1016/j.ajog.2016.02.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. OBJECTIVE We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. STUDY DESIGN Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. RESULTS Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P < .001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared with females. CONCLUSION Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy has a significant impact on the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment.
Collapse
|
20
|
Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI. Exp Neurol 2015; 275 Pt 2:285-95. [PMID: 26376217 DOI: 10.1016/j.expneurol.2015.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 12/11/2022]
Abstract
Hypoxia-ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning.
Collapse
|
21
|
Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience 2015; 287:78-92. [DOI: 10.1016/j.neuroscience.2014.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022]
|
22
|
Kight KE, McCarthy MM. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis. Neurobiol Dis 2014; 72 Pt B:136-43. [PMID: 24892888 PMCID: PMC5322568 DOI: 10.1016/j.nbd.2014.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022] Open
Abstract
Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis.
Collapse
Affiliation(s)
- Katherine E Kight
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Margaret M McCarthy
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Dorris DM, Cao J, Willett JA, Hauser CA, Meitzen J. Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. J Neurophysiol 2014; 113:720-9. [PMID: 25376786 DOI: 10.1152/jn.00687.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sex differences in neuron electrophysiological properties were traditionally associated with brain regions directly involved in reproduction in adult, postpubertal animals. There is growing acknowledgement that sex differences can exist in other developmental periods and brain regions as well. This includes the dorsal striatum (caudate/putamen), which shows robust sex differences in gene expression, neuromodulator action (including dopamine and 17β-estradiol), and relevant sensorimotor behaviors and pathologies such as the responsiveness to drugs of abuse. Here we examine whether these sex differences extend to striatal neuron electrophysiology. We test the hypothesis that passive and active medium spiny neuron (MSN) electrophysiological properties in prepubertal rat dorsal striatum differ by sex. We made whole cell recordings from male and females MSNs from acute brain slices. The slope of the evoked firing rate to current injection curve was increased in MSNs recorded from females compared with males. The initial action potential firing rate was increased in MSNs recorded from females compared with males. Action potential after-hyperpolarization peak was decreased, and threshold was hyperpolarized in MSNs recorded from females compared with males. No sex differences in passive electrophysiological properties or miniature excitatory synaptic currents were detected. These findings indicate that MSN excitability is increased in prepubertal females compared with males, providing a new mechanism that potentially contributes to generating sex differences in striatal-mediated processes. Broadly, these findings demonstrate that sex differences in neuron electrophysiological properties can exist prepuberty in brain regions not directly related to reproduction.
Collapse
Affiliation(s)
- David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Jaime A Willett
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina; Graduate Program in Physiology, North Carolina State University, Raleigh, North Carolina
| | - Caitlin A Hauser
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina; Center for Human Health and the Environment, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina; and Grass Laboratory, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
24
|
Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 2014; 47:173-88. [PMID: 25293493 DOI: 10.1007/s10863-014-9583-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.
Collapse
Affiliation(s)
- Tyler G Demarest
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | |
Collapse
|
25
|
Zup SL, Edwards NS, McCarthy MM. Sex- and age-dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus. Neuroscience 2014; 281:77-87. [PMID: 25264034 DOI: 10.1016/j.neuroscience.2014.09.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/31/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal neurons must maintain control over cytosolic calcium levels, especially during development, as excitation and calcium flux are necessary for proper growth and function. But excessive calcium can lead to excitotoxic cell death. Previous work suggests that neonatal male and female hippocampal neurons regulate cytosolic calcium differently, thereby leading to differential susceptibility to excitotoxic damage. Hippocampal neurons are also exposed to gonadal hormones during development and express high levels of androgen receptors. Androgens have both neuroprotective and neurotoxic effects in adults and developing animals. The present study sought to examine the effect of androgen on cell survival after an excitatory stimulus in the developing hippocampus, and whether androgen-mediated calcium regulation was the governing mechanism. We observed that glutamate did not induce robust or sexually dimorphic apoptosis in cultured hippocampal neurons at an early neonatal time point, but did 5days later - only in males. Further, pretreatment with the androgen dihydrotestosterone (DHT) protected males from apoptosis during this time, but had no effect on females. Calcium imaging of sex-specific cultures revealed that DHT decreased the peak of intracellular calcium induced by glutamate, but only in males. To determine a possible mechanism for this androgen neuroprotection and calcium regulation, we quantified three calcium regulatory proteins, plasma membrane calcium ATPase1 (PMCA1), sodium/calcium exchanger1 (NCX1), and the sarco/endoplasmic reticulum calcium ATPase 2 (SERCA2). Surprisingly, there was no sex difference in the level of any of the three proteins. Treatment with DHT significantly decreased PMCA1 and NCX1, but increased SERCA2 protein levels in very young animals but not at a later timepoint. Taken together, these data suggest a complex interaction of sex, hormones, calcium regulation and developmental age; however androgens acting during the first week of life are implicated in regulation of hippocampal cell death and may be an underlying mechanism for sexually dimorphic apoptosis.
Collapse
Affiliation(s)
- S L Zup
- Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, United States; Department of Psychology, University of Massachusetts Boston, Boston, MA 02125, United States.
| | - N S Edwards
- Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - M M McCarthy
- Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
26
|
Madden AMK, Zup SL. Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent. Physiol Behav 2014; 128:260-9. [PMID: 24530263 DOI: 10.1016/j.physbeh.2014.01.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/11/2013] [Accepted: 01/23/2014] [Indexed: 11/17/2022]
Abstract
There is a striking sex difference in the diagnosis of Autism Spectrum Disorder (ASD), such that males are diagnosed more often than females, usually in early childhood. Given that recent research has implicated elevated blood serotonin (hyperserotonemia) in perinatal development as a potential factor in the pathogenesis of ASD, we sought to evaluate the effects of developmental hyperserotonemia on social behavior and relevant brain morphology in juvenile males and females. Administration of 5-methoxytryptamine (5-MT) both pre- and postnatally was found to disrupt normal social play behavior in juveniles. In addition, alterations in the number of oxytocinergic cells in the lateral and medial paraventricular nucleus (PVN) were evident on postnatal day 18 (PND18) in 5-MT treated females, but not treated males. 5-MT treatment also changed the relative expression of 5-HT(1A) and 5-HT(2A) receptors in the PVN, in males at PND10 and in females at PND18. These data suggest that serotonin plays an organizing role in the development of the PVN in a sexually dimorphic fashion, and that elevated serotonin levels during perinatal development may disrupt normal organization, leading to neurochemical and behavioral changes. Importantly, these data also suggest that the inclusion of both juvenile males and females in studies will be necessary to fully understand the role of serotonin in development, especially in relation to ASD.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/physiology
- Female
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Paraventricular Hypothalamic Nucleus/drug effects
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/physiology
- Play and Playthings
- Rats
- Rats, Sprague-Dawley/growth & development
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Oxytocin/biosynthesis
- Receptors, Oxytocin/physiology
- Receptors, Serotonin/biosynthesis
- Receptors, Serotonin/physiology
- Serotonin/blood
- Serotonin/pharmacology
- Sex Factors
Collapse
Affiliation(s)
- Amanda M K Madden
- Graduate Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, USA; Psychology Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Susan L Zup
- Graduate Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, USA; Psychology Department, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
27
|
Quillinan N, Deng G, Grewal H, Herson PS. Androgens and stroke: good, bad or indifferent? Exp Neurol 2014; 259:10-5. [PMID: 24512750 DOI: 10.1016/j.expneurol.2014.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia caused by loss of blood supply to the brain during cardiac arrest or stroke are major causes of death and disability. Biological sex is an important factor in predicting vulnerability of the brain to an ischemic insult, with males being at higher risk for cardio-cerebrovascular events than females of the same age. However, relative incidence of stroke between the genders appears to normalize at advanced ages. Therefore, many scientists have focused on the mechanisms of sex differences in outcome following brain ischemic injury, with a particular emphasis on the role of sex steroids. The majority of studies indicate that female sex steroids, such as estrogen and progesterone, play important roles in the relative neuroprotection following cerebral ischemia observed in females. However, less is known about male sex steroids and brain damage. This review describes the state of our knowledge of androgen-related contributions to neurological injury and recovery following cerebral ischemia that occurs following stroke. Experimental studies examining the effects of castration, androgenic agonists and antagonists and aging provide valuable insights into the role of androgens in clinical outcome following cerebrovascular events.
Collapse
Affiliation(s)
- Nidia Quillinan
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Guiying Deng
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Himmat Grewal
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Murguía-Castillo J, Beas-Zárate C, Rivera-Cervantes MC, Feria-Velasco AI, Ureña-Guerrero ME. NKCC1 and KCC2 protein expression is sexually dimorphic in the hippocampus and entorhinal cortex of neonatal rats. Neurosci Lett 2013; 552:52-7. [PMID: 23932891 DOI: 10.1016/j.neulet.2013.07.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 01/15/2023]
Abstract
Seizure susceptibility appears to be greater in males than females during the early developmental stages of the brain when the gamma-aminobutyric acid (GABA), acting through its GABA-A receptor, predominantly produces neuronal depolarization. GABA-mediated excitation has been observed when the NKCC1 (chloride importer) expression level is higher than KCC2 (chloride exporter). In this study, the relative protein expression of NKCC1 and KCC2 over β-actin was evaluated in the hippocampus and entorhinal cortex of male and female rats during postnatal days (PND) 1, 3, 5, 7, 9, 11, 13 and 15 using Western blotting assays. For both cerebral regions in the females, the NKCC1/β-actin expression ratio was constant during all evaluated ages, whereas the KCC2/β-actin expression ratio increased gradually until reaching a maximal level at PND9 that was nearly three- and ten-fold higher in the hippocampus and entorhinal cortex, respectively, compared with the initial level. In males, the NKCC1/β-actin expression ratio was constant during the first week, peaking almost three-fold higher than the initial level at PND9 in the hippocampus and at PND11 in the entorhinal cortex and then returning to the initial values at PND13, whereas the KCC2/β-actin expression ratio increased gradually to reach a maximal and steady level at PND5, which were nearly two- and four-fold higher in the hippocampus and entorhinal cortex, respectively, compared with the intial level. In conclusion, the NKCC1/β-actin and KCC2/β-actin expression ratios displayed a specific expression profile for each gender and cerebral region, which could be related with the differences in seizure susceptibility observed between genders.
Collapse
Affiliation(s)
- Justo Murguía-Castillo
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | | | | | | | | |
Collapse
|
29
|
Waddell J, Bowers JM, Edwards NS, Jordan CL, McCarthy MM. Dysregulation of neonatal hippocampal cell genesis in the androgen insensitive Tfm rat. Horm Behav 2013; 64:144-52. [PMID: 23747829 PMCID: PMC3753588 DOI: 10.1016/j.yhbeh.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
The first two weeks of life are a critical period for hippocampal development. At this time gonadal steroid exposure organizes sex differences in hippocampal sensitivity to activational effects of steroids, hippocampal cell morphology and hippocampus dependent behaviors. Our laboratory has characterized a robust sex difference in neonatal neurogenesis in the hippocampus that is mediated by estradiol. Here, we extend our knowledge of this sex difference by comparing the male and female hippocampus to the androgen insensitive testicular feminized mutant (Tfm) rat. In the neonatal Tfm rat hippocampus, fewer newly generated cells survive compared to males or females. This deficit in cell genesis is partially recovered with the potent androgen DHT, but is more completely recovered following estradiol administration. Tfm rats do not differ from males or females in the level of endogenous estradiol in the neonatal hippocampus, suggesting other mechanisms mediate a differential sensitivity to estradiol in male, female and Tfm hippocampus. We also demonstrate disrupted performance on a hippocampal-dependent contextual fear discrimination task. Tfm rats generalize fear across contexts, and do not exhibit significant loss of fear during extinction exposure. These results extend prior reports of exaggerated response to stress in Tfm rats, and following gonadectomy in normal male rats.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
30
|
Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders. Biol Sex Differ 2013; 4:1. [PMID: 23331332 PMCID: PMC3586570 DOI: 10.1186/2042-6410-4-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/31/2012] [Indexed: 01/30/2023] Open
Abstract
Women have a higher incidence of stress related disorders including depression and generalized anxiety disorder, and epigenetic mechanisms likely contribute to this sex difference. Evidence from preclinical research suggests that epigenetic mechanisms are responsible for both sexual dimorphism of brain regions and sensitivity of the stress response. Epigenetic modifications such as DNA methylation and histone modifications can occur transgenerationally, developmentally, or in response to environmental stimuli such as stress exposure. This review will provide an overview of the various forms of epigenetic modifications observed in the central nervous system and will explain how these mechanisms contribute to a sexually dimorphic brain. It will also discuss the ways in which epigenetic alterations coincide with, and functionally contribute to, the behavioral response to stress across the lifespan. Ultimately, this review will focus on novel research utilizing animal models to investigate sex differences in epigenetic mechanisms that influence susceptibility to stress. Exploration of this relationship reveals epigenetic mechanisms with the potential to explain sexual dimorphism in the occurrence of stress related disorders.
Collapse
|
31
|
Desgent S, Duss S, Sanon NT, Lema P, Lévesque M, Hébert D, Rébillard RM, Bibeau K, Brochu M, Carmant L. Early-life stress is associated with gender-based vulnerability to epileptogenesis in rat pups. PLoS One 2012; 7:e42622. [PMID: 22880055 PMCID: PMC3411822 DOI: 10.1371/journal.pone.0042622] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
During development, the risk of developing mesial temporal lobe epilepsy (MTLE) increases when the developing brain is exposed to more than one insult in early life. Early life insults include abnormalities of cortical development, hypoxic-ischemic injury and prolonged febrile seizures. To study epileptogenesis, we have developed a two-hit model of MTLE characterized by two early-life insults: a freeze lesion-induced cortical malformation at post-natal day 1 (P1), and a prolonged hyperthermic seizure (HS) at P10. As early life stressors lead to sexual dimorphism in both acute response and long-term outcome, we hypothesized that our model could lead to gender-based differences in acute stress response and long-term risk of developing MTLE. Male and female pups underwent a freeze-lesion induced cortical microgyrus at P1 and were exposed to HS at P10. Animals were monitored by video-EEG from P90 to P120. Pre and post-procedure plasma corticosterone levels were used to measure stress response at P1 and P10. To confirm the role of sex steroids, androgenized female pups received daily testosterone injections to the mother pre-natally and post-natally for nine days while undergoing both insults. We demonstrated that after both insults females did not develop MTLE while all males did. This correlated with a rise in corticosterone levels at P1 following the lesion in males only. Interestingly, all androgenized females showed a similar rise in corticosterone at P1, and also developed MTLE. Moreover, we found that the cortical lesion significantly decreased the latency to generalized convulsion during hyperthermia at P10 in both genders. The cortical dysplasia volumes at adulthood were also similar between male and female individuals. Our data demonstrate sexual dimorphism in long-term vulnerability to develop epilepsy in the lesion + hyperthermia animal model of MTLE and suggest that the response to early-life stress at P1 contributes significantly to epileptogenesis in a gender-specific manner.
Collapse
Affiliation(s)
- Sébastien Desgent
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (S. Desgent); (LC)
| | - Sandra Duss
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie T. Sanon
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Pablo Lema
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - David Hébert
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Rose-Marie Rébillard
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Karine Bibeau
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Michèle Brochu
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Lionel Carmant
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (S. Desgent); (LC)
| |
Collapse
|
32
|
Sex differences in mechanisms and outcome of neonatal hypoxia-ischemia in rodent models: implications for sex-specific neuroprotection in clinical neonatal practice. Neurol Res Int 2012; 2012:867531. [PMID: 22474588 PMCID: PMC3306914 DOI: 10.1155/2012/867531] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/03/2011] [Accepted: 11/16/2011] [Indexed: 11/20/2022] Open
Abstract
Clinical findings show that male infants with hypoxic-ischemic injury (HI) fare more poorly than matched females on cognitive outcomes. Rodent models of neonatal hypoxia-ischemia support this difference, with data showing that perinatal brain injury leads to long-term behavioral deficits primarily in male rodents and in female rodents treated with early androgens. Results support the idea that sex-specific gonadal hormones may modulate developmental response to injury and dovetail with overwhelming evidence of developmental androgen effects on typical brain morphology and behavior. However, mechanisms underlying sex differences in response to early brain injury may be more complicated. Specifically, activation of cell death pathways in response to HI may also differ by sex. In females, the preferential activation of the caspase-dependent apoptotic pathway may actually afford greater protection, potentially due to the actions of X-linked inhibitor of apoptosis (XIAP) within this pathway. This contrasts the pattern of preferential activation of the caspase-independent pathway in males. While an integrated model of sex-specific hormonal and genetic modulation of response to early injury remains to be fully elucidated, these findings suggest that infants might benefit from sex-specific neuroprotection following HI injury.
Collapse
|
33
|
Waddell J, McCarthy MM. Sexual differentiation of the brain and ADHD: what is a sex difference in prevalence telling us? Curr Top Behav Neurosci 2012; 9:341-60. [PMID: 21120649 PMCID: PMC4841632 DOI: 10.1007/7854_2010_114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sexual differentiation of the brain is a function of various processes that prepare the organism for successful reproduction in adulthood. Release of gonadal steroids during both the perinatal and the pubertal stages of development organizes many sex differences, producing changes in brain excitability and morphology that endure across the lifespan. To achieve these sexual dimorphisms, gonadal steroids capitalize on a number of distinct mechanisms across brain regions. Comparison of the developing male and female brain provides insight into the mechanisms through which synaptic connections are made, and circuits are organized that mediate sexually dimorphic behaviors. The prevalence of most psychiatric and neurological disorders differ in males versus females, including disorders of attention, activity and impulse control. While there is a strong male bias in incidence of attention deficit and hyperactivity disorders, the source of that bias remains controversial. By elucidating the biological underpinnings of male versus female brain development, we gain a greater understanding of how hormones and genes do and do not contribute to the differential vulnerability in one sex versus the other.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA,
| | | |
Collapse
|
34
|
Pae EK, Yoon AJ, Ahuja B, Lau GW, Nguyen DD, Kim Y, Harper RM. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum. Int J Dev Neurosci 2011; 29:819-26. [PMID: 21964325 DOI: 10.1016/j.ijdevneu.2011.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 01/13/2023] Open
Abstract
Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits.
Collapse
Affiliation(s)
- Eung-Kwon Pae
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol 2011; 9:e1001051. [PMID: 21541365 PMCID: PMC3082517 DOI: 10.1371/journal.pbio.1001051] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75NTR membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75NTR receptors (KD: 7.4±1.75 nM and 5.6±0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75NTR receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75NTR receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor. Dehydroepiandrosterone (DHEA) and its sulphate ester are the most abundant steroid hormones in humans, and DHEA was described as the first neurosteroid produced in the brain. DHEA is known to participate in multiple events in the brain, including neuronal survival and neurogenesis. However, to date no specific cellular receptor has been described for this important neurosteroid. In this study, we provide evidence that DHEA exerts its neurotrophic effects by directly interacting with the TrkA and p75NTR membrane receptors of nerve growth factor (NGF), and efficiently activates their downstream signaling pathways. This activation prevents the apoptotic loss of NGF receptor positive sensory and sympathetic neurons. The interaction of DHEA with NGF receptors may also offer a mechanistic explanation for the multiple actions of DHEA in other peripheral biological systems expressing NGF receptors, such as the immune, reproductive, and cardiovascular systems.
Collapse
|
36
|
Rubenstein JLR. Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 2011; 52:339-55. [PMID: 20735793 PMCID: PMC3429600 DOI: 10.1111/j.1469-7610.2010.02307.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral cortex has a central role in cognitive and emotional processing. As such, understanding the mechanisms that govern its development and function will be central to understanding the bases of severe neuropsychiatric disorders, particularly those that first appear in childhood. In this review, I highlight recent progress in elucidating genetic, molecular and cellular mechanisms that control cortical development. I discuss basic aspects of cortical developmental anatomy, and mechanisms that regulate cortical size and area formation, with an emphasis on the roles of fibroblast growth factor (Fgf) signaling and specific transcription factors. I then examine how specific types of cortical excitatory projection neurons are generated, and how their axons grow along stereotyped pathways to their targets. Next, I address how cortical inhibitory (GABAergic) neurons are generated, and point out the role of these cells in controlling cortical plasticity and critical periods. The paper concludes with an examination of four possible developmental mechanisms that could contribute to some forms of neurodevelopmental disorders, such as autism.
Collapse
Affiliation(s)
- John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California at San Francisco, CA 94158-2324, USA.
| |
Collapse
|
37
|
Hampson DR, Adusei DC, Pacey LKK. The neurochemical basis for the treatment of autism spectrum disorders and Fragile X Syndrome. Biochem Pharmacol 2011; 81:1078-86. [PMID: 21333634 DOI: 10.1016/j.bcp.2011.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/29/2023]
Abstract
Autism spectrum disorders (ASD) and Fragile X Syndrome (FXS) are neurodevelopmental disorders that share overlapping behavioral characteristics. While FXS is known to result from a specific genetic mutation, the causes of the majority of cases of ASD are unknown. Animal models of FXS have revealed new insight into the cellular and biochemical changes that occur in the central nervous system in this disorder, while human genetic studies on individuals with autism have identified sets of genes that may increase susceptibility to the disorder. Together these discoveries suggest overlapping biochemical characteristics and reveal new directions for the potential development of pharmacological therapies that might prove useful in the treatment of both FXS and ASD. In particular, delayed synaptic maturation, abnormal synaptic structure and/or function and alterations in intracellular signaling pathways have been linked to the pathogenesis of FXS and ASD. Aberrations in GABA(A) receptor ion channels and the G-protein coupled metabotropic glutamate and GABA(B) transmitter systems are also linked to both disorders and these receptors are currently at the forefront of preclinical and clinical research into treatments for both autism and Fragile X Syndrome.
Collapse
Affiliation(s)
- David R Hampson
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S3M2, Canada.
| | | | | |
Collapse
|
38
|
Siegel C, Turtzo C, McCullough LD. Sex differences in cerebral ischemia: possible molecular mechanisms. J Neurosci Res 2010; 88:2765-74. [PMID: 20698025 DOI: 10.1002/jnr.22406] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sex is emerging as an important factor in the etiology and expression of many different pathological conditions, including stroke. Initially, the levels of sex hormones were thought to be the major contributor to these sex differences, especially after puberty, when gonadal steroid levels sharply diverge between the sexes. More recently, it is recognized that sex differences also result from the organizational effects of sex hormone exposure early in development, even in the absence of hormone exposure later in life, as well as effects mediated by the sex chromosomes themselves. Epigenetic modifications of developmental genes important in sexual differentiation and the response to sex steroid hormones are also emerging as another important contributor to sex differences in disease expression. This review describes recent research on the relationship between hormones, organizational-activational effects of gonadal steroids, and epigenetic modifications in brain pathology, focusing specifically on cerebral ischemia.
Collapse
Affiliation(s)
- Chad Siegel
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
39
|
Bowers JM, Waddell J, McCarthy MM. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 2010; 1:8. [PMID: 21208470 PMCID: PMC3016241 DOI: 10.1186/2042-6410-1-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/22/2010] [Indexed: 01/09/2023] Open
Abstract
Background Oestradiol is a steroid hormone that exerts extensive influence on brain development and is a powerful modulator of hippocampal structure and function. The hippocampus is a critical brain region regulating complex cognitive and emotional responses and is implicated in the aetiology of several mental health disorders, many of which exhibit some degree of sex difference. Many sex differences in the adult rat brain are determined by oestradiol action during a sensitive period of development. We had previously reported a sex difference in rates of cell genesis in the developing hippocampus of the laboratory rat. Males generate more new cells on average than females. The current study explored the effects of both exogenous and endogenous oestradiol on this sex difference. Methods New born male and female rat pups were injected with the mitotic marker 5-bromo-2-deoxyuridine (BrdU) and oestradiol or agents that antagonize oestradiol action. The effects on cell number, proliferation, differentiation and survival were assessed at several time points. Significant differences between groups were determined by two- or thee-Way ANOVA. Results Newborn males had higher rates of cell proliferation than females. Oestradiol treatment increased cell proliferation in neonatal females, but not males, and in the CA1 region many of these cells differentiated into neurons. The increased rate of proliferation induced by neonatal oestradiol persisted until at least 3 weeks of age, suggesting an organizational effect. Administering the aromatase inhibitor, formestane, or the oestrogen receptor antagonist, tamoxifen, significantly decreased the number of new cells in males but not females. Conclusion Endogenous oestradiol increased the rate of cell proliferation observed in newborn males compared to females. This sex difference in neonatal neurogenesis may have implications for adult differences in learning strategy, stress responsivity or vulnerability to damage or disease.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Physiology, University of Maryland, Baltimore School of Medicine Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
40
|
Griesmaier E, Schlager G, Wegleiter K, Hermann M, Urbanek M, Simbruner G, Keller M. Role of p75NTR in NMDAR-mediated excitotoxic brain injury in neonatal mice. Brain Res 2010; 1355:31-40. [PMID: 20692240 DOI: 10.1016/j.brainres.2010.07.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Perinatal brain injury in preterm infants is a major cause of neurological handicap. The role of the neurotrophin receptor p75 (p75(NTR)) in the pathogenesis and repair of neonatal excitotoxic brain injury is unknown. Depending on a complex interplay of neurotrophin signalling, p75(NTR) can, in addition to its trophic function, also induce apoptosis. HYPOTHESIS We hypothesised that excitotoxicity increases p75(NTR) expression and p75(NTR) knockout (KO) mice have a significantly smaller lesion size upon excitotoxicity as compared to wild-type (WT) mice. METHODS We used an established animal model of neonatal excitotoxic brain injury mimicking several key aspects of human preterm brain damage. We subjected five-day-old WT and KO mice to excitotoxic injury by means of a single intracranial ibotenate injection (N-methyl-D-aspartate receptor agonist, NMDAR) into one brain hemisphere. Lesion size, number of activated caspase-3- and apoptosis-inducing factor (AIF)-positive cells were determined as outcome parameters. Gender analyses were taken into account retrospectively. RESULTS NMDAR-mediated excitotoxicity induced an upregulation of p75(NTR) expression in the peri-lesion area. Lesion size was significantly increased in female KO as compared to male KO animals. Knockout of p75(NTR) reduced the number of activated caspase-3 but not AIF-positive cells after NMDAR-mediated excitotoxic injury independently of gender. CONCLUSION Since NMDAR-mediated excitotoxic brain injury induced p75(NTR) expression and caspase-3-activated apoptosis in p75(NTR) KO animals was decreased, we conclude that activation of p75(NTR) contributes to NMDAR-mediated apoptosis in the neonatal brain. An increase in lesion size in female animals after excitotoxic brain injury suggests that in females p75(NTR) seems to play a dual role.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain Injury, Chronic/chemically induced
- Brain Injury, Chronic/metabolism
- Brain Injury, Chronic/pathology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Knockout
- Neurotoxins/toxicity
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/physiology
Collapse
Affiliation(s)
- Elke Griesmaier
- Department of Paediatrics IV, Neonatology, Neuropaediatrics and Metabolic Diseases, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Androgens can protect neurones from injury, although androgen neuroprotection is not well characterised in terms of either specificity or mechanism. In the present study, we compared the ability of androgens to protect neurones against a panel of insults, empirically determined to induce cell death by apoptotic or non-apoptotic mechanisms. Three criteria defining but not inclusive of apoptosis are: protection by caspase inhibition, protection by protein synthesis inhibition and the presence of pyknotic nuclei. According to these criteria, beta-amyloid, staurosporine, and Apoptosis Activator II induced cell death involving apoptosis, whereas hydrogen peroxide (H(2)O(2)), iron, calcium ionophore and 3-nitropropionic acid induced cell death featuring non-apoptotic characteristics. Pretreatment of hippocampal neurones with testosterone or dihydrotestosterone attenuated cell death induced by beta-amyloid, staurosporine and Apoptosis Activator II, but none of the other insults. The anti-oxidant Trolox did not reduce cell death induced by beta-amyloid, staurosporine and Apoptosis Activator II, but did protect against H(2)O(2) and iron. Similarly, a supra-physiological concentration of oestrogen reduced cell death induced by H(2)O(2) and iron, an effect not observed with androgens. We also show that activation of oestrogen pathways was not necessary for androgen neuroprotection. These data suggest that androgens directly activate a neuroprotective mechanism specific to inhibition of cell death involving apoptosis. Determining the specificity of androgen neuroprotection may enable the development of androgen compounds for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- T V Nguyen
- Neuroscience Graduate Programme and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | |
Collapse
|
42
|
Castelhano ASS, Scorza FA, Teixeira MCTV, Arida RM, Cavalheiro EA, Cysneiros RM. Social play impairment following status epilepticus during early development. J Neural Transm (Vienna) 2010; 117:1155-60. [PMID: 20711791 DOI: 10.1007/s00702-010-0460-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/01/2010] [Indexed: 01/06/2023]
Abstract
Neonatal status epilepticus (SE) disrupts prefrontal cortex and thalamus, brain regions related to social play. Juvenile play was evaluated using the "intruder-resident" paradigm following SE in 9-day-old Wistar pups of both genders. Quite interestingly, we demonstrated for the first time that neonatal SE produces social impairment in male rats, reduces locomotor activity in both genders and enhances self-grooming in female. Additional studies are necessary to clarify if these effects can impair social behavior across the life span.
Collapse
Affiliation(s)
- Adelisandra Silva Santos Castelhano
- Programa de Pós-graduação em Distúrbios do Desenvolvimento, Laboratório de Neurobiologia, Universidade Presbiteriana Mackenzie (UPM), Rua da Consolação, 930. Prédio 38, CEP 01302-907 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Lodygensky GA, West T, Stump M, Holtzman DM, Inder TE, Neil JJ. In vivo MRI analysis of an inflammatory injury in the developing brain. Brain Behav Immun 2010; 24:759-67. [PMID: 19945527 PMCID: PMC2885544 DOI: 10.1016/j.bbi.2009.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/13/2009] [Accepted: 11/15/2009] [Indexed: 11/30/2022] Open
Abstract
Cerebral periventricular white matter injury stands as a leading cause of cognitive, behavioral and motor impairment in preterm infants. There is epidemiological and histopathological evidence demonstrating the role of prenatal or neonatal inflammation in brain injury in preterm infants. In order to define the effect of an inflammatory insult in the developing brain on magnetic resonance (MR) imaging, we obtained high resolution conventional and diffusion MR images of the brain of rat pups after an inflammatory injury. Rat pups were subjected on postnatal day 5 (P5) to a stereotaxic injection of lipopolysaccharide in the corpus callosum and then imaged at 11.7 T on days 0, 2 and 4 following the injury. They were subsequently sacrificed for immunohistochemistry. Diffusion tensor imaging (DTI) acquired at high spatial resolution showed an initial reduction of the apparent diffusion coefficient (ADC) in the white matter. This was followed by an increase in ADC value and in T2 relaxation time constant in the white matter, with an associated increase of radial diffusivity of the corpus callosum, and a 10-fold increase in ventricular size. On histology, these MR changes corresponded to widespread astrogliosis, and decreased proportion of the section areas containing cresyl violet positive stain. The increase in radial diffusivity, typically attributed to myelin loss, occurred in this case despite the absence of myelin at this developmental stage.
Collapse
Affiliation(s)
- GA Lodygensky
- Department of the Child and Adolescent, Pediatric and Neonatal ICU, University of Geneva, Switzerland
,Departments of Pediatrics, Washington University, St Louis, Missouri, United States
| | - T West
- Department of Neurology and Developmental Biology, Washington University, St Louis, Missouri, United States
| | - M Stump
- Department of Neurology and Developmental Biology, Washington University, St Louis, Missouri, United States
| | - DM Holtzman
- Department of Neurology and Developmental Biology, Washington University, St Louis, Missouri, United States
,Hope Center for Neurological Disorders, Washington University, St Louis, Missouri, United States
| | - TE Inder
- Department of Neurology and Developmental Biology, Washington University, St Louis, Missouri, United States
,Departments of Radiology, Washington University, St Louis, Missouri, United States
,Departments of Pediatrics, Washington University, St Louis, Missouri, United States
| | - JJ Neil
- Department of Neurology and Developmental Biology, Washington University, St Louis, Missouri, United States
,Departments of Radiology, Washington University, St Louis, Missouri, United States
,Departments of Pediatrics, Washington University, St Louis, Missouri, United States
| |
Collapse
|
44
|
Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 2010; 23:118-23. [PMID: 20087182 DOI: 10.1097/wco.0b013e328336eb13] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Molecular and genetic insights into the etiology of autism spectrum disorders are now available. The field now needs to understand how these perturbations affect development and function of the brain. RECENT FINDINGS Herein I review the genetic mechanisms known to predispose to autism spectrum disorders, and attempt to consolidate many of these within cellular/molecular pathways that regulate development of neural systems that underlie cognition and social behaviors. In addition to the clear relationship of many susceptibility genes to activity-dependent neural responses, I propose the existence of three additional mechanisms that may contribute to autism spectrum disorders: evolutionary-driven expansion of cerebrum and cerebellar size; imbalance in the excitatory/inhibitory ratio in local and extended circuits; the hormonal effects of the male genotype. SUMMARY Understanding these mechanisms opens the possibility to therapeutic interventions.
Collapse
|
45
|
Abstract
Male sex is a well-established risk factor for poor neurodevelopmental outcome after premature birth. The mechanisms behind this sex-related difference are unknown. The damage associated with prematurity can be mimicked in rodents by prolonged exposure to sublethal postnatal hypoxia. This chronic hypoxia leads to anatomical changes in mice that strongly resemble the loss of volume, decreased myelination, and ventriculomegaly seen in preterm newborns. However, no sex differences have been previously noted in this rodent model. We hypothesized that sex comparisons in hypoxic mice would show sex-related differences in brain volume and white matter loss in response to the same degree of hypoxic insult. Mice were placed in chronic sublethal hypoxia from postnatal day 3-11. Cortical, hippocampal, and cerebellar volumes and myelination indices were measured. We found that the male hippocampus, normally larger than the female, undergoes a greater volume loss compared with females (p < 0.05). Myelination, generally greater in males, was significantly disrupted by hypoxia in neonatal male forebrain. These results support the use of this rodent model to investigate the basis of sex-related susceptibility to brain damage and develop new sex-based neuroprotective strategies.
Collapse
Affiliation(s)
- Sonia R. Mayoral
- Neuroscience Program, Stanford University School of Medicine, Stanford, California 94305
| | - Ghezal Omar
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | - Anna A. Penn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
46
|
Nguyen TVV, Yao M, Pike CJ. Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Res 2009; 1298:1-12. [PMID: 19729001 DOI: 10.1016/j.brainres.2009.08.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 12/17/2022]
Abstract
Although androgens induce numerous actions in brain, relatively little is known about which cell signaling pathways androgens activate in neurons. Recent work in our laboratory showed that the androgens testosterone and dihydrotestosterone (DHT) activate androgen receptor (AR)-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling. Since the transcription factor cyclic AMP response element binding protein (CREB) is a downstream effector of MAPK/ERK and androgens activate CREB in non-neuronal cells, we investigated whether androgens activate CREB signaling in neurons. First, we observed that DHT rapidly activates CREB in cultured hippocampal neurons, as evidenced by CREB phosphorylation. Further, we observed that DHT-induced CREB phosphorylation is AR-dependent, as it occurs in PC12 cells stably transfected with AR but in neither wild-type nor empty vector-transfected cells. Next, we sought to identify the signal transduction pathways upstream of CREB phosphorylation using pharmacological inhibitors. DHT-induced CREB phosphorylation in neurons was found to be dependent upon protein kinase C (PKC) signaling but independent of MAPK/ERK, phosphatidylinositol 3-kinase, protein kinase A, and Ca(2+)/calmodulin-dependent protein kinase IV. These results demonstrate that DHT induces PKC-dependent CREB signaling, which may contribute to androgen-mediated neural functions.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
47
|
Abstract
The avian song control system undergoes pronounced seasonal plasticity in response to photoperiod and hormonal cues. The action of testosterone (T) and its metabolites in the song nucleus HVC is both necessary and sufficient to promote breeding season-like growth of its efferent nuclei RA (robust nucleus of the arcopallium) and Area X, suggesting that HVC may release a trophic factor such as brain-derived neurotrophic factor (BDNF) into RA and X. BDNF is involved in many forms of adult neural plasticity in other systems and is present in the avian song system. We used a combination of in situ hybridization and intracerebral infusions to test whether BDNF plays a role in the seasonal-like growth of the song system in adult male white-crowned sparrows. BDNF mRNA levels increased in HVC in response to breeding conditions, and BDNF infusion into RA was sufficient to promote breeding-like changes in somatic area and neuronal density. Expression of the mRNA for the Trk B receptor of BDNF, however, did not vary with seasonal conditions in either HVC or RA. Local blockade of BDNF activity in RA via infusion of Trk-Fc fusion proteins inhibited the response to breeding conditions. Our results indicate that BDNF is sufficient to promote the seasonal plasticity in somatic area and cell density in RA, although NT-3 may also contribute to this process, and suggest that HVC may be a presynaptic source of increased levels of BDNF in RA of breeding-condition birds.
Collapse
|
48
|
Foradori CD, Handa RJ. Living or dying in three quarter time: neonatal orchestration of hippocampal cell death pathways by androgens and excitatory GABA. Exp Neurol 2008; 213:1-6. [PMID: 18617165 DOI: 10.1016/j.expneurol.2008.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/18/2022]
Affiliation(s)
- C D Foradori
- Department of Biomedical Sciences, Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|